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Abstract

Active search refers to the problem of efficiently
locating targets in an unknown environment by
actively making data-collection decisions. In this
paper, we are focusing on multiple aerial robots
(agents) detecting targets such as gas leaks, radia-
tion sources or human survivors of disasters. One
of the main challenges of active search with mul-
tiple agents in unknown environments is impracti-
cality of central coordination due to the difficulties
of connectivity maintenance. In this paper, we pro-
pose two distinct active search algorithms that al-
low for multiple robots to independently make data-
collection decisions without a central coordinator.
Throughout we consider that targets are sparsely lo-
cated around the environment in keeping with com-
pressive sensing assumptions and its applicability
in real world scenarios. Additionally, while most
common sensing algorithms assume that agents
can sense the entire environment (e.g. compressive
sensing) or sense point-wise (e.g. Bayesian Opti-
mization) at a time, we make a realistic assumption
that each agent can only sense a contiguous region
of space at each time step. We provide simulation
results as well as theoretical analysis to demon-
strate the efficacy of our proposed algorithms.

1 INTRODUCTION

Active search (active sensing) defines the problem of effi-
ciently locating targets in an unknown environment by inter-
actively collecting data and finds use in applications such as
detecting gas leaks, pollution sources or search and rescue
missions [Rolf et al., 2018, Flaspohler et al., 2019, Ma et al.,
2017]. Originally, much of the work in the field of robotics
information gathering had their focus on single-agent set-
tings [Cliff et al., 2015, Lim et al., 2016, Patten et al., 2018,

Arora et al., 2019], or if they were multi-agent, they re-
quired a central planner [Cho et al., 2018, Charrow et al.,
2014, Surmann et al., 2019]. While centralized planning is
one approach to multi-robot settings, it is often impractical
in certain applications of surveillance, exploration of un-
known environments and search-and-rescue [Sabattini et al.,
2013]. This is because in these applications connectivity
maintenance is specifically difficult [Yan et al., 2013, Robin
and Lacroix, 2016]. Moving in an unknown or cluttered
environment, it is very likely for robots to get trapped and
temporarily lose their connection to the center [Sabattini
et al., 2013]. As a result, a central coordinator that expects
synchronicity from all robots at all times is not feasible
as any agent failure or communication delay could disrupt
the entire process [Queralta et al., 2020, Best et al., 2019,
Lauri et al., 2020, Murphy, 2004, Feddema et al., 2002]. To
clarify, there is still communication between agents to share
information, otherwise they are just independent actors, not
a team. In this paper, we propose two multi-robot active
search algorithms that allow agents to make independent
and intelligent decisions in a decentralized manner.

Another consideration of this paper is a realistic assump-
tion on the sensing actions called region sensing. Inspired by
aerial robots’ field of view, we assume that each agent senses
an average value of a contiguous region (block) of the space
at each time step [Ma et al., 2017]. The size of the sensing
block models the distance of the agent from the region. We
also model noise in the observations in accordance to this
distance. Specifically, we assume sensing a larger contigu-
ous region (modeling farther distance from region) inflicts a
larger noise value on the resulting observation. Lastly, as an
essential part of the real-world applications of active search,
we assume targets are sparsely located around.

Contributions

• We propose two novel algorithms, SPATS (Sparse Par-
allel Asynchronous Thompson Sampling) and LATSI
(LAplace Thompson Sampling with Information gain),
to actively locate targets in an unknown environment.
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 SPATS is an online algorithm with a probabilistic ex-
ploration approach that does not need any prior infor-
mation about the signal of interest. LATSI leverages
the benefits of mutual information with probabilistic
exploration in the search space.

• SPATS and LATSI have 3 main features that col-
lectively distinguish them in robotics applications
of active search. 1) They are multi-agent methods
with agents asynchronously making independent data-
collection decisions without a central planner. 2) They
are developed with a practical region sensing assump-
tion. 3) They consider sparse signal recovery.

• We demonstrate the efficacy of SPATS and LATSI
with an extensive set of simulation results in an asyn-
chronous multi-agent setting. We provide theoretical
analysis on the benefits of SPATS.

While there have been many sparse recovery algorithms
proposed in the literature, to the best of our knowledge there
is no algorithm proposed that develops sparse estimators
for active learning methods with multi-agent structure and
region sensing assumptions. In this paper, we show how
sparsity in its nature limits the exploration factor in active
learning methods and how a practical region sensing as-
sumption exacerbates this situation. We propose SPATS and
LATSI to strategically address such problems to successfully
recover sparse signals.

1.1 RELATED WORK

A prominent approach to estimating sparse signals is com-
pressive sensing (CS) [Candès et al., 2006, Donoho, 2006].
There has been a large number of work on adaptive CS that
enables the ability to make online and adaptive measure-
ments to estimate sparse signals and thus is applicable to
active search problems [Braun et al., 2015, Haupt et al.,
2009a,b, Davenport and Arias-Castro, 2012, Malloy and
Nowak, 2014]. Unfortunately, such adaptive CS methods are
sequential and therefore not extendable to multi-agent sce-
narios. Furthermore, CS algorithms in general assume that
every measurement can sense the entire environment with
arbitrary coefficients which is not a practical assumption for
active search problems with region sensing constraints.

Another area of work are multi-armed bandits. Abbasi-
Yadkori et al. [2012] and Carpentier and Munos [2012] pro-
vide multi-armed bandit algorithms that include a sparsity
assumption on their hyperparameter. However, the focus of
these algorithms are not on estimating the sparse parameter.
There have been other Bayesian Optimization (BO) and ac-
tive learning methods proposed for active search. Marchant
and Ramos [2012] uses BO to develop a spatial mapping of
a region whereas we are interested in locating targeted sig-
nals. Carpin et al. [2015] uses BO for localization of single
wireless devices but only focuses on point sensing actions.

Ma et al. [2017], Rajan et al. [2015], Jedynak et al. [2012]
aim at locating targets by optimizing some notion of Shan-
non information. Unfortunately, all of the aforementioned
active learning algorithms are developed for single agent
applications, and except for Ma et al. [2017], they mostly
lack any realistic assumptions on sensing actions.

In multi-agent active learning, algorithms in general require
a central planner to optimize a batch of actions for all agents
at each time step and therefore are not applicable to our
problem setting [Azimi et al., 2012, Gu et al., 2014, Azimi
et al., 2010]. Another multi-agent area of work is mobile
sensor networks (MSN) [Nguyen, 2019, Chen et al., 2019,
La et al., 2014] where multiple mobile sensors/agents recon-
struct a scalar map of sensory values in an entire area. MSNs
typically consider some form of region sensing assumption
on their actions, however, they generally have a constricting
sensor network with strict communication patterns which
differentiates them from our applications.

In robotics, methods that deal with active search generally
aim at autonomously building topological (identify obsta-
cles and clearways) and/or spatial maps of a region. Our
active search differs from topological mapping techniques
such as SLAM [Leonard and Durrant-Whyte, 1991, Huang
et al., 2019] and can be most closely related to spatial map-
ping. For example, Rolf et al. [2018] identify strong signals
in environments with background information using tra-
jectory planning with confidence intervals; but, unlike our
setting, their algorithm is developed for a single agent per-
forming point sensing observations. In the area of robotics
information gathering, there has been more attention to-
wards the need for decentralized solutions recently [Queralta
et al., 2020, Zhang et al., 2019]. However, existing methods
for decentralized multi-agent systems either assume reliable
communication requirements to share future plans [Best
et al., 2019, Dames et al., 2017, Li and Duan, 2017] or
assume centralized sharing of observations following decen-
tralized execution [Lauri et al., 2020, Lowe et al., 2017]. Our
algorithms benefit from observation sharing when it occurs,
but never depend on communication for coordination.

Notation Lowercase and uppercase boldface letters repre-
sent column vectors and matrices, respectively. For a matrix
A, its transpose is AT. The `1 and `2-norm of vector a are
denoted by ‖a‖1 and ‖a‖2. The N ×N identity matrix is
denoted by IN . The Kronecker product is ⊗, and diag(a)
is a square matrix with a on the main diagonal. For a set S ,
|S| denotes number of elements in that set.

2 PROBLEM FORMULATION

Figure 1 illustrates a multi-agent active search problem for
a two-dimensional environment. Our goal is to efficiently
search for targets in an unknown environment by actively
taking sensing actions given all the observations thus far.



 This can be thought of as an active learning problem (re-
ferred to as “Design of Experiment” in statistical litera-
ture)[Settles, 2009]. In particular, we are interested in re-
covering the sparse d-dimensional matrix S ∈ Rn1×···×nd

representing the unknown environment. We have no knowl-
edge on the true prior distribution of matrix S other than
knowing it is sparse. Defining β ∈ Rn as a flattened (vec-
torized) version of matrix S with n=n1×...×nd, we can
write each sensing operation at time step t as:

yt = xT
tβ + εt, εt ∼ N (0, σ2), t = 1, ..., T. (1)

Here, yt is the observation and vector xt ∈ Rn is the sens-
ing action at time step t. We call the set of (xt, yt) the
measurement at time step t. Our objective is to estimate the
k-sparse vector β (k�n) with as few number of measure-
ments T as possible. Here, we are interested in rectangular
sensing actions referred to as region sensing [Ma et al.,
2017]. Precisely, in the original d-dimensional space, our
sensing action will be a d-dimensional contiguous rectangle
(region) with weights wt inside the rectangle and zeros out-
side. As an example, if d = 1, the sensing action becomes
xt = [0, ..., 0, wt, ..., wt, 0, ..., 0]

T. This constraint models
a robot sensing a region of the search space as illustrated in
Figure 1. Furthermore, we dedicate a fixed amount of power
to each sensing action by letting ‖xt‖2 = 1 (see Remark 1).

Remark 1. By dedicating a fixed amount of power to each
sensing action, we are modeling noise as a function of dis-
tance from the region. In particular, by standing at a farther
distance from the area, an agent can cover a larger region
in an observation. Spreading the fixed amount of sensing
power over this larger region would result in larger noise
on the observation (a lower resolution observation). Simi-
larly, sensing a smaller region at a closer distance to the
environment would model smaller noise (higher resolution
observation). Figure 1 illustrates practicality of this model.

2.1 MULTI-AGENT SETTING

Communication Setup In order to achieve the objective
above with multiple agents, we need to first describe our
communication setup which is motivated by real outdoor
multi-aerial robot systems in field tests. Despite unreliability
in unknown environments, communication becomes avail-
able sometimes and we want to take advantage of it when
possible. That leads to the following constraints for our al-
gorithm: 1) Agents share their past actions and observations
when possible. 2) There can be no requirement that the set
of available past measurements remains consistent across
agents since communication problems can prevent it. 3)
There can be no part of the algorithm where an agent must
wait for communication from its teammates before acting
since this wait could be arbitrarily long and thus cause a
loss of valuable sensing time.

We are now ready to describe the multi-agent setting. To
actively locate targets, at each time step t≤T , we choose

Figure 1: An illustration of multi-agent active search. Mul-
tiple aerial robots are sensing an area looking for targets.
Agents are free to move in all directions. If an agent moves
farther from the region, it can cover a larger portion in one
lower-resolution observation. Moving closer to the region
covers a smaller region in one higher-resolution observation.

a sensing action xt given all the available measurements
thus far. For a single agent this procedure is sequential as
in Figure 2a where at time step t the agent uses all previous
sequential measurements D1

t ={(xt′ , yt′)| t′={1, .., t−1}}
to make a decision. The superscript in D1

t indicates the
agent index. In this paper, however, we are interested in
an asynchronous parallel approach with multiple agents
independently making data-collection decisions as in Fig-
ure 2b. Here, asynchronicity means that agents don’t wait
on results from other agents; instead, an agent starts a new
query immediately after its previous data acquisition is com-
pleted using all the measurements available thus far; e.g.
in Figure 2b, second agent queries t = 6’th action before
tasks 4 and 5 are completed using available measurements
D2

6={(xt′ , yt′)| t′={1, 2, 3}}.

For easier computations, we can write a compact model of
all the available measurements in Dj

t for agent j. For exam-
ple for sequential D1

t , by defining y=[y1, ..., yt−1]
T,X=

[xT
1, ...,x

T
t−1]

T we can write the model in (1) as:

y = Xβ + ε, ε ∼ N (0, σ2It−1). (2)

3 THOMPSON SAMPLING FOR
ACTIVE SEARCH

Thompson Sampling (TS) is an exploration-exploitation
algorithm originally introduced for clinical trials by Thomp-
son [1933] and later rediscovered for multi-armed bandits
[Wyatt, 1998, Strens, 2000, Russo et al., 2018]. The idea
of TS is to balance between exploration and exploitation
by maximizing the expected reward of its next action as-
suming that a sample from the posterior is the true state of
the world [Russo et al., 2018]. This feature makes TS an
excellent candidate for our asynchronous multi-agent setup.
Essentially, by using TS’s posterior samples in our reward
function, we enable a calculated randomness in each agent’s
reward function. As a result, multiple agents can take inde-
pendent samples and therefore solve for different reward
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Figure 2: Single vs. multi-agent – Here, the small vertical
lines indicate the start of t’th task. In single agent, tasks
start sequentially. In multi-agent, task t can start before all
previous t− 1 tasks are finished.

values that equally contribute to the overall goal. Kandasamy
et al. [2018] has used this feature of TS for BO to develop
an asynchronous yet centralized parallel setting. We instead
propose to develop TS in a decentralized and asynchronous
setting where each agent independently makes decisions
given the measurements available to it, i.e. Dj

t . We will
develop our algorithm in the presence of sparsity and region
sensing considerations which are troublesome assumptions
as will be apparent in the next subsection.

Because TS was originally proposed for bandit problems,
one might question its ability on active search and assume
it might keep exploiting the same target. However, we are
here interested in an adaptation of TS to parameter learning
which is in fact perfect for active search. Having attracted a
lot of attention in the past decade, TS has been successfully
adapted to a variety of online learning problems [Russo
et al., 2018]. Our active search problem falls in the category
of parameter estimation in active learning as developed by
Kandasamy et al. [2019] with the name Myopic Posterior
Sampling (MPS). Similar to MPS, our goal is to actively
learn (estimate) parameter β by taking as few measurements
as possible. Since the goal of MPS is to learn parameter β,
its reward function is designed to keep exploring the space
as long as there are unexplored (or loosely explored) loca-
tions in the parameter space (will not get stuck exploiting).
We will next derive MPS for an asynchronous multi-agent
setting. For the sake of similarity, we will use TS to refer to
MPS.

Algorithm 1 Asynchronous Multi-Agent TS

Assume: prior β ∼ p0 and likelihood p(yt|xt,β)
For t = 1, ..., T

Wait for an agent to finish; For the free agent j:
Sample β? ∼ p(β|Dj

t ) (Posterior Sampling)
Select xt = arg maxx λ

+(β?,Dj
t ,x) (Design)

Observe yt given action xt

Update & share measurements Dj
t+1=Dj

t∪(xt, yt)

3.1 DECENTRALIZED MULTI-AGENT TS

We now review TS for active learning and then develop it
to a decentralized asynchronous (async.) multi-agent set-
ting. We start with the single agent setting as introduced
by Kandasamy et al. [2019]. We are interested in recover-
ing the n-dimensional vector β ∼ p0. We actively query
actions xt and observe their outcome yt where the likeli-
hood p(yt|xt,β) is known. To query the best action, we
maximize a reward function λ(β?,D1

t ). As an example, the
reward function can be λ(β?,D1

t ) = −‖β? − β̂(D1
t )‖22,

where β? is our belief of the true β, and β̂(D1
t ) is the esti-

mated value of β given all the available measurements D1
t

(e.g. maximum likelihood estimate). We are interested in
the myopic policy which selects action x that maximizes
the expected reward of time step t, i.e.

λ+(β?,D1
t ,x) = Ey|x,β?

[
λ(β?,D1

t ∪ (x, y))
]
. (3)

Here, the best reward would be the one that has access to
the true value of β, i.e. λ+(β,D1

t ,x). Not knowing the true
value of β, TS will sample it from the current posterior
distribution of β conditioned on the measurements D1

t , i.e.
β? ∼ p(β|D1

t ). Then, TS will pick the sensing action xt

that maximizes the reward (3) using the sample β? as its
belief of true β. For the case of multi-agent, consider J
agents planning on taking T measurements of an environ-
ment. Say agent j finishes making an observation and is
ready to choose the t’th action. Using measurements avail-
able to this agent so far (|Dj

t | ≤ t−1), it will update and
sample the posterior (posterior sampling), select its next
sensing action that maximizes the reward (design), evalu-
ate its action and share the observations with other agents.
Algorithm 1 summarizes this process.

3.2 THOMPSON SAMPLING WITH SPARSITY

To perform search and rescue, traditionally people have used
coverage planning methods with exhaustive search [Lin
and Goodrich, 2009, Chien et al., 2010, Ryan and Hedrick,
2005]. However, with the availability of high and low resolu-
tion observation points, an optimized active search method
can locate targets faster than exhaustive search in terms of
number of observations (See Section 5 and Figure 3b). Such
faster recovery is achievable due to the concept of sparse
signal recovery (compressive sensing) which says that we
can recover a sparse signal with length n by taking less than
n low or high resolution measurements [Candès et al., 2006,
Donoho, 2006]. By using sparsity as the prior information
for TS, we can create the right balance between exploring
larger regions with low resolution and then exploiting the
ones we suspect of including a target with a closer look
(higher resolution observation). We will next develop TS
in Algorithm 1 for our active search problem in Section 2
using a sparse prior.



 We start by first establishing the prior p(β) and likelihood
distribution p(yt|xt,β). As for the prior, our knowledge
is limited to the presence of sparsity. Hence, we will as-
sume β has a Laplace distribution with independent entries
and a tunable parameter b, i.e. p(β) = 1

(2b)n exp(−‖β‖1b ).
Laplace distribution translates to an `1-norm regularization
term in the cost function which has been shown to introduce
sparsity into the estimator [Williams, 1995, Tibshirani, 1996,
Chen et al., 2001]. For the likelihood distribution, the sens-
ing model in (2) gives p(y|X,β) = N (Xβ, σ2It−1). Next
step is to derive the posterior sampling and design stages
of Algorithm 1 using this prior and likelihood. Appendix 1
provides a detailed derivation of these two stages. We call
the resulting algorithm Laplace-TS.

Facing the Failure Mode of TS with Single Agent Un-
fortunately, Laplace-TS with single agent leads to poor per-
formance that is on par with a point-wise algorithm that
exhaustively searches all locations one at a time. We can as-
sociate this poor performance with one of the failure modes
of TS discussed in Sec. 8.2 of the tutorial by Russo et al.
[2018]. According to the tutorial, TS faces a dilemma when
solving certain kinds of active learning problems. One such
scenario are problems that require a careful assessment of
information gain. In general, by optimizing the expected
reward, TS always restricts its actions to those that have a
chance in being optimal which in our case are sparse sensing
actions restricted further by the region sensing constraint.
However, in active learning problems such as ours, sub-
optimal actions (i.e. nonsparse sensing actions) can carry
additional information regarding the parameter of interest.
Appendix 2 includes simulation results as well as an exam-
ple to further illustrate the failure mode in active search. In
the next section, we will modify Laplace-TS and propose
two algorithms that can bypass this failure mode.

4 OUR PROPOSED ALGORITHMS

4.1 SPATS: SPARSE PARALLEL ASYNC. TS

Per our discussion in Section 3.2, introducing sparsity into
TS algorithm limited its ability to explore queries. With this
in mind, one might conclude that choosing non-sparse sam-
ples in the posterior sampling stage of Algorithm 1 should
solve this problem. However, this strategy will still face the
failure mode of TS because it is the sparse estimator in the
design stage that is limiting the feasible sensing actions. The
next logical solution would then be to make both the esti-
mator and posterior sampling procedures non-sparse. Even
though with this strategy we will avoid the failure mode of
TS, without taking advantage of the prior information about
sparsity, the resulting non-sparse TS will be performing
no better than exhaustively searching the entire space. To
overcome this issue, we propose making an assumption on

the prior distribution of both the sampling and estimation
procedures that the neighbouring entries of the sparse vector
β are spatially correlated, i.e. β is block sparse. Such spatial
correlation creates the most compatible results to the region
sensing constraint which only approves sensing actions with
a single non-zero block of sensors. Furthermore, we expect
block sparsity to introduce exploration ability while also
keeping sparsity a useful information in the recovery pro-
cess. In particular, by gradually reducing the length of the
blocks from a large value, we gently trade exploration with
exploitation capability over time.

In short, borrowing ideas from a block sparse Bayesian
framework introduced by Zhang and Rao [2011], we
use a block sparse prior p(β) = N (0n×1,Σ0), where:
Σ0 = diag ([γ1B1, ..., γMBM ]) , with γm and Bm ∈ RL×L

(m = 1, ...,M ) as hyperparameters. Here, γm controls the
sparsity of each block as is the case in sparse Bayesian learn-
ing methods [Tipping, 2001, Wipf and Rao, 2004], i.e. when
γm = 0, the corresponding block m is zero. Here, L is the
length of the blocks that we will gradually reduce in the TS
process. To avoid overfitting while estimating these hyper-
parameters, Zhang and Rao [2013] suggests one matrix B
to model all block covariances, namely Σ0 = diag(γ)⊗B,
where, γ is the vector containing all elements of γm for
m = 1, ...,M . Appendix 3 provides a detailed derivation
of Algorithm 1 with this prior for the active search problem
in Section 2. Algorithm 2 called SPATS summarizes our re-
sults in this section. SPATS has much lower computational
cost than Laplace-TS algorithm since it does not require
a Gibbs sampler. Furthermore, unlike Laplace-TS, SPATS
does not need to know the sparsity rate or any other prior
information about the true signal β.

4.1.1 Theoretical Analysis of a Sparse Model

We now provide theoretical analysis testifying to the benefits
of SPATS. SPATS has two aspects that distinguish it from
a naïve TS developed for sparse signals. One is using a
block sparse prior with varying block length and two is
using multiple agents. In what follows, we introduce two
theorems to investigate the benefits of each aspect separately.
First in Theorem 1, for a sparse model with single agent
setting we will compute and compare upper bounds on the
expected regret of two TS algorithms with a 1-sparse and a
1-block sparse prior with one nonzero block. The 1-block
sparse prior closely imitates SPATS’s performance with a
region sensing assumption. See proof in Appendix 4.

Theorem 1. Consider an active search problem with a
1-sparse true parameter β ∈ Rn and reward function
R(x,β) = (xTβ)2 for action x ∈ Rn chosen from set of
actions X that satisfy region sensing in Section 2. Consider
two single agent TS algorithms where one assumes a 1-
sparse prior and another uses a 1-block sparse prior with
varying block length as defined in Algorithm 2. Then, the



 Algorithm 2 SPATS

Assume: Sensing model (1); sparse signal β; J agents;
block length L
Set: Dj

0 = ∅; L = n/J ; γm = 1; B : random highly
correlated covariance matrix
For t = 1, ..., T

Wait for an agent to finish; For the free agent j:1

Sample β? ∼ p(β|Dj
t ,γ,B) from equation (14)

Select xt=arg maxx λ
+(β?,Dj

t ,x) using (16)
Observe yt given action xt

Update & share measurements Dj
t+1=Dj

t∪(xt, yt)

Update γ and B using EM algorithm in (15)
if t% J = 0 then L = L/2

expected regret E[Reg(T)]=E
[∑T

t=1R(x?,β)−R(xt,β)
]

for 1-sparse and block-sparse algorithms are respectively
upper-bounded by:

1-sparse: E[Reg(T )]≤(
log(|X|)

∑min{T,n−1}
t=1

(1− t
n )(1−

1
n−t+1 )

(n−t−1
n−t log( n−t

n−t−1)+
1

n−t log(n−t))

)1/2
(4)

Block-sparse: E[Reg(T )]≤(
log(|X|)

∑min{T,log2(n)}
t=1

(
1− 1

n−
(∑t−1

t′=1
n

2t
′

))2/log(2))1/2 (5)

A simple comparison of (4) and (5) in Theorem 1 shows that
using TS with a block sparse prior and varying block length
significantly reduces the regret bounds comparing to TS
that is using the true 1-sparse prior. Next, we will compute
and compare an upper bound on the expected regret of a
single-agent and an asynchronous multi-agent TS algorithm.
To the best of our knowledge, only theoretical analysis for
asynchronous parallel TS has been provided by Kandasamy
et al. [2018] which is limited to Gaussian Processes. In the
following theorem, we provide theoretical guarantees for
an asynchronous multi-agent active search problem with a
sparse model with proof in Appendix 5.

Theorem 2. Consider the active search problem in Theo-
rem 1. Let us propose two TS algorithms with a 1-sparse
prior where one is single agent and another uses J agents
in an asynchronous parallel setting. Then, the expected re-
gret as defined in Theorem 1 for the single and multi-agent
algorithms respectively are:

E[Reg(T )] = Tn − Tn(Tn+1)
2n , Tn = min{T, n} (6)

E[Reg(T)]≤ Tn− Tn(Tn+1)
2n + Tn(2J−1)

n , Tn=min{T, n+J}
(7)

1The equations and derivations can be found in Appendix 3 in
supplementary material

Algorithm 3 LATSI

Assume: Sensing model (1); sparse signal β; J agents
Set: Dj

0=∅; τ : randomly initialized; α, η for tuning; p0 :
1-sparse uniform distribution on β
For t = 1, ..., T

Wait for an agent to finish; For the free agent j:2

Sample β? ∼ p(β|Dj
t , τ ) from equation (10)

Select xt=arg maxxR
+(β?,Dj

t ,{x, y}) from (33)
Observe yt given action xt

Update & share measurements Dj
t+1=Dj

t∪(xt, yt)

Update τ using EM algorithm in (11)
Update p(β|Dj

t ,τ) using RSI-A [Ma et al., 2017]

A simple analysis of (7) shows that for J � n and J � T
(which is a reasonable assumption), the third term in the
bound will be upper bounded by 2J + 1. As a result, the
difference in expected regret between single agent and asyn-
chronous multi-agent is negligible in terms of number of
measurements T . Hence, we can conclude that by dividing
the same number of measurements T between J agents,
multi-agent algorithm achieves same regret J times faster
than single agent setting.

Remark 2. Theorem 2 shows that our asynchronous multi-
agent algorithm performs on par with an optimal multi-
agent system with a central planner. This result is a con-
sequence of the central planner’s regret being bounded by
the single agent in terms of number of measurements T
[Kandasamy et al., 2018].

4.2 LATSI: LAPLACE TS WITH INFORMATION

In Section 3.2, we discussed how single agent Laplace-TS
fails due to a careless assessment of the information gain.
To combat this issue, Russo and Van Roy [2017] propose
a new reward function which is a combination of expected
regret and mutual information. They show that their algo-
rithm called Information Directed Sampling (IDS) consid-
erably improves the performance of single agent Laplace-
TS. Unfortunately, computing the mutual information as
introduced in IDS is not computationally feasible for our
problem. Specifically, IDS proposes sampling to approxi-
mate the mutual information between the optimal action and
the next observation. However, sampling the optimal action
requires computing it for each sample which considering
the region sensing assumption is quite expensive.

Another information-theoretic active search algorithm is
Region Sensing Index(RSI) by Ma et al. [2017] that recog-
nizes region sensing constraints. RSI searches for sparse
signals by maximizing the mutual information between the

2The equations and derivations can be found in Appendix 1
and Appendix 6 in supplementary material
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Figure 3: Full recovery rate of SPATS, LATSI, RSI and PS (exhaustive) for 1 and 4 agents for sparsity k = 1, 5
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Figure 4: Full recovery rate of SPATS with 1, 2, 4 and 8 agents for sparsity rates k = 1, 5

next observation and the true parameter β. RSI does not
extend well to multi-agent settings as without randomness
in its reward function, all agents will solve for the same
sensing action. However, inspired by the IDS algorithm,
we propose combining the reward of Laplace-TS with the
mutual information computed in RSI. We call this algorithm
LATSI summarized in Algorithm 3 with additional details in
Appendix 6. We will provide simulation results in the next
section, showing that while LATSI improves Laplace-TS,
its performance is lower than SPATS for k > 1 due to RSI’s
poor approximation of mutual information there.

5 NUMERICAL RESULTS

We now compare the performance of our SPATS and LATSI
against two methods 1) an information-theoretic approach
called RSI proposed by Ma et al. [2017] 2) a point sens-
ing (PS) approach that exhaustively searches the environ-
ment one location at a time. In this section, we focus on
2-dimensional search spaces (d = 2), where we estimate a
k-sparse signal β with length n = 8× 16 and two sparsity
rates of k = 1, 5. Here, β is generated with a randomly
uniform sparse vector. We set the signal to noise variance to
16. For LATSI, we set the tuning parameters α, η=1. Note
that neither SPATS nor LATSI are aware of the true uniform
sparse prior or sparsity rate k. We then vary the number of
measurements T and plot the mean and standard error of the
full recovery rate over 50 random trials. The full recovery
rate is defined as the rate at which an algorithm correctly
recovers the entire vector β over random trials. To further
demonstrate the efficacy of SPATS and LATSI, we provide

additional experiments for d = 1, larger length n, k = 10, a
sensitivity analysis for LATSI, and a robustness analysis to
unreliability of communication for SPATS in Appendix 7.

Single-Agent

In a single agent setting, Figure 3a shows that for k = 1,
RSI and LATSI outperform SPATS. The reason is that RSI
has a very accurate approximation of mutual information
for k = 1 and consequently it is difficult for our SPATS
to win over the information-optimal algorithms of RSI and
LATSI. All algorithms significantly outperform exhaustive
search (PS). On the other hand, for higher sparsity rate of
k = 5, SPATS outperforms RSI and LATSI. This is a result
of poor approximation of mutual information for k > 1 by
RSI. Specifically, for k > 1 RSI recovers the support of β
by repeatedly applying RSI assuming k = 1. The authors
use this strategy to avoid the large cost of computing mutual
information for k > 1. This strategy even allows PS to catch
up and outperform RSI. Finally, since our proposed LATSI
is a combination of RSI and Laplace-TS, its performance is
tied to that of both RSI and SPATS.

Multi-Agent

Figure 4, 5 and 6 show the performance of SPATS, RSI and
LATSI in a multi-agent setting, respectively. Each figure
consists of 4 sub-figures where the left two illustrate the full
recovery rate for k = 1 and k = 5 as a function of num-
ber of measurements (T ) taken by all the agents. To better
demonstrate the multi-agent performance, on the right two
subfigures we plot full recovery rate as a function of time
which is computed by dividing the number of measurements
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Figure 5: Full recovery rate of RSI with 1, 2, 4 and 8 agents for sparsity rates k = 1, 5
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Figure 6: Full recovery rate of LATSI with 1, 2, 4 and 8 agents for sparsity rates k = 1, 5

T by the number of agents J . In each sub-figure we vary the
number of available agents between 1, 2, 4 and 8. Further-
more, in all subsequent plots, LATSI-J, RSI-J or SPATS-J
indicate the corresponding algorithm with J agents.

SPATS: As evident in the right two sub-figures of Figure 4,
SPATS becomes J times faster by using J number of agents.
From the left two sub-figures, we can draw a similar conclu-
sion. That is, increasing the number of agents from 1 to 2 to
4 and 8 hardly changes the total number of measurements
required for a given recovery rate, i.e. the average number of
sensing actions per agent is improved about J times. This re-
sult demonstrates that SPATS can efficiently perform active
search in an asynchronous decentralized fashion.

RSI: We extend the RSI algorithm of Ma et al. [2017] to
multi-agent setting by allowing each agent to independently
choose its sensing action given RSI’s acquisition function
and utilizing the available measurements from other agents.
Looking at Figure 5 for both k = 1 and k = 5, we see
a significant deterioration in full recovery rate as a func-
tion of T as the number of agents increases. The reason is
that without randomness in RSI’s reward function, agents
that are working at the same time are repeating the same
sensing actions. For k = 5, this performance reduction is
also obvious as a function of time. However, for k = 1 RSI
performs slightly better in time by increasing agents. The
reason for this contradicting behavior is that RSI’s perfor-
mance for k = 1 is so close to optimal (binary search) that
it reaches recovery rate of 1 before the multi-agent system
can negatively affect it.

LATSI: Looking at Figure 6, we see that similar to SPATS,
LATSI’s multi-agent performance improves in time by in-

creasing the number of agents.

SPATS vs. LATSI vs. RSI: In Figure 3b, we plot all four
algorithms against each other for 4 agents. Here, for k = 1,
RSI and LATSI outperform SPATS due to their information-
theoretic approach in computing the reward function. For
k = 5, SPATS outperforms both RSI and LATSI. This is
because SPATS is carefully designed to use randomness
from TS in its reward function such that multiplying the
number of agents would multiply its recovery rate. Further-
more, LATSI performs significantly better than RSI due
to the probabilistic exploration aspect of TS in its reward
function. All algorithms outperform PS except for RSI with
k > 5 due to its poor information approximation. From our
experiments, it is evident that LATSI is more suitable for
scenarios where computing mutual information is cheap.

Lastly, the code for these experiments can be found at Ghods
et al..

6 CONCLUSIONS

We have proposed two novel algorithms - SPATS and LATSI
which are suitable for the recovery of sparse targets in a
multi-agent (parallel) asynchronous active search problem
with a region sensing constraint. We have discussed the role
of sparsity in our design principle and also compared the
limitations of a purely information theoretic approach in this
setting. As part of a future work, we are currently working
on considering traveling cost of targets by combining ideas
from SPATS and LATSI with cost-lookahead strategies. We
are also working on a collaboration applying our algorithms
on real field robots. Another interesting direction for future



 work includes considering moving targets. One could also
use continuous sensing along a trajectory as an objective
rather than only sensing at stopping points.
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