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Abstract

Being aware of observers and the inferences they
make about an agent’s behavior is crucial for suc-
cessful multi-agent interaction. Existing works on
observer-aware planning use different assumptions
and techniques to produce observer-aware behav-
iors. We argue that observer-aware planning, in
its most general form, can be modeled as an Inter-
active POMDP (I-POMDP), which requires com-
plex modeling and is hard to solve. Hence, we
introduce a less complex framework for producing
observer-aware behaviors called Observer-Aware
MDP (OAMDP) and analyze its relationship to I-
POMDP. We establish the complexity of OAMDPs
and show that they can improve interpretability of
agent behaviors in several scenarios.

1 INTRODUCTION

Reasoning about the beliefs of observers is ubiquitous in
our daily lives. For example, consider a scenario where an
autonomous vehicle (AV) and a pedestrian are approaching
a crosswalk. The AV may optimize travel time and approach
the crosswalk at high speed before stopping. The pedestrian,
however, may feel unsafe when the vehicle is approaching
the crosswalk at high speed. If the AV is aware of the per-
spective of the pedestrian, it may slow down further away
from the crosswalk to assure the pedestrian that it plans to
stop. We call this kind of behavior an observer-aware behav-
ior. Observer-aware behaviors include explicit communica-
tion to convey intentions, for example, using hand gestures
as well as implicit communication through behaviors. In
this paper, we focus on developing a general, disciplined
approach for observer-aware planning.

Several existing frameworks offer different approaches to
produce different kinds of observer-aware behaviors. The
AV example illustrates legible behavior (e.g. Dragan et al.,

2013), which implicitly conveys intentions via the choice of
actions. Similarly, explicable behaviors (e.g. Zhang et al.,
2017) conform to observers’ expectations. Deceptive behav-
iors (e.g. Dragan et al., 2015; Masters and Sardina, 2017)
hide agents’ intentions or actively deceive observers. Pre-
dictable behaviors enable observers to predict future ac-
tions (e.g. Fisac et al., 2020). Agents can also express their
(in)capability via the choice of their actions (e.g. Kwon
et al., 2018). While there have been several attempts to com-
bine different kinds of observer-aware behaviors (Dragan
and Srinivasa, 2013; Strouse et al., 2018; Chakraborti et al.,
2019; Kulkarni et al., 2019), there is no unifying framework
that reveals the relationships among the approaches and the
complexity of the problem.

In this paper, we introduce a unified framework for observer-
aware planning called OAMDP and illustrate that OAMDPs
can produce useful forms of observer-aware behavior (Sec-
tion 3). OAMDPs might seem similar to Partially Observ-
able Markov decision processes (POMDPs) (Kaelbling et al.,
1998), in the sense that both formulations operate on agents’
beliefs. We clarify the differences between OAMDPs and
POMDPs, most notably that OAMDPs operate on the (as-
sumed) beliefs of observers instead of the beliefs of the
acting agent (Section 4). To further motivate the study of
OAMDP, we argue that observer-aware planning, in its most
general form, can be formulated using a multi-agent model
called interactive POMDP (I-POMDP) (Gmytrasiewicz and
Prashant, 2005). We then identify the set of assumptions that
allow us to reduce an I-POMDP to an OAMDP (Section 5).

We analyze the complexity of OAMDP when the observer is
Bayesian (Section 6), showing that it is PSPACE-complete
(Theorem 1 and 2) and that it remains NP-hard even when re-
stricted to stationary policies or deterministic environments
(Theorem 3). While this places OAMDP in a provably lower
complexity class relative to I-POMDP, it also confirms the
intractability of the problem. Hence, we show how standard
algorithms like UCT (Kocsis and Szepesvári, 2006) can be
used to solve OAMDPs and report initial results on several
problems of interest (Section 7).
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 2 BACKGROUND

MDP A Markov decision process (MDP) models sequen-
tial decision making in environments with stochastic effects.
An MDP is described by a tuple M = 〈S,A, T,R, γ, ι〉.
S is a set of states. A is a set of actions. T (st, at, st+1) is
the probability of St+1=st+1 when At=at and St=st. R
is a conditional distribution of reward given st, at. γ is a
parameter called the discount factor. ι is the initial state (we
assume WLOG one initial state). The absorbing terminal
state always transitions back to itself with zero reward.

A policy (π) describes how to act. We use the following
two kinds of policies in the paper. A stationary policy is
a conditional distribution of actions given a state. When π
is deterministic, it is a mapping from S to A. A history-
dependent policy is a conditional distribution of actions
given a history, where a history ht+1 is a sequence of state-
action pairs up to time t and the last visited state st+1.
The return of a history is the discounted sum of rewards.
An optimal policy for an MDP is a policy that maximizes
expected return. For a particular state, a value function V πH
represents the expected return given a policy π up to time
step H . When H is finite, we call it a value function for a
finite horizon.

3 OBSERVER-AWARE MDP

We define an Observer-Aware Markov Decision Process
(OAMDP) as an extension of an MDP that allows the reward
to depend on the assumed belief of an observer.

Definition. An OAMDP is a tuple
M = 〈S,A, T, γ, ι,Θ, B,R〉 where:

• S, A, T , γ, and ι are as in an MDP.

• Θ is a set of types, representing a characteristic of the
agent such as possible goals, intentions, or capabilities.

• B : H∗ → ∆|Θ| represents the assumed belief of
the observer given a history. H∗ is the set of all finite
histories and ∆|Θ| is a simplex on Θ.

• R : S × A×∆|Θ| → R describes how desirable it is
to take an action given a state and a belief b ∈ ∆(Θ).
When the reward depends only on ∆|Θ|, we abuse the
notation slightly and treat R as ∆|Θ| → R. Note that
the reward depends on histories through the beliefs.

A value function for OAMDP is defined as follows:

V πH(s) = E[

H∑
t=0

γtR(B(ht))|S0 = s, π].

Intuitively, OAMDPs assume a model of how the observer
interpret their behaviors (B) and what interpretations are
desirable (R).

For the rest of the paper, we assume S,A, and Θ are finite.

3.1 BELIEF UPDATES IN OAMDP

In principle, the belief updateB in the definition of OAMDP
can be performed by any function that maps histories to
beliefs. Dragan and Srinivasa (2013) used as B the ratio
between the optimal trajectory and the optimal trajectory
constrained to include the current position. MacNally et al.
(2018) used a common goal recognition formula (Ramírez
and Geffner, 2010) as B. Strouse et al. (2018) proposed
a reinforcement learning technique to show/hide goals by
maximizing/minimizing mutual information between ac-
tions and goals given states. While the formulation does
not update beliefs explicitly, it can be viewed as implicitly
defining beliefs through mutual information.

Despite the generality of B, however, allowing any arbitrary
function as B could make the problem intractable as the
number of possible histories is exponential in the number
of states and actions. Therefore, we need restrictions on the
form of B. For example, we can restrict B to be a Bayesian
belief update function:

Pr(θ|ht+1) ∝ P̂ r(st+1, at|θ, st)Pr(θ|ht) (1)

where P̂ r(st+1, at|θ, st) is represented in a tabular fashion.
Intuitively, P̂ r(st+1, at|θ, st) represents the probability that
the observed agent takes the action at and ends up in st+1

given st and θ (according to the observer’s model). We
use P̂ r instead of Pr as this is an assumed model of the
observer.

Definition. An OAMDPBU is a special case of OAMDP,
where B is performed by Bayesian belief updating (i.e.,
M = 〈S,A, T, γ, ι,Θ, P̂ r, R〉).

OAMDP with BST Update To illustrate how OAMDP
works, we now describe a particular instantiation of
OAMDP where the belief update function is according to
Baker et al. (2009), referred to as BST belief update.

Baker et al. (2009) examined the relationship between
Bayesian reasoning and human goal understanding, show-
ing that human ratings of possible goals correlate well with
the posteriors derived using Bayes’ rule:

Pr(θ|ht+1) = Pr(θ|st, at, st+1, bt)

=
T̂ (st, at, st+1|θ)π̂(st, at|θ)bt(θ)∑
θ′ T̂ (st, at, st+1|θ′)π̂(st, at|θ′)bt(θ′)

.

where θ∈Θ is the type of the agent, bt is the previously held
belief on each θ, and T̂ (π̂) is an assumed transition (policy)
given a type. We denote an MDP corresponding to each type
θ as Mθ.

For example, Figure 1 shows a Maze World from Baker et al.
(2009) where the agent can take 9 different actions: Stay,
North, South, East, West, NorthEast, NorthWest, SouthEast



 

(a) Legibility

(b) Explicability

(c) Legibility + Explicability

Figure 1: Three traces of different observer-aware behaviors.

and SouthWest. However, when the agent takes an action
it can veer left or right with probability 0.15, respectively.
The agent’s goal is to reach either one of the possible goals
{A,B}. The rewards for the actions are proportional to the
negative distance traveled by the action. The domain can be
described as an MDP with possible types Θ = {A,B}. All
MDPs (MA and MB) share the same transition and reward
dynamics except at goal locations; that is, performing Stay
when θ∗ = A and the agent is at A leads to the absorbing
terminal state for MA but not for MB .

Note that the equation above assumes that attempted actions
are observable to the observer. If that is not the case, we can
marginalize over actions as follows.

Pr(θ|ht+1) = Pr(θ|st, st+1, bt)

=

∑
a′t∈A

T̂ (st, a
′
t, st+1|θ)π̂(st, a

′
t|θ)bt(θ)∑

θ′
∑
a′t∈A

T̂ (st, a′t, st+1|θ′)π̂(st, a′t|θ′)bt(θ′)
.

While we can use any π̂ in principle for the belief update,
BST belief update makes the following assumption:

π̂(st, at|θ) ∝ exp(βQ∗(st, at|θ)) (2)

That is, at each time step, an agent takes an action with
a probability exponentially proportionate to how good the

action is at the current state (based on the optimal Q-value
Q∗(st, at|θ)). The hyper-parameter β presents the agent’s
level of rationality.

For example, in Figure 1a, when β = 1, π̂(so, South|A) ≈
0.08 while π̂(s0, South|B) ≈ 0.05. This means that by
going south, the observed agent can make the posterior
belief on A higher. Figure 1a shows that the posterior belief
on A is slightly higher than the other goal after taking the
first action, and how it evolves over time.

3.2 BELIEF-DEPENDENT REWARDS IN OAMDP

Now, we show how OAMDP can produce various observer-
aware behaviors proposed in the literature by changing R.

Legibility Legible behaviors convey intentions via the
choice of actions. Legible behaviors are often modeled as
maximizing the beliefs on the true intention/goal (θ∗) of
the agent. To accomplish that, R could be the negative Eu-
clidean distance between the current belief and the target
belief (b(θ∗)=1 for the true type θ∗∈Θ), or the negative
Kullback-Leibler divergence. Dragan and Srinivasa (2013)
assigned higher legibility for trajectories that make the pos-
terior on the true goal higher. MacNally et al. (2018) used
as metric the cost before the belief on the true goal reaches
a certain threshold. Our earlier ourk (Miura et al., 2021)
extended legible planning to stochastic settings.

For example, in Figure 1a, the agent makes a detour to the
south to clarify to the observer that it is not going to B.

Figure 2 shows another example of an agent legibly stacking
blocks in Stochastic Blocks World—a stochastic domain in
which picking up a block always succeeds with probability
1, while putting down a block fails with probability 0.1 (the
block falls on the table). Each action has a negative reward
of −1. In Figure 2, starting from the initial state, there are
two possible goals, spelling “ARMS” or “RAMS”. Suppose
that the agent’s true goal is to spell “ARMS”. The optimal
policy in terms of underlying rewards is to first unstack
the block “S”, but this is also part of an optimal policy to
spell “RAMS”. The maximally legible policy first stacks the
block “R” on top of “A”. This makes it more costly to spell
“RAMS” than“ARMS”, but it makes the intention clearer.

Explicability Explicable behaviors conform to observers’
expectations. Works on explicability initially used the dis-
tance between plans as metric (Zhang et al., 2017), which
does not translate very well to OAMDP. Sreedharan et al.
(2020) later proposed a Bayesian account of explicability,
where explicability is proportional to

∑
θ 6=θ0 Pr(θ|ht). θ0

represents a random agent. Intuitively, explicable agents
want to avoid being interpreted as completely random. To
accomplish that, we can define R so that the agent gets
punished for having high belief on θ0 (−b(θ0)).

For example, in Figure 1b, the agent makes progress toward
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Figure 2: Dissimulation behavior (top) and legible behavior (bottom) in Stochastic Blocks World. Red blocks are the ones
the agent is holding. Blue blocks represent blocks that were just put down. The possible goals are “ARMS” or “RAMS”.

its goal, showing to the observer that it is not random.

Deceptive Deceptive agents adversarially manipulate the
beliefs of observers. Two specific kinds of deceptive behav-
iors are simulation and dissimulation (Bell, 2003; Masters
and Sardina, 2017). A simulation agent is interested in mak-
ing its observer believe in a false goal. Much like what we
proposed for legibility, we can reward agents for making
the belief on the deceptive goal/intention higher. A dissim-
ulation agent is interested in making its intention obscure.
To that end, we can, for example, reward agents for induc-
ing beliefs with high entropy. Note, however, that the agent
can simply do nothing to stay obscure. To ensure progress
with the agent’s task, the rewards need to incorporate the
underlying rewards of the task.

Care must be taken, however, when definingB for deceptive
agents. Most of the previous works (Baker et al., 2009;
Ramírez and Geffner, 2010) on mapping histories to belief
operate under the keyhole setting, where the acting agent is
not aware that it is being observed. However, if the observer
is aware of the acting agent trying to manipulate its belief,
the keyhole assumption is no longer valid. For example,
imagine a scenario with two possible goals X and Y . The
acting agent can go to Y to manipulate the belief, but if the
observer is aware of the manipulation, it might infer that
the true goal is X . Note, however, that OAMDP is not tied
to any particular B. If B incorporates recursive reasoning
about the agents, OAMDP can plan according to that model.

Works on goal recognition design (Keren et al., 2019) in-
vestigate how to design environments so that agents cannot
conceal their goals by minimizing the worst-case distinc-
tiveness measure, which is relevant to deceptive OAMDPs.

Predictability Predictable agents take actions so that their
future actions (rather than goals) are easier to predict. Dra-
gan et al. (2013) proposed to model the predictability of
a trajectory as simply proportional to the value (negative
cost) of a trajectory. OAMDP can maximize predictabil-
ity according to this definition by simply maximizing un-
derlying rewards. Fisac et al. (2020) proposed to model t-
predictable agents (in deterministic settings) as maximizing
Pr(at+1, · · · , aT |a1, · · · , at). OAMDP can, in principle,
model t-predicability by having a type for each possible

trajectory. However, this would require an exponential num-
ber of types. Fisac et al. (2020) proposed an approximate
algorithm to maximize predictability by only considering
l-least cost plans.

(In)Capability Agents can also express their
(in)capabilities through behaviors (e.g. Kwon et al., 2018).
While not a direct generalization of their work, we can have
OAMDPs with two possible types θcapable and θincapable,
and maximize the beliefs on them accordingly.

For example, consider a variation of Stochastic Blocks
World, where the block “R” has a different shape than the
other blocks. The observer is not sure whether the agent can
handle that block or not. Assume, for example, that picking
up “R” has a negative reward of−3 given θincapable (instead
of −1). Then an OAMDP agent would first pick up “R” and
put it down, showing to the observer that it can handle “R”.

Combining Different Observer-Aware Behaviors The
definition of OAMDP is general enough to combine differ-
ent notions of interpretability, although different notions of
interpretability can be at odds with each other (Dragan and
Srinivasa, 2013; Sreedharan et al., 2020). For example, in
Figure 1a, moving away from goals made the posterior that
it is a random agent higher. If we introduce θ0 and combine
legibility and explicability, the agent makes a smaller detour
(Figure 1c). Similarly, if we do not consider explicability of
behaviors, the agent can keep picking up “R” to show its
capability. By combining capability and explicability, the
agent can balance these competing objectives.

Explicit Communication While observer-aware agents
in this paper primarily focus on manipulating the observer’s
belief through implicit behaviors, OAMDP can also model
explicit communication (e.g. Renoux et al., 2020). For ex-
ample, in the car example earlier, the driver can use hand
gestures to communicate their intention (although that may
be more costly relative to implicit communication). In this
case, after making the hand gesture, B wwould increase the
belief on θ∗.

OAMDP does not generalize frameworks which allow for
partial observability (e.g. Kulkarni et al., 2019). Introduc-
ing partial observability amounts to relaxing Assumption 3



 in Section 5. OAMDP also cannot express joint transition
functions as in (Sadigh et al., 2016; Lo et al., 2020), which
would violate Assumption 1 in Section 5.

4 RELATIONSHIP TO POMDP

Despite substantial similarities between OAMDPs and
POMDPs Kaelbling et al. (1998), they do not subsume each
other. Both formulations operate on agents’ beliefs. How-
ever, while POMDP keeps track of the acting agent’s belief,
the belief in OAMDP is the assumed belief of the observer.
Moreover, while rewards in POMDP are defined in terms
of underlying states, rewards in OAMDP depend on beliefs
of observers. Although there exist extensions of POMDP
that allow belief-dependent rewards (Mauricio et al., 2010;
Spaan et al., 2015), the beliefs are still over underlying states
unlike in OAMDPs.

Most importantly, while POMDPs only allow Bayesian be-
lief updates through observations, OAMDPs assume full
observability and do not use observations to update beliefs.
To produce observer-aware behaviors, one might try formu-
lating the problem as POMDP, where the states are pairs of
S and Θ and observations are pairs of S and A. Then let-
ting O(〈st+1, at〉|〈st+1, θ〉, at) = P̂ r(st+1, at|θ, st) may
seem similar to the belief update in Equation 1. However,
as observing different states other than the current one
should be impossible (O(〈s′t+1, a

′
t〉|〈st+1, θ〉, at) = 0 for

〈s′t+1, a
′
t〉 6= 〈st+1, at〉) , O is not a valid probability distri-

bution (it does not sum to one). Although MacNally et al.
(2018) call their similar formulation POMDP, it also does
not perform belief updates through observations.

While OAMDPs allow more general belief updates, they do
not generalize POMDPs because the transitions depend on
the actual current state. We get the following rather obvious
property directly from the definition of OAMDPs.

Proposition 1. Transitions in OAMDPs are Markovian
given the last observation.

This is in contrast to belief MDPs induced by POMDPs.
Transitions between beliefs in a POMDP is given by
Pr(b′|a, b) =

∑
o∈Ω Pr(b

′|a, b, o)Pr(o|a, b). Pr(o|a, b)
depends on the previous belief b, which is a summary of the
complete history up to the current time. Thus, POMDPs do
not generally satisfy the property.

Yet another difference is that OAMDPs do not necessarily
have α-vector representation, which is the basis of many ex-
isting POMDP planning algorithms such as Value Iteration
(Sondik, 1978) and PBVI (Pineau et al., 2003). In α-vector
representations, the value function can be expressed as a set
of |S|-dimentional vectors (Γ = {α1, · · ·αn}). The value of
a belief b ∈ ∆|S| then is V (b) = maxα∈Γ b·α. α-vector rep-
resentation depends on immediate rewards in POMDPs be-
ing a linear functions of beliefs (R(b, a) =

∑
s∈S R(s, a)).

This is not necessarily the case in OAMDPs, where R can
be, for example, the negative Euclidean distance.

OAMDP can be seen as a special case of Decision Pro-
cess with non-Markovian Reward (NMRDP) (Bacchus
et al., 1996; Thiébaux et al., 2006), where rewards are non-
Markovian. Existing works on NMRDP (Bacchus et al.,
1996; Thiébaux et al., 2006; Littman et al., 2017; Brafman
et al., 2018), unlike OAMDPs, employ temporal logic to
describe rewards over histories.

A number of existing works tackled the problem of inferring
other agents’ intentions from observations (Baker et al.,
2009; Ramírez and Geffner, 2010), and how to react in
response (e.g. Macindoe et al., 2012; Broz et al., 2013; Fern
et al., 2014; Freedman and Zilberstein, 2017). In this paper,
we focus on the orthogonal problem of choosing actions so
as to make an agent’s intentions more interpretable.

5 OAMDP AS A SUBCLASS OF I-POMDP

In this section, we show that an OAMDP can be derived as
a special case of I-POMDP (Gmytrasiewicz and Prashant,
2005), which is an extension of POMDP to multi-agent
settings. In an I-POMDP, agents maintain beliefs over mod-
els of other agents as well as physical states. As observer-
aware planning handles (pseudo) multi-agent settings with
observed and observing agents, it can be captured as an
I-POMDP. In fact, Lo et al. (2020) use a formulation similar
to I-POMDP.

Multi-agent formulations (e.g. Sadigh et al., 2016, 2018;
Zhu et al., 2017; Lo et al., 2020) are arguably more general.
For example, the multi-agent formulation allows agents
to reason about what other agents may do in response.
When being legible does not help other agents, the agent
may choose not to be legible (Lo et al., 2020). However,
multi-agent formulations are notoriously harder to solve
(Seuken and Zilberstein, 2008) and require the full joint
transition function. We argue that when the possible inter-
actions among agents are limited, agents do not necessarily
need a full multi-agent formulation. In this section, we spell
out the set of assumptions needed to reduce an I-PODMP to
the simpler OAMDP.

I-POMDP An Interactive POMDP (I-POMDP) for the
observed agent (i) and observing agent (j) is described as a
tuple 〈ISi, Aij ,Ωi, T ij , Oi, Ri〉. ISi = S ×M j is the set
of interactive states. M j is the set of possible models of the
other agent. The set of possible models are often subdivided
into subintentional and intentional models. Subintentional
models are relatively simple models such as fictitious play or
finite-state controllers. In intentional models, the observing
agent is an I-POMDP agent itself, and the agents recursively
model each other to a finite depth. We use notations for
subintentional models in this section. Each model mj∈M j

is a tuple mj=〈Oj , zj , f j〉, where Oj is an observation
function of j, zj∈Zj is a history of j’s actions and obser-



 vations, and f j∈F j : Zj → ∆|A
j | is an assumed behavior

of j. We call 〈Oj , f j〉 a frame of j. Aij = Ai × Aj is the
set of joint actions for the two agents. Ωi is the set of obser-
vations for the agent i. T ij : S × Aij × S → [0, 1] is the
stochastic transition function. Oi : Aij × S × Ωi → [0, 1]
is the stochastic observation function. Ri : ISi ×Aij → R
is the reward function. The belief update is given by:

bit+1(is
i
t+1) = Pr(isit+1|ait, ωi

t, b
i
t) = η

∑
isit

bit(is
i
t)∑

a
j
t∈Aj

f j(zj , aj)Oi(ait, a
j
t , st+1, ω

i
t+1)Pr(is

i
t+1|isit, ait, ajt)

where isit ranges over interactive states sharing the
frame with isit+1, η is a normalizing constant, and
Pr(isit+1|isit, ait, a

j
t ) is the transition probability between

interactive states:

Pr(isit+1 = 〈st+1,m
j
t+1〉|is

i
t = 〈st, 〈Oj

t , z
j
t , f

j
t 〉〉, a

i
t, a

j
t)

= T ij(st, a
i
t, a

j
t , st+1)

∑
ω
j
t∈Ωj

Oj
t (a

i
t, a

j
t , s

j
t+1, ω

j
t )δ(z

j
t+1, z

j
ta

j
tω

j
t )

where δ is Kronecker delta and zjt a
j
tω

j
t represents the result

of concatenating an action and observation to a history.

OAMDP Assumptions OAMDPs form a special case of
I-POMDPs under the following five assumptions:

1. The observing agent is passive. Formally, we can rep-
resent this assumption by having only one action for
the observing agent Aj = {noop}.

2. The frame of the observing agent is known to the ob-
served agent. We refer to this frame as 〈Oj∗, f j∗ 〉.

3. The observing agent can fully observe the underlying
states (S) and actions performed by the observed agent
(Ai), i.e. Ωj = S × Ai and Oj∗(ait, a

j
t , st+1, ω

j
t ) = 1

if ωjt = 〈st+1, a
i
t〉, and 0 otherwise.

4. The observed agent can fully observe the underlying
states (S), i.e. Ωi = S and Oi(ait, a

j
t , st+1, ω

j
t ) = 1 if

ωjt = st+1, and 0 otherwise.

5. Rewards are described in terms of B and R.

Proposition 2. Under Assumptions 1-5, I-POMDPs and
OAMDPs are equivalent.

Proof Sketch. With these assumptions, the transition func-
tion between interactive states simplifies to:
Pr(isit+1 = 〈st+1,m

j
t+1〉|is

i
t = 〈st, 〈Oj

t , z
j
t , f

j
t 〉〉, a

i
t, a

j
t)

= T ij(st, a
i
t, a

j
t , st+1)

∑
ω
j
t∈Ω

j
t

Oj
t (a

i
t, a

j
t , st+1, ω

j
t )δ(z

j
t+1, z

j
ta

j
tω

j
t )

= T ij(st, a
i
t, a

j
t , st+1)δ(z

j
t+1, z

j
ta

j
ta

i
tst+1) by Assumption 3

= T ij(st, a
i
t, st+1)δ(z

j
t+1, z

j
ta

i
tst+1) by Assumption 1

This is exactly the same as the transition function of an
OAMDP when T ij = T .

Now we argue that under Assumptions 1-5 above, there
is exactly one interactive state isit such that 〈Ojt , f

j
t 〉 =

〈Oj∗, f j∗ 〉 and bit(is
i
t) = 1 for every time step t. We can show

this by induction on the number of time steps. The claim
is trivially true for the first time step because there is no
uncertainty about the frame of the observing agent according
to Assumption 2. And using Assumption 4, we can easily
show that there is exactly one isit+1 with b(isit+1) = 1.
Assuming bit(is
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t) = 1 for exactly one isit, we get:
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which implies that there is exactly one isit+1 with
b(isit+1) = 1. This justifies the fact that OAMDPs do not
keep a belief over a model of the observing agent.

Note that the AV examples seemingly violate Assumption 1
that the observing agent is passive. But, while the pedestri-
ans interact with the observed AV, they are assumed to be
agnostic to what the AV does. This assumption is not strictly
true, but given the leader-follower nature of the problem
(the car needs to adapt to the pedestrian, not the other way
around), we argue that the assumption is reasonable for the
purpose of planning. The detailed description of the domain
is provided in Section 7.2.

6 THE COMPLEXITY OF OAMDPBU

We next show several complexity results for OAMDPBU , a
special case of OAMDP where the observer is Bayesian.
As complexity classes are defined in terms of decision
problems, we consider the (finite-horizon) value problem:
Given an OAMDPBU , a planning horizon H , and a thresh-
old K, does the OAMDPBU have a (finite-horizon history-
dependent) policy with value equal to or greater than K?

Theorem 1. The finite-horizon value problem for
OAMDPBU is PSPACE as long as R can be evaluated using
polynomial space.

Proof. The proof that OAMDP is PSPACE is almost iden-
tical to the proof that POMDP is PSPACE (Papadimitriou
and Tsitsiklis, 1987). Given a policy, the possible outcomes
within the finite-horizon can be expressed as a tree of that
depth. As long as R can be evaluated using polynomial



 space, checking if the policy achieves an expected return
greater than a threshold can also be done using polyno-
mial space via tree traversal1. As NPSPACE=PSPACE,
OAMDPBU is PSPACE.

The result implies that OAMDPBU is less complex than a
finitely-nested (intentional) I-POMDP, whose complexity
is considered to be doubly exponential in the input size
(Seuken and Zilberstein, 2008).

The result also implies that there is a polynomial time reduc-
tion from OAMDPBU to POMDP (in the sense that we can
reduce OAMDPBU to QSAT and then to POMDP). How-
ever, as we discussed above (Section 4), there seems to be
no obvious direct translation between the two frameworks.
Thus, reducing OAMDPBU to POMDP and solving the
resulting POMDP would not be fruitful.

Theorem 2. The finite-horizon value problem for
OAMDPBU is PSPACE-hard.

Proof. By reduction of QSAT to an OAMDP. Given a QBF
Q1x1Q2x2 · · ·Qnxnφ(x1, x2, · · · , xn), where Qi is i-th
quantifier (∀ or ∃), we reduce it to a value problem with
OAMDPBU (Mφ) and K = 1. The key idea is to use ∆|Θ|

to record the history:

• S consists of ti, fi, the initial state ι , the terminal
state s∞, and s′∞. Intuitively, Si = ti/fi means xi is
true/false.

• There are two actions, corresponding to assigning true
and false to variables. When Qi+1 = ∀, the actions
lead to ti+1 and fi+1 with equal probability. When
Qi+1 = ∃, the actions make deterministic transitions
leading to ti+1 and fi+1, correspondingly. Taking any
action from tn and fn leads to s∞.

• Θ consists of θi for each xi, θdummy, and θ∞. Intu-
itively, b(θi) represents the truth values for xi. θdummy
is only needed to make sure that ∆|Θ| sums to 1. θ∞
represents whether all the variables have been assigned.
We have the uniform prior b0(θ) = 1

|Θ| for all θ ∈ Θ.

• As for BU , P̂ r(ti, at|θi, st) > 0 and
P̂ r(fi, at|θi, st) = 0 for all at ∈ A and st ∈ S. This
means that after transitioning to fi, b(θi) = 0.

• P̂ r(s∞, at|θ∞, st) = 0 and P̂ r(s′∞, at|θ∞, st) = 1.
This means that after transitioning to s∞, b(θ∞) = 0.

• R(b) = 0 when b(θ∞) > 0. When b(θ∞) = 0,
R considers the corresponding assignments for xi
(xi = [b(θi) > 0]). R(b) = 1 if φ is true under this
assignment. Otherwise ,R(b) = 0.

1As in (Papadimitriou and Tsitsiklis, 1987), we assume that
the planning horizon is polynomial in the input size.

We claim that there exists a policy with value 1 iff the
QBF is true. Suppose such a policy (π) exists. Then for
all hn+1 possible under π, we have R(hn+1) = 1, which
means φ is true under the assignments defined by hn+1. By
construction of Mφ, this is exactly the set of assignments
possible when all the existential quantifies are assigned the
same way as π. Therefore, the QBF is true.

Conversely, suppose the QBF is true. We can construct
a policy that takes corresponding actions at existentially
quantified variables as the assignment that makes the QBF
true. For all hn+1 possible, we have R(hn+1) = 1, which
means the policy has the value 1.

Corollary 1. The finite-horizon value problem for
OAMDPBU is PSPACE-complete when R can be evaluated
using polynomial space.

We next show that even if we restrict our attention to sta-
tionary policies, the worst-case complexity of OAMDPBU
remains intractable.

Theorem 3. The value problem of stationary policy for
deterministic OAMDPBU is NP-hard.

Proof. The proof is similar to the NP-hardness proof for
finding a stationary policy for POMDP (Littman, 1994;
Lusena et al., 2001). To show NP-hardness, we reduce 3SAT
to OAMDPBU . Given a 3CNF formula φ(x1, · · · , xn) =
C1 ∧ · · · ∧ Cm, we have an OAMDPBU M ′φ such that M ′φ
has three states for each appearance of a variable (xij) in
the formula. xij represents an appearance of xi in a clause
Cj (we assume without loss of generality that a variable
appears only once in each clause). For each xij , we have a
decision state (dij), where there are two actions correspond-
ing to assigning true/false to the variable. The actions lead
to tij/fij deterministically. When the assignment makes the
clause true, the process transitions to the first decision state
of the next clause (for the last variable, it transitions to the
terminal state s∞). Otherwise, the process transitions to the
next variable in the same clause (if it is the last variable, the
process transitions to a sink state sbad).

Intuitively, transitioning to s∞ means that φ is satisfiable.
However, a policy can assign different actions (truth values)
to different appearances of the same variable, which leads to
a contradicting assignment. To work around the issue, M ′φ
has a reward that ensures that different appearances of the
same variable (xij = xik where j 6= k). Same as Mφ in the
previous proof, M ′φ uses ∆|Θ| to record the assignments to
each (appearance of ) variable. Then we can make R(b) =
[
∧
j<k xij = xik ∧ s∞], where b defines the assignments

to variables. Note that the size of the formula describing
the reward is linear in the size of the 3CNF. It is easy to
see that M ′φ has a value of 1 if and only if the 3CNF is
satisfiable.



 7 EXPERIMENTS

In this section, we describe our initial approach for solving
OAMDPs and evaluate it on the examples presented earlier
in the paper. The purpose of the experiments is to assess the
feasibility of (approximately) solving OAMDPs in practice.
Further work is needed to refine the solution methods and
evaluate them more rigorously.

7.1 SOLUTION METHODS

Most solution methods for MDPs (e.g., Value Iteration) can-
not be applied to OAMDPs. The reason is that these methods
rely on the Markov property of rewards, which OAMDPs do
not satisfy. Similarly, most solution methods for POMDPs
cannot be applied to OAMDPs because these methods rely
on α-vector representation of the value function, which
OAMDPs do not necessarily have (Section 4). Solution
methods for I-POMDPs (e.g. Doshi and Perez, 2008; Doshi
and Gmytrasiewicz, 2009) are applicable, but seem overly
complex as it is unnecessary to consider the uncertainty over
interactive states (Section 5) to solve OAMDPs.

Given these considerations, we use methods that work for
any general (acyclic) AND/OR graph: AO∗ (Nilson, 1980)
and UCT (Kocsis and Szepesvári, 2006). From the root node,
representing the initial state, AO∗ gradually builds a solu-
tion graph by expanding tip nodes of the current best partial
solution graph. It utilizes heuristic values to estimate how
good newly expanded nodes are, and propagates the new
information back to the root. When an admissible heuris-
tic (lower-bound estimate) is used, AO∗ is guaranteed to
return an optimal solution. However, finding an admissible
heuristic function for different kinds of observe-aware be-
haviors is hard. Hence, we did not use any heuristics in our
experiments.

UCT uses a sequence of stochastic simulations from the
root node. The algorithm chooses actions according to the
UCB1 (Auer et al., 2002) formula:

Q(a, s, d) + C
√

2 logN(s, d)/N(s, a, d)

where Q(a, s, d) is the estimated Q-value, N(s, d) and
N(s, a, d) are counters of the number of times the simu-
lations encountered the node (s, d) and (s, a, d), and C is
a constant that controls the degree of exploration, respec-
tively. In our experiments, C is set to the current Q(a, s, d),
which is common in the literature (e.g. Bonet and Geffner,
2012). When a new node is added to the explicit graph, an
accumulated discounted reward is sampled by simulating a
base policy π (averaged over 10 episodes). We used an opti-
mal policy for the underlying MDP as the base policy. Note
that although UCT eventually explicates the whole graph
and finds the optimal policy, policies returned after a fixed
number of simulations are not guaranteed to be optimal.

7.2 DOMAINS

We solved instances of the problems presented earlier: Maze
World (MW), Blocks World (BW), and Autonomous Vehicle
(AV). The detailed descriptions of Maze World and Blocks
World are in Section 3. We used BST belief update and set
β = 1 in Equation 2 as in Baker et al. (2009) and Ramírez
and Geffner (2010), except in AV, where we used β = 0.25
as the difference in values is much higher in that domain. We
assumed that actions are observable, except in Maze World
problems. As R, we used the negative Euclidean distance
from the target belief.

AV at Crosswalk (Aware/NotAware): We now describe the
simple scenario introduced earlier of an autonomous vehicle
(AV) approaching a crosswalk. We want to compute a policy
for the AV that clearly conveys its intention.

States are described by the current configuration of the
car and the position of the pedestrian. The current con-
figuration of the vehicle is represented by how far ahead
the vehicle is along the intended trajectory 0 ≤ φ ≤ 30
and its velocity 0 ≤ φ̇ ≤ 4. Available actions are A =
{−2,−1, 0,+1,+2}, which change the velocity of the ve-
hicle by the corresponding value. The current position of the
pedestrian is represented by 0 ≤ ξ ≤ 10. At each time step
the pedestrian increases its position by 1 with probability
0.9 and stays at the current position with probability 0.1.
Our model assumes that the vehicle wants to keep its speed
in the range 2 ≤ φ̇ ≤ 3, for which there is a negative reward
of −1. Otherwise, the reward is −5.

The two possible types, Θ = {Aware,NotAware}, indicate
whether the vehicle is aware of the pedestrian or not. The
vehicle and the pedestrian would collide with each other
at the crosswalk when 4 ≤ ξ ≤ 8 and 17 ≤ φ ≤ 21.
In this case, the agent will receive a significant penalty of
−1000. When θ∗ = NotAware, the agent is oblivious to this
penalty. The policy maximizing legibility for θ∗ = Aware
would start hitting the brake immediately until the vehicle
completely stops.

AV at Crosswalk (Close/Far) is a variant of the previous
AV scenario in which the crosswalk and the pedestrian are
sufficiently far apart that the vehicle does not need to decel-
erate. The states and available actions remain the same.

There two parameter values, Θ = {Close,Far}, indicate
where the crosswalk is located. When θ∗ = Close, the
vehicle and the pedestrian would collide with each other at
the crosswalk when 4 ≤ ξ ≤ 8 and 17 ≤ φ ≤ 21. When
θ∗ = Far, the crosswalk is farther away from the pedestrian
and the vehicle and the pedestrian would collide with each
other at the crosswalk when 7 ≤ ξ ≤ 10 and 17 ≤ φ ≤ 21.
The policy maximizing legibility for θ∗ = Far would start
accelerating before the crosswalk. This is because when
θ∗ = Close, accelerating is not very efficient. The vehicle
will probably have to stop for the pedestrian later.



 

(a) MW (L) (b) MW (EL)

(c) BW (L) (d) BW (CE)

(e) AV (Aware/NotAware) (f) AV (Close/Far)

Figure 3: Planning time and (negative) values for each task:
Maze World (MW), Blocks World (BW), and Autonomous Vehicle
(AV). Problems with different notions of observability and their
combinations were considered: Legibility (L), Explicability (E),
and Capability (C). The starred dots represent the planning time
and value for AO∗. When a starred dot is missing, the problem was
not solved within the limit (60 mins and 2 GB memory). H is the
planning horizon.

7.3 RESULTS

We experimented with both AO∗ and UCT, applying them
to the examples introduced earlier in the paper. For UCT, the
values of the policies were obtained by averaging over 100
episodes. When UCT has not seen a state, the base policy
was used to select an action. Figure 3 shows the results.
The points for UCT correspond to 0, 10, 100, 1k, 5k, 10k,
50k, 100k iterations (rollouts), averaged over 10 runs. UCT
with 0 iterations corresponds to the optimal policy for the
underlying MDP.

As suggested by Theorem 2, the exact solution method
for OAMDP (AO∗) failed to produce policies within a
given time limit for some problems (MW (L) and AV
(Aware/NotAware)). AO∗, however, performed better in
BW, where significant portion of the search space are pruned.
UCT was able to improve interpretability compared to the
base policy for all problems except MW(E), where the base
policy turned out to be optimal for explicability as well.

Increasing H made the problems harder to solve in gen-
eral. For some problems (BW (CE) and AV (Close/Far)),
however, the agent was able to change the observer’s belief
sufficently during the first several time steps that increacing
H did no make the problems harder. Note that Equation 2 in
the BST belief update requires the optimal Q-values for ev-
ery state, action, and type. The time needed to compute the
optimal Q-values is not included in the reported runtimes.

8 CONCLUSION

We propose OAMDP—a general framework for observer-
aware planning—and illustrate through examples how
OAMDP can model a wide range of observer-aware plan-
ning problems from the literature (Section 3). While previ-
ous works have identified different kinds of observer-aware
behaviors and proposed different techniques to optimize
them, there is much to be gained by exposing the connec-
tions between these works through the lens of our unifying
framework. Furthermore, as a general framework, OAMDP
can naturally combine different notions of interpretability—
an important objective that has been previously recognized
(Dragan and Srinivasa, 2013; Sreedharan et al., 2020).

To properly place the OAMDP model in the context of pre-
vious work, we show that OAMDP can be derived from
I-POMDP using five assumptions (Section 5). Despite the
close connection, the link between observer-aware plan-
ning and I-POMDP has not been previously investigated.
We argue that OAMDP is preferable to I-POMDP for for-
mulating observer-aware planning problems in two ways.
First, OAMDPBU is less complex than I-POMDP (Theorem
1). While OAMDPBU itself is PSPACE-hard, it is prefer-
able to solving an exponential number of POMDPs as in
I-POMDP. Second, OAMDP does not require the full multi-
agent model of the environment (observation functions for
both agents and the joint transition function).

We analyze the complexity of solving OAMDPBU optimally
and prove that several variants of the problem are intractable
(Theorems 2-3). With the exception of Kulkarni et al. (2019)
who consider a slightly different setting (with partial ob-
servability), no previous work discussed the complexity of
observer-aware planning. While solving OAMDPBU ex-
actly is intractable, for the problems we considered, UCT
was able to return good approximate policies (Section 7).

This work opens up several interesting directions for future
research, including empirical evaluations of various tasks
with human subjects and approximation algorithms that
further exploit the structure of OAMDPs.
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