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Abstract

We place an Indian Buffet process (IBP) prior over
the structure of a Bayesian Neural Network (BNN),
thus allowing the complexity of the BNN to in-
crease and decrease automatically. We further ex-
tend this model such that the prior on the structure
of each hidden layer is shared globally across all
layers, using a Hierarchical-IBP (H-IBP). We ap-
ply this model to the problem of resource alloca-
tion in Continual Learning (CL) where new tasks
occur and the network requires extra resources.
Our model uses online variational inference with
reparameterisation of the Bernoulli and Beta distri-
butions, which constitute the IBP and H-IBP priors.
As we automatically learn the number of weights
in each layer of the BNN, overfitting and under-
fitting problems are largely overcome. We show
empirically that our approach offers a competitive
edge over existing methods in CL.

1 INTRODUCTION

Humans have the ability to continually learn, consolidate
their knowledge and leverage previous experiences when
learning a new set of skills. In Continual Learning (CL)
an agent must also learn continually, presenting several
challenges including learning online, avoiding forgetting
and efficiently allocating resources for learning new tasks.
In CL, a neural network model is required to learn a series
of tasks, one by one, and remember how to perform each.
The model is given a set of M tasks sequentially Tt for
t = 1, ...M. Where each task is comprised of a dataset. The
model will lose access to the training dataset for task Tt but
will be continually evaluated on the test sets for all previous
tasks Ti for i ≤ t, we will introduce the problem setting
more formally in the next section.

The principal challenges to CL are threefold, firstly mod-

els need to overcome catastrophic forgetting of old tasks;
a neural network will exhibit forgetting of previous tasks
after having learnt a few tasks [Goodfellow et al., 2015].
Secondly, models need to leverage knowledge transfer from
previously learnt tasks for learning a new task Tt . And
finally, the model needs to have enough neural resources
available to learn a new task and adapt to the complexity of
the task at hand.

One of the main approaches to CL involves the use of
the natural sequential learning approach embedded within
Bayesian inference. The prior for task Ti is the posterior
which is obtained from the previous task Ti−1. This enables
knowledge transfer and offers an approach to overcome
catastrophic forgetting. Previous Bayesian CL approaches
have leveraged Laplace approximations [Kirkpatrick et al.,
2017] and variational inference [Nguyen et al., 2018] to aid
computational tractability. Whilst Bayesian methods solve
the first and second objectives above, the third objective of
ensuring that the BNN has enough neural resources to adapt
its complexity to the task at hand is not necessarily achieved.
For instance, additional neural resources can alter perfor-
mance on MNIST classification (see Table 1 in [Blundell
et al., 2015]). This is a problem as the amount of neural
resources required for a current task, may not be enough
(or may be redundant) for a future task. Propagating a poor
approximate posterior from one task will alter performance
for all subsequent tasks.

Non-Bayesian neural networks use additional neurons to
learn new tasks and prevent overwriting previous knowledge
thus overcoming forgetting. The neural networks which have
been trained on previous tasks are frozen and a new neural
network is appended to the existing network for learning
a new task [Rusu et al., 2016]. The problem with this ap-
proach is that of scalability: the number of neural resources
increases linearly with the number of tasks. The scalability
issue has been tackled with selective retraining and expan-
sion with a group regulariser [Yoon et al., 2018]. How-
ever this solution is unable to shrink and so are vulnerable
to overfitting if misspecified when starting CL. Moreover
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 knowledge transfer and prevention of catastrophic forgetting
are not solved in a principled manner, unlike approaches
couched in a Bayesian framework.

As the resources required are typically unknown in ad-
vance, we propose a BNN which adds or withdraws neu-
ral resources automatically in response to the data. This is
achieved by drawing on Bayesian nonparametrics to learn
the structure of each hidden layer of a BNN. Thus, the model
size adapts to the amount of data seen and the difficulty of
the task. This is achieved by using a binary latent matrix
Z, distributed according to an Indian Buffet Process (IBP)
prior [Griffiths and Ghahramani, 2011]. The IBP prior on
an infinite binary matrix, Z, allows inference on which and
how many neurons are required for each data point in a
task. The weights of the BNN are treated as draws from
non-interacting Gaussians [Blundell et al., 2015]. Catas-
trophic forgetting is overcome by repeated application of
the Bayesian update rule, embedded within variational infer-
ence [Nguyen et al., 2018]. We summarise the contributions
as follows. We present a novel BNN using an IBP prior and
its hierarchical extension to automatically learn the com-
plexity of each hidden layer according to the task difficulty.
The model’s effective use of resources is shown to be use-
ful in CL. We derive a variational inference algorithm for
learning the posterior distribution of the proposed models.
In addition, our model elegantly bridges two separate CL ap-
proaches: expansion methods and Bayesian methods (more
commonly referred to as regularization based methods in
CL literature).

2 INDIAN BUFFET NEURAL
NETWORKS

We introduce the CL problem setting in Section 2.1, varia-
tional Bayesian approaches to CL in Section 2.2. We present
the IBP prior in Section 2.3 and the IBP prior on the latent
binary matrix Z is then applied to a BNN such that the com-
plexity of each hidden layer can be learnt from the data in
Section 2.4. In Section 3, the Hierarchical IBP prior (H-IBP)
is introduced and applied to the BNN to encourage a more
regular structure. Thus, the use of an IBP and H-IBP prior
over the hidden states of the BNN can be readily used to-
gether with the Bayesian CL framework presented, and so
automatically adapt its complexity according to the task.

2.1 CONTINUAL LEARNING

Continual learning (CL) is a setting whereby a model must
learn a set of tasks sequentially, while maintaining perfor-
mance across all tasks. In CL, the model is shown a set of M
tasks sequentially Tt for t = 1, . . .M. Each task is comprised
of a dataset such that Tt : Dt =

{
(xi,yi)

}
for i = 1, . . . ,Nt .

The inputs xi ∈ Rd and outputs can be yi ∈ R in the case
of regression or a categorical variable for classification. Al-

though the model will lose access to the training dataset for
task Tt , it will be continually evaluated on all previous tasks
Ti for i≤ t. t can be used as a task identifier informing the
agent when to start training on a new task or what task to
being tested. For a comprehensive review of CL scenarios
see van de Ven and Tolias [2018], Hsu et al. [2018].

2.2 BAYESIAN CONTINUAL LEARNING

The CL process can be decomposed into Bayesian updates
where the approximate posterior for Tt−1 can be used as
a prior for task Tt . Variational CL (VCL) [Nguyen et al.,
2018] uses a BNN to perform the prediction tasks where the
network weights are independent Gaussians. The variational
posterior from previous tasks is used as a prior for new tasks.
Consider learning the first task T1, and φφφ are the variational
random variables, then the variational posterior is q1(φφφ |D1).
For the subsequent task, access to D1 is lost and the prior
will be q1(φφφ |D1), optimization of the ELBO will yield the
variational posterior q2(φφφ |D2). Generalising, the negative
ELBO for the t-th task is:

L (φφφ ,Dt) = DKL [qt(φφφ)||qt−1(φφφ |Dt−1)]

−Eqt [log p(Dt |φφφ)].
(1)

The first term acts to regularise the posterior such that it is
close to previous task’s posterior and the second term is the
log-likelihood of the data for the current task.

2.3 INDIAN BUFFET PROCESS PRIOR

Matrix decomposition aims to represent the data X as a com-
bination of latent features: X = ZA+ ε where X ∈ RN×D,
Z ∈ ZN×K

2 , A ∈ RK×D and ε is an observation noise. Each
element in Z corresponds to the presence or absence of a
latent feature from A. Specifically, zik = 1 corresponds to
the presence of a latent feature Ak in observation Xi and
k ∈ {1, · · · ,∞} all columns in Z with k > K are assumed
to be zero. In a scenario where the number of latent fea-
tures K is to be inferred, then the IBP prior on Z is suitable
[Doshi-Velez et al., 2009].1

One representation of the IBP prior is the stick-breaking for-
mulation [Teh et al., 2007]. The probability πk is assigned to
the column zk for k ∈ {1, · · · ,∞}, whether a feature has been
selected is determined by znk ∼Bern(πk). This parameter πk
is generated according to the following stick-breaking pro-
cess: vk ∼ Beta(α,1), and πk = ∏

k
i=1 vi, thus πk decreases

exponentially with k. The Beta concentration parameter α

controls how many features one expects to see in the data,
the larger α is, the more latent features are present.

1We provide a notebook to demonstrate how the IBP prior
can be used for the matrix factorization https://bit.ly/
3asylU5. In particular, we illustrate how one doesn’t need to
specify the number of latent dictionary items to infer. This means
we do not need to set the hidden state size of a BNN for our model.

 https://bit.ly/3asylU5
 https://bit.ly/3asylU5


 2.4 ADAPTATION WITH THE IBP PRIOR

Consider a BNN with k j neurons for each layer j ∈ {1, ...J}
layers. Thence, for an arbitrary activation f , the binary ma-
trix Z is applied elementwise h j = f (h j−1Wj) ◦Z j where

h j−1 ∈ RN×k j−1 , Wj ∈ Rk j−1×k j , Z j ∈ ZN×k j
2 , and where ◦

is the elementwise product and N is the number of data
points per batch. We have ignored biases for simplicity. Z j
is distributed according to an IBP prior. The IBP prior has
some suitable properties for this application: the number
of neurons sampled grows with N and the promotion of
“rich get richer" scheme for neuron selection [Griffiths and
Ghahramani, 2011]. For convenience, we term the IBP BNN
as IBNN for the remainder of the paper.

The number of neurons selected grow or contract according
to the variational objective; which depends on the com-
plexity of the data. This allows for efficient use of neural
resources which is crucial to a successful CL model. The
variational objectives for the IBP prior and BNN are intro-
duced further down the line in Section 2.5 and Section 3.2.
Additionally, the “rich get richer" scheme is useful since the
common neurons are selected across tasks enabling knowl-
edge transfer and preventing forgetting.

As a standard practice in variational inference with a
Bayesian nonparametric prior, we use a truncation level
K, to the maximum number of features in the variational
IBP posterior. [Doshi et al., 2009] present bounds on the
marginal distribution of X in a matrix factorisation setting
and show that the bound decreases exponentially as K in-
creases. A similar behaviour is expected for our application.

2.5 STRUCTURED VI

Structured stochastic VI (SSVI) has been shown to perform
better inference of the IBP posterior than mean-field VI
in deep latent variable models [Singh et al., 2017]. Hence,
this inference method has been chosen for learning and
presented next.

A separate binary matrix Z j can be applied to each layer
j ∈ {1, ...J} of a BNN. The subscript j is dropped for clar-
ity. The structured variational approximation is: q(φ) =
∏

K
k=1 q(vk)q(wwwk)∏

N
i=1 q(zik|vk), where the random variables

are φ = {vk,wwwk,Zk} and the variational parameters ϕ =
{αk,βk,µµµk,σσσ k} for all k. The variational distributions over
φ are defined below and the variational IBP posterior is
truncated to K. The constituent distributions are q(vk) =
Beta(αk,βk), πk = ∏

k
i=1 vi, q(zik) = Bern(πk) and the BNN

weights are independent draws from q(wwwk) = N (µµµk,σσσ
2
k 1).

Having defined the structured variational objective, the neg-
ative ELBO is:

zik

vk

N

K

zi jk

π jk vk

N

J
K

Figure 1: The graphical model for the structured variational
posterior approximation for Left, the IBP and Right, the
H-IBP2. Using the language of the eponymous IBP prior
metaphor, k (dishes) indicates the neurons, the number se-
lected K adjusts flexibly. j (restaurants) is the number of
layers which is fixed. i (customers) is a data point.

L (φ ,D) = DKL(q(vvv)||p(vvv))+DKL(q(www)||p(www))

−
N

∑
i=1

Eq(φ) [log p(yi|xi,zi,www)]

+
N

∑
i=1

DKL(q(zi|πππ)||p(zi|πππ)).

(2)

We note that the Bernoulli random variables have an ex-
plicit dependence on the stick-breaking probabilities in the
structured variational approximation. However, this explicit
dependence between parameters is removed in a mean field
approximation. The variational parameter Beta parameters
will control the expected hidden state size for the BNN and
is automatically inferred. For sequential Bayesian updates
the posterior is then used as the next task’s prior, thus a prior
only needs to be designed for the first task.

3 HIERARCHICAL IBNN

In the previous section, we presented the IBNN model to
allow a BNN to automatically select the number of neurons
for each layer according to the data. For a multi-layer BNN,
one can apply the IBP prior independently for each layer.
However, we can add an inductive bias to ensure that the in-
ferred number of neurons are similar for across all layers of
an MLP and ensure that information is shared across layers.
To do this, we propose a hierarchical IBP prior [Thibaux
and Jordan, 2007] for neuron selection across multiple lay-
ers. The number of neurons from all layers are generated
from the same global prior, thus will discourage irregular
structure in the BNN (a BNN with adjacent wide and narrow



 layers might be inferred when using independent priors on
each hidden layer). Of course, this property might not be de-
sirable for all use cases, however the majority of BNNs used
in the literature have a regular structure. We term our model
as HIBNN and present the graphical model which describes
the hierarchical IBP prior in Figure 1. This model has the
advantage of having fewer learnable parameters as neuron
selection will be driven by the global prior in comparison to
having a single IBP per layer.

3.1 ADAPTATION WITH THE HIERARCHICAL
IBP

The global probability of selecting the neuron positioned
at the k-th index across all layers is defined according to a
stick-breaking process:

π
0
k =

k

∏
i=1

vi, vk ∼ Beta(α,1), k = 1, · · ·∞. (3)

Child IBPs are defined over the structure of each individual
hidden layer of a BNN which depend on π0

k to define the
respective Bernoulli probabilities of selecting neuron k in
layer j:

π jk ∼ Beta
(
α jπ

0
k ,α j(1−π

0
k )
)
, (4)

for j ∈ {1, · · ·J}, k ∈ {1, · · ·∞}, where J is the number of
layers in a BNN, α j are hyperparameters [Thibaux and
Jordan, 2007, Gupta et al., 2012]. The selection of the k-th
neuron in the j-th layer by a particular data point i in the
dataset of size N is thus:

zi jk ∼ Bern(π jk), i = 1, · · ·N. (5)

Notice that if k is small, π0
k is close to 1 then the shape

parameter of the child Beta distribution will be large. At
the same time the scale parameter will be small. So the
Bernoulli probability in Equation (5) will be close to 1,
as k increases π0

k and π jk decrease. To infer the posterior
p(vvv,Z,www|D), we perform SSVI.

3.2 STRUCTURED VI

A structured variational posterior distribution which retains
properties of the true posterior is desired such that the global
stick-breaking probabilities influence child stick-breaking
probabilities of each layer of the BNN. Let us define the
variational distributions for our hidden variables as follows,
q(v0

k) =Beta(α0
k ,β

0
k ) and q(π jk) =Beta(α jπ

0
k ,α j(1−π0

k )),
π0

k = ∏
k
i=1 v0

i , q(zi jk) = Bern(π jk) and the weights of the
BNN are drawn from q(www jk) = N (µµµ jk,σσσ

2
jk1).

2The mean-field approximation removes all edges from these
graphical models.

The structured variational distribution is defined as follows

q(φ) =
K

∏
k=1

q(v0
k)

J

∏
j=1

q(π jk|v0
k)q(www jk)

N

∏
i=1

q(zi jk|π jk) (6)

where φ = {α0
k ,β

0
k ,µµµ jk,σσσ jk} for all j and k, up to the vari-

ational truncation, K. Having defined the structured varia-
tional distribution, the negative ELBO is:

L (φφφ ,D) = KL(q(vvv0)||p(vvv0))+
J

∑
j=1

KL(q(πππ j|vvv0)||p(πππ j|vvv0))

+
J

∑
j=1

KL(q(www j)||p(www j))

−
J

∑
j=1

N

∑
i=1

Eq(φ)[log p(yi|xi,zi j,www j)]

+
J

∑
j=1

N

∑
i=1

KL(q(zi j|πππ j)||p(zi j|πππ j)).

(7)
The child stick-breaking variational parameters for each
layer are conditioned on the global stick-breaking param-
eters and the binary masks zi jk for each neuron k in each
layer j are conditioned on the child stick-breaking varia-
tional parameters. Thus, the variational structured posterior
is able to capture dependencies of the prior. The learnable
parameters are α0

k , β 0
k , µµµ jk and σσσ jk for all k neurons and

for all layers j.

3.2.1 Inference

The variational posterior is obtained by optimising Equa-
tion (7) using structured stochastic VI. For inference to be
tractable, we utilise three reparameterisations. The first is for
the Gaussian weights [Kingma and Welling, 2014]. The sec-
ond is an implicit reparameterisation of the Beta distribution
[Figurnov et al., 2018]. The third reparameterisation uses a
Concrete relaxation to the Bernoulli distribution [Maddison
et al., 2017, Jang et al., 2017]. Details of these are in the
Supplementary material, Section 1.

4 RELATED WORKS

IBP priors and model selection in deep learning. An
IBP prior has been used in VAEs to automatically learn the
number of latent features. Stick-breaking probabilities have
been placed directly as the VAE latent state [Nalisnick and
Smyth, 2017]. The IBP prior has been used to learn the
number of features in a VAE hidden state using mean-field
VI [Chatzis, 2018] with black-box VI [Ranganath et al.,
2014] and structured VI [Hoffman and Blei, 2015, Singh
et al., 2017]. As an alternative to truncation, Xu et al. [2019]
use a Russian roulette sampling scheme to sample from the
infinite sum in the stick-breaking process for the IBP. Model



 selection for BNNs has been performed with the Horse-
shoe prior over weights [Ghosh et al., 2019]. The IBP prior
has been employed in BNNs to induce sparcity [Panousis
et al., 2019] and simultaneously to our work for CL [Kumar
et al., 2019]. Both of these approaches apply the IBP prior
differently to our work and previous work applying the IBP
to VAEs. Also Kumar et al. [2019] deviates from sequential
Bayes by storing masks over weights for each task and
uses design choices which mean the IBP is not the sole
means of selecting weights, we expand on this in Section 7.
Instead of using an IBP prior, Bernoulli distributions (or its
Concrete relaxation) is used to select the width and number
of layers in a BNN [Dikov et al., 2019]. This approach is not
non-parametric and so not as desirable for CL. Recently and
subsequently to our work, Mehta et al. [2020] have proposed
a CL approach where weights matrices are factorised and
the IBP prior applied to the diagonal in the factorisation.
This work does not use sequential Bayes for CL but rather
different neural network weights are used for different tasks
and thus alleviates forgetting.

Bayesian continual learning. Repeated application of
Bayes’ rule can be used to update a model given the arrival
of a new task. Previous work has used Laplace approxima-
tions [Kirkpatrick et al., 2017] and variational inference
[Nguyen et al., 2018]. Bayesian methods can also be intu-
itively thought of as a weight space regularisation. Explicit
regularisation in weight space have also proved successful
in CL [Zenke et al., 2017, Schwarz et al., 2018]. Our method
builds upon Nguyen et al. [2018] as the framework for learn-
ing continually. None of these works deal with the issue
of resource allocation to alleviate potential overfitting or
underfitting problems in CL. The model we present adapts
its size for CL, the scenario where BNNs need adapt to a
changing data distribution or to concept drift in CL has been
studied too [Kurle et al., 2020].

Adaptive models in continual learning. Non-Bayesian
CL approaches use additional neural resources to learn new
tasks and remember previous tasks. One approach boils
down to learning individual networks for each task [Rusu
et al., 2016]. More efficient use of resources can be done
by selective retraining of neurons and expansion with a
group sparsity regulariser [Yoon et al., 2018]. However this
approach is unable to shrink and continues to expand if it
overfits on the first task. Another approach uses reinforce-
ment learning by adding neural resources by penalising the
complexity of the task network in the reward function [Xu
and Zhu, 2018]. Recently Rao et al. [2019] propose an un-
supervised CL model (CURL) in scenarios that lack a task
identifier. CURL is adaptive, insofar that if a new task is
detected then a new component is added to the mixture of
Gaussians in the model. Task learning in CL can be modeled
as a mixture of expert models. The experts are distributed
according to a Dirichlet prior [Lee et al., 2020]; new experts

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Pruning %

0

10

20

30

40

50

60

70

80

90

Te
st

 e
rro

r %

IBNN | |
IBNN snr
MFVI | |
MFVI snr
HIBNN | |
HIBNN snr0.9500.9580.9660.9740.9820.9900.998

10
20
30
40
50
60
70
80
90

Figure 2: The weight pruning curves show test error versus
the percentage of weights which have been zeroed out ac-
cording to the magnitude of the variational mean and snr
(|µ|/σ ). The HIBNN and IBNN are much sparser than a
MFVI BNN and the HIBNN is more robust to pruning and
therefore sparser than the IBNN.

can be added to the mixture automatically.

5 EXPERIMENTAL RESULTS

To demonstrate the effectiveness of the IBP and H-IBP pri-
ors on determining the size of the BNN, we perform weight
pruning to see whether the pruned weights coincide with the
weights dropped by the IBP and H-IBP priors in Section 5.1.
Furthermore, we then use the IBNN and HIBNN in a CL
setting in Section 5.2. Also in the supplementary material,
further continual learning results and all experimental de-
tails are outlined. Unless explicitly stated, all curves are an
average of 5 independent runs ± one standard error. By test
error, we refer to (1− accuracy)×100.3

5.1 IBP INDUCES SPARSITY

We perform weight pruning to see whether the IBP poste-
rior sensibly selects neurons through the binary matrix Z.
Weights are pruned in two ways. The first is pruning accord-
ing to |µ|: zeroing out weights according to the magnitude
of their mean. Important weights will be large in absolute
value and so pruned last. Secondly, according to signal to
noise ratio: |µ|/σ (snr). Weights with high uncertainty will
also be zeroed out first. Weight pruning is performed on
MNIST and compared to a mean-field BNN [Blundell et al.,
2015] (denoted MFVI in plots). The pruning accuracies
in Figure 2 demonstrate that the HIBNN is indeed much
sparser than a BNN and that pruning according to snr is
more robust, as expected. The HIBNN is more robust to
pruning than the IBNN due to its inductive bias leading
to the more regular structure Figure 3. The baseline BNN

3Our code is available at https://github.com/
skezle/IBP_BNN.

https://github.com/skezle/IBP_BNN
https://github.com/skezle/IBP_BNN
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Figure 3: The number of active neurons in each layer of the
IBNN and HIBNN. The HIBNN introduces an inductive
bias which encourages and enables a regular structure. The
Z matrices for the HIBNN show the neurons which are being
learnt on the left.4

has two layers with hidden state sizes of 200, the HIBNN
and IBNN use a variational truncation of K = 200 for fair
comparison. The HIBNN and IBNN achieves an accuracy
of 0.95 before pruning while MFVI achieves 0.98 before
pruning. This gap in performance is due to the approximate
inference of the H-IBP and IBP posteriors and the various
reparameterisations used, in particular the Concrete repa-
rameterisation which is applying a ‘soft’ mask on the hidden
layers of the HIBNN. The IBNN and HIBNN are slightly
less sparse compared to Sparse Variational Dropout which is
specifically designed to be sparse [Molchanov et al., 2017],
see Section 2 in the supplement.

Varying depth. As we increase the depth we see that the
HIBNN and IBNN remain sparse while the MFVI’s sparsity
decreases, Figure 4. We measure the sparsity as the pruning
percentage at which the accuracy drops over 10% (the kinks
in Figure 4). There is little variation of the accuracy with
depth for all models before pruning, however after pruning
95% of the weights with the snr our models retain their
performance while the MFVI BNN performs worse with
depth since it becomes less sparse with depth Figure 4. See
the supplement for the same analysis on fashion-MNIST,
Section 3.2.

5.2 CONTINUAL LEARNING EXPERIMENTS

Adaptive complexity. Approximate inference of the IBP
and H-IBP posteriors is challenging in a stationary setting
making the performance attenuated in comparison to a BNN
with only independent Gaussian weights. Despite this, the
approximate IBP and H-IBP posteriors are useful in non-
stationary CL setting, where the amount of resources are
unknown beforehand. In Figure 5, one can see that the av-
erage accuracies across all CL tasks for permuted MNIST
vary considerably with the hidden state size for VCL hence
the benefit of our model which automatically infers the hid-

4Z is usually shown in left-ordered form, however since the
inference procedure is based on the stick breaking construction,
order is meaningful and sorted according to k [Xu et al., 2019].
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Figure 4: Left, as the depth of the IBNN and HIBNN in-
creases the networks tend to remain very sparse while the
MFVI BNN is becomes less sparse. Middle & Right, the
HIBNN and IBNN remain robust to pruning with increasing
depth.

den state size for each task, see Figure 6. The details of the
experiment will be introduced below.

Continual learning scenarios. Three different CL sce-
narios are used for evaluation [van de Ven and Tolias, 2018].
The first is task incremental learning (CL1) where the task
identifier is given during evaluation. The second is domain
incremental learning (CL2), the task identifier needs to be
inferred at test time. The domain increases with each new
task and the models are required to perform binary classi-
fication. The third is incremental class learning (CL3), the
task identifier and specific class need to be inferred at test
time. The models are required to do multi-class classifica-
tion for each task. During training, the task identifiers are
given for all scenarios.5 Using a multi-head architecture
and the predictive entropy we can infer the task; the head
with the lowest predictive entropy is chosen for CL2 and
CL3 [Von Oswald et al., 2020]. For Permuted MNIST CL2
a single-head architecture is used [van de Ven and Tolias,
2018].

Baseline models. We compare our models to VCL
[Nguyen et al., 2018], since the IBNN and HIBNN models
build on top of it. We also compare to EWC [Kirkpatrick
et al., 2017] and SI [Zenke et al., 2017]. We compare to DEN
[Yoon et al., 2018] which is an expansion method which
expands a neural network by a fixed number of weights for
each new task, uses regularisation to mitigate overfitting and
freezes weights from previous tasks. For DEN the predictive
entropy is used for inferring the correct head for CL2 and
CL3. Another baseline used is GEM [Lopez-Paz and Ran-
zato, 2017], which uses replay as its primary mechanism
for alleviating forgetting. We hypothesise that GEM will
be insensitive to model size. It also achieves strong results
[Hsu et al., 2018]. VCL is the fairest comparison for our
model and will also utilise uncertainties for CL2 and CL3.
Our objective is to demonstrate that limited or excessive
neural resources can cause problems in CL in comparison

5Task-free CL is a more challenging scenario and requires the
model the infer new tasks during training.
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Figure 5: Test accuracies for Permuted MNIST CL1, for
different VCL widths. Our model yields good results with-
out having to specify a width, only a small range of values
outperforms our model.

to our adaptive model.

MNIST Experimental details. All models use a single
layer with varying hidden state sizes. The use of a single
layer is enough as MNIST is a simple task. The results for
EWC in Table 1 on Split MNIST outperform those presented
in Hsu et al. [2018], van de Ven and Tolias [2018] which use
larger models. We report accuracies for our non adaptive
baselines (EWC, SI, GEM and VCL) over a set of hidden
state sizes H = {10,50,100,400}. A hidden state of 10
might seem small but we also set the IBP prior parameter
α = 5 for task 1. This corresponds to only 5 neurons being
selected by each data point in expectation. The initial hidden
state size for DEN is set to 50.

Permuted MNIST benchmarks. The permuted MNIST
benchmark involves performing multiclass classification on
MNIST where in each task, the pixels have been shuffled
by a fixed permutation. Our model is able to overcome over-
fitting and underfitting which result in increased forgetting
which affect VCL. See Figure 8 in the supplement, for a per
task accuracy breakdown. In contrast, the IBNN expands
continuously Figure 6. There is a small gap in performance
between our model and VCL for h = 50 due to the approxi-
mations used for inference of the variational IBP posterior.
Our method outperforms all regularisation based methods
and DEN6 on all CL scenarios and provides comparable
results to GEM, see Table 1.

Split MNIST benchmarks. The split MNIST benchmark
for CL involves a sequence of classification tasks of MNIST
and more difficult variants with background noise and back-
ground images denoted S+ε and S+img. For EWC, SI and

6It is not clear how to reconcile single-head networks and DEN,
thus CL2 for DEN is omitted.
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Figure 6: Number of active neurons7selected by the IBP vari-
ational posterior for each task, for permuted MNIST CL1.
Our model is able adapt and manage resources effectively.

VCL notice a considerable difference in performance with
hidden state size in Table 1. GEM is sensitive for CL3
only. EWC and SI perform well for CL1 only. The IBNN
outperforms VCL as it is not susceptible to overfitting or un-
derfitting and thus propagating a subsequent poor posterior
for a new task resulting in forgetting.

Split MNIST is a simple task which doesn’t show overfit-
ting, hence the use of the MNIST variant datasets where the
IBNN outperforms all VCL models of different sizes as it
is not susceptible to overfitting or underfitting. Indeed our
method outperforms not only VCL but EWC and SI and
performs comparably to GEM. When analysing the perfor-
mance of the VCL baselines, we notice they have a tendency
to overfit on the second task and propagate a poor approxi-
mate posterior and hence underperform in comparison to the
IBNN model, Figures 6 and 9 in the supplement. The IBNN
increases its capacity over the course of CL, Figure 7 in the
supplement. The standard errors for VCL and our method
on CL3 are large due to the severity of making mistakes for
multiclass classification.

DEN performs well on all Split MNIST tasks and variants
due to its “time-stamped inference” which segregates parts
of the network per task and so uncertainties over seen tasks
are well defined thus the good results for CL2 and CL3. In-
deed removing it renders performance comparable to IBNN,
see Section 4 in the supplement. Statistical processes which
mimic this could be an interesting direction for Bayesian
expansion methods in CL.

Increasing task complexity. To test the expansion capa-
bilities of our models we devise a set tasks of increasing
difficulty: two tasks from MNIST, followed by two from
fashion MNIST, followed by two from CIFAR10. We com-
pare the HIBNN and IBNN models to VCL with two lay-

7We define a neuron as active by aggregating all neurons where
zik > 0.1 for data point xi and neuron k.



 
Table 1: Average test accuracies on MNIST and variants over 5 runs. For EWC, SI, GEM and VCL the median accuracy is
taken from hidden state sizes, H = {10,50,100,400}. We also show the range between max and min average accuracies in
H . The models with the best median or mean accuracy are highlighted. If the IBNN mean accuracy lies within the min-max
range then our model is also highlighted. Our IBNN achieves good performance overall compared to the baselines which
can underfit/overfit. DEN performs very poorly on permuted MNIST.

EWC (max, min) SI (max, min) GEM (max, min) DEN VCL (max, min) IBNN

P CL1 90.0 (94.0,79.1) 91.8 (95.1,82.9) 94.8 (95.9,88.4) 91.4±0.5 93.9 (96.8,86.9) 95.6±0.2
P CL2 88.2 (93.0,78.2) 89.2 (93.3,84.1) 95.6 (96.7,88.1) - 88.7 (95.1,75.2) 93.7±0.6
P CL3 59.3 (66.9,24.0) 47.5 (55.4,18.1) 94.6 (95.8,87.3) 63.9±19.2 84.0 (94.1,40.5) 93.8±0.3

S CL1 98.9 (99.0,94.8) 98.1 (99.2,95.5) 98.1 (98.2,98.0) 99.1±0.1 96.6 (98.0,93.7) 95.3±2.0
S CL2 63.7 (74.8,63.3) 78.0 (80.1,72.9) 94.0 (94.8,92.2) 98.9±0.1 87.4 (94.9,81.9) 91.0±2.2
S CL3 19.9 (21.8,19.8) 18.8 (19.6,15.4) 89.2 (89.6,87.8) 99.1±0.1 69.0 (78.9,66.3) 85.5±3.2

S+ε CL1 94.6 (96.5,81.8) 88.4 (91.1,72.7) 95.6 (95.7,95.1) 97.2±0.2 89.2 (90.3,86.3) 95.1±1.1
S+ε CL2 72.7 (74.6,68.7) 66.1 (72.1,61.8) 78.2 (78.7,77.2) 84.8±16.7 69.1 (70.2,61.7) 89.7±3.8
S+ε CL3 18.8 (19.0,13.7) 13.7 (16.7,10.4) 74.1 (74.4,70.7) 90.9±12.8 32.5 (37.8,30.0) 78.7±11.7

S+img CL1 88.2 (90.0,78.1) 80.8 (87.4,67.8) 91.7 (91.8,91.1) 93.8±0.8 87.1 (87.9,85.7) 91.6±1.2
S+img CL2 67.7 (73.9,62.9) 63.3 (67.0,58.5) 74.1 (76.4,74.0) 79.1±13.1 70.4 (75.2,65.3) 80.5±7.8
S+img CL3 17.0 (18.0,12.0) 13.4 (16.4,10.3) 63.9 (64.5,56.3) 91.6±5.1 54.3 (66.1,39.9) 66.2±13.4

Table 2: Accuracies for tasks of increasing difficulty. Accu-
racies are an average over 5 runs. VCL use different hidden
state sizes, H = {50,100,400}, we show the range be-
tween the max and min average accuracies centre at the
median. Our models are able to overcome underfitting.

VCL (max, min) IBNN HIBNN

CL1 82.3 (86.1,81.2) 80.8±2.0 81.3±1.8
CL2 79.9 (83.1,76.7) 78.7±1.5 81.5±1.4

ers and widths in H = {50,100,400}. Our models have
two layers with K = 200. The larger width VCL networks
perform well but smaller ones exhibit forgetting due to un-
derfitting. For the HIBNN we allow the hyperparameter α j
to increase for each new dataset seen i.e. every two tasks.
We perform random search over the IBP and H-IBP param-
eters for the IBNN and HIBNN models, Section 6.1. The
HIBNN performs better than the IBNN, additionally we can
see Figure 7 that both of our models can have very different
structure after learning on a task. Notice that since there is a
sharing of parameters at a global level that the widths of the
HIBNN match across different layers unlike the IBNN.

6 CONCLUSION AND DISCUSSION

Model size is an important contributing factor for CL per-
formance. Most CL methods assume a perfectly selected
model. Our novel Bayesian CL framework nonparametri-
cally adapts the complexity of a BNN to the task difficulty.
Our model is based on the IBP prior for selecting the num-
ber of neurons for each task and uses stochastic variational
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Figure 7: Inferred structure for the HIBNN and IBNN re-
spectively. Our models can infer varied structures, expand
and contract.

inference. The models presented reconcile two different
approaches to CL: Bayesian or regularization based ap-
proaches and dynamic architecture approaches through the
use of a IBP and H-IBP prior.

We have demonstrated our model on MNIST like datasets.
Future work will focus on showing that our method is able
to scale to larger vision datasets which are used in CL. This
will involve applying the IBP and H-IBP priors to Convolu-
tional Neural Networks (CNN). Also ensuring that inference
can be performed efficiently will be another challenge since
inference in the IBNN and HIBNN is more expensive than
for VCL (see Section 6.3) and VCL has been shown to pro-
duce poor results when scaling to these larger models [Pan
et al., 2020]. This could be performed with other inference
methods such as using natural gradients [Osawa et al., 2019]
or only training certain parts of the convolutional block of
the CNN [Ovadia et al., 2019]. This is left for future work.
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