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Abstract

Black-box machine learning models can be ex-
tremely accurate. Yet, in critical applications such
as in healthcare or justice, if models cannot be
explained, domain experts will be reluctant to
use them. A common way to explain a black-box
model is to approximate it by a simpler model such
as a decision tree. In this paper, we propose a co-
learning framework to learn decision rules as expla-
nations of black-box models through knowledge
distillation and simultaneously constrain the black-
box model by these explanations; all of this in a dif-
ferentiable manner. To do so, we introduce the soft
truncated Gaussian mixture analysis (STruGMA),
a probabilistic model which encapsulates hyper-
rectangle decision rules. With STruGMA, global
explanations can be extracted by any rule learner
such as decision lists, sets or trees. We provide
evidences through experiments that our framework
can globally explain differentiable black-box mod-
els such as neural networks. In particular, the ex-
planation fidelity is increased, while the accuracy
of the models is marginally impacted.

1 INTRODUCTION

For more than a decade now, machine learning has been
ever-increasingly applied to various fields. More recently,
special emphasis has been put on the need for machine learn-
ing models to provide explanations for their predictions in
human-understandable terms [Doshi-Velez and Kim, 2017,
Ribeiro et al., 2016], in addition to accurate predictions. In
domains, such as finance, justice and healthcare, if models
fail to provide explanations, users may be reluctant to use
them. In response, algorithms have been proposed to im-
prove the performance of interpretable decision lists [Yang
et al., 2017], sets [Mita et al., 2020] and trees [Verwer and

Zhang, 2019]. However, in practice, more powerful models
such as deep neural networks achieve impressive perfor-
mances for tabular [Klambauer et al., 2017], image [Chen
et al., 2020], and text [Devlin et al., 2019] data. These mod-
els are complex and do not provide embedded explanations,
forcing users to rely on external tools to explain decisions.

Two main families of explanations can be used: global ex-
planations which explain entirely a complex model on its
whole input space; and local explanations where an expla-
nation is valid only on a specific region, close to a particular
instance [Guidotti et al., 2018]. This paper focuses on global
explanations of black-box models using decision rules (if-
then rules), which are the most famous non-linear form of
explanations [Lundberg et al., 2020].

Existing approaches for global explanations with decision
rules (if-then rules) show some issues. For instance, the
theoretical formalisation of post-hoc methods [Craven and
Shavlik, 1995, Ribeiro et al., 2018, Pedreschi et al., 2019,
Confalonieri et al., 2020] is unclear [Craven and Shavlik,
1996, Wolf et al., 2019] as well as whether their explanations
reflect accurately the black-box model [Kim et al., 2018,
Slack et al., 2020]. Another approach is to constrain the
black-box model to be easily explainable, through regulari-
sation or optimisation for explainability. While few works
focus on decision rules explanations, since decision rules
[Okajima and Sadamasa,2019] and local regions [Wu et al.,
2020] are supposed to be known a priori, we propose to
derive decision rules directly from the black-box model.

This paper proposes to jointly learn the black-box model
and its decision rules-based explanation. To bridge the gap
between state-of-the-art rule learners [Verwer and Zhang,
2019, Mita et al., 2020] that involve discrete optimisation
and differentiable black-box models, we introduce the soft
truncated Gaussian mixture analysis (STruGMA), a proba-
bilistic model that encapsulates learnable hyper-rectangle
decision rules sets learnt via gradient descent. A co-learning
framework is proposed to learn STruGMA through knowl-
edge distillation. Simultaneously, the black-box model is
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 constrained to reflect the hyper-rectangle decision rules ex-
planations given by STruGMA.

The remainder of this paper is as follows. Section 2
presents related work. Section 3 provides details of the pro-
posed STruGMA and our co-learning framework. Section
4 presents the evaluation protocol as well as results and
discussion. Section 5 concludes with future work directions.

2 RELATED WORK

To globally explain black-box models with rules, existing
methods either are post-hoc either use regularisation.

2.1 POST-HOC EXPLAINABILITY METHODS

Post-hoc explainability methods that use decision rules as
explanations are generally called rule extraction methods.
They consider a black-box model, and then learn an inter-
pretable set, list or tree of decision rules to match its pre-
dictions. An early work is TREPAN [Craven and Shavlik,
1995], which approximates a neural network with a decision
tree by learning m-of-n rules chosen to maximise the infor-
mation gain ratio. There also exists a considerable literature
of methods that use genetic algorithms [Boz, 2002, Arbatli
and Akin, 1997], sampling strategies [Craven and Shavlik,
1994, Ribeiro et al., 2018] and convex predicates [Gopinath
et al., 2019]. However, their main limitation is that they are
not stable [Melis and Jaakkola, 2018]. In addition, there
are no guarantees that explanations accurately reflect the
knowledge captured by the complex black-box model [Kim
et al., 2018, Slack et al., 2020].

2.2 REGULARISING FOR EXPLAINABILITY

Explaining black-box models with decision rules can also
be done by regularising the black-box models. Two notable
works are Okajima and Sadamasa [2019] and Wu et al.
[2020]. The former proposes to change the neural network
architecture such that it can predict a rule (from a predefined
rule set) and then a label given a particular instance. The
latter leverages Wu et al. [2018] to enforce explainability by
decision trees in local regions known a priori. In addition
to being a challenging task (because of the discrete nature
of rules), regularising for rule explanations with predefined
rule sets or local regions has a major prerequisite. These
rule sets or local regions are assumed to be known a priori.
For explainability purposes, this is impractical, since they
should be derived from the black-box model.

To address this problem, we propose a co-learning frame-
work where hyper-rectangle rules are embedded into the
newly introduced soft-truncated Gaussian mixture analysis
(STruGMA). During co-learning (see Figure 1), STruGMA
tries to explain the black-box model by the use of knowl-

edge distillation, while the black-box model is learned with
a regularisation with respect to STruGMA. This framework
shares similarities with mutual distillation and posterior
regularisation [Zhang et al., 2018, Hu et al., 2016].

3 ITERATIVE LEARNING OF RULES
AND CONSTRAINED BLACK-BOX
MODEL

To embed decision rules in a differentiable surrogate, Sec-
tion 3.1 proposes the soft truncated Gaussian mixture anal-
ysis (STruGMA), Section 3.2 proposes solutions for chal-
lenges that arise when learning STruGMA and Section 3.3
presents our co-learning strategy with the black box model.

3.1 SOFT TRUNCATED GAUSSIAN MIXTURE
ANALYSIS FOR DIFFERENTIABLE
MODELLING

Geometrically, a rule defines a hyper-rectangle convex re-
gion R(αk) = {α(1)

kd ≤ xd ≤ α
(2)
kd }Dd=1, where α(i)

kd ∈ R̄
are the boundaries1, D is the input space dimension and k
is the index of the hyper-rectangle rule.

Motivated by the approximation properties of Gaussian dis-
tributions (thanks to the central limit theorem), we choose
to map, as a surrogate, the k-th single rule to the truncated
normal distribution

p
(
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where 1{.} is the indicator function. Optimising such a
distribution is numerically unstable because of the piece-
wise discontinuity of the indicator function 1{.}. However,
the truncated normal distribution can be approximated by
the soft truncated normal distribution [Souris et al., 2018]
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where ση(x) = 1/(1 + exp(−ηx)) and η is a positive num-
ber. When η → +∞, ση(x) tends towards 1{x ≥ 0}. In
practice, η ≥ 20 is sufficient. Notice that this distribu-
tion reduces to the normal case when α(1)

kd → −∞ and

1Note that the upper boundary α
(2)
kd can be +∞ and the lower

boundary α
(1)
kd can be −∞, whenever relevant.



 

Figure 1: Co-learning between the black-box model (left)
and STruGMA (right) through knowledge distillation and
regularisation (dashed lines).

α
(2)
kd → +∞. Therefore, it can be interpreted as a nor-

mal distribution whose shape is constrained. Although its
support is theoretically R in the univariate case, the high-
density region is [α

(1)
kd , α

(2)
kd ]. Figure 2 shows an example

for R2 with η = 20.

Taking advantage of this distribution, we propose the (fi-
nite) soft truncated Gaussian mixture (STruGM) model to
embed a set of hyper-rectangle rules in a differentiable
model. In addition, by drawing inspiration from the mix-
ture discriminant analysis (MDA) [Hastie and Tibshirani,
1996], we propose the soft truncated Gaussian mixture anal-
ysis (STruGMA), i.e., a probabilistic generative classifier
with class-conditional STruGM distributions. In STruGMA,
each class has its own STruGM. In other words, STruGMA
is a classifier p(y|x;β) that reduces, when conditioning
on the class, to the class-specific STruGM p(x|y;β) =∑K
k=1 p(z = k|y;β)p(x|z = k, y;β), whereK is the class-

specific number of components and β are the parameters of
STruGMA.

Figure 2: A soft truncated Normal Distribution.

3.2 ADAPTING EM FOR STRUGMA

Three challenges arise when learning STruGMA. Firstly,
unlike the Gaussian distribution, it has been shown [Co-
hen Jr, 1950] that neither µ,Σ nor α have a closed-form
solution for the maximum likelihood estimation (MLE) of
a single truncated normal distribution. Secondly, learning
the parameters α(1) and α(2) of STruGMA must satisfy the
constraint α(1) < α(2). Thirdly, learning STruGMA may
result in many overlapping hyper-rectangle decision rules
that are less interesting and more complex for explainability
purposes [Fürnkranz et al., 2012, Lakkaraju et al., 2016].

STruGMA is a generative classifier with parameters
β = {β(1), ...,β(c), ...,β(C)}, where C is the number
of classes and β(c) = {π(c),µ(c),α(c)(1),α(c)(2),Σ(c)}.
α(c)(1) (resp. α(c)(2)) ∈ RKc×D is the lower (resp. upper)
truncated point of the k-th component of class c; similarly,
µ(c) ∈ RKc×D and Σ(c) ∈ RKc×D×D. π(c) are the mixing
parameters and Kc is the number of components of class
c. Here, Σ

(c)
k is diagonal for the sake of factorisation of

the denominator. It can be easily extended by computing
the multivariate Gaussian cumulative distribution function.
Given these parameters, the joint distribution of STruGMA
is
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From now on, for simplicity, the class conditioning c is
omitted for parameters. One of the most popular method to
learn finite mixture models is the expectation-maximisation
(EM) algorithm. Therefore, as it consists of a mixture per
class, STruGMA can be learned by adapting EM. With the
parameters β = {π,µ,Σ,α(1),α(2)}, EM maximises the
expected log-likelihood Q(β,βt) by alternating the follow-
ing steps:

• E-step: Computing class responsibilities

rnk = p
(
z = k|xn;βt

)
=

πkp(xn|z = k;βt)∑
k1
πk1p(xn|z = k1;βt)

;

(1)

• M-step: Because of the lack of closed-form solution of
parameters through the MLE, the M-step performs a gra-
dient descent on the negative expected loglikelihood

βt+1 = βt + εt∇Q
(
β,βt

)
, (2)



 where εt is the learning rate and
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∑
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Details about gradients ∇Q(β,βt) are given in the supple-
mentary material.

Directly optimising with gradient descent in the M-Step, as
described, may raise difficulties caused by the definition of
the denominator of the soft truncated normal distribution.
Indeed, we need to impose α(2) > α(1) as a hard constraint.
To solve the problem, we leverage the projected gradient
descent method [Boyd et al., 2004] on the constraint set
S = {α2 > α1}. The projected gradient solves the problem

αt+1 =Projα∈S(αt + εt∇Q(α,αt))

=argminα||α− (αt + εt∇Q(α,αt))||
s.t. α(2) > α(1)

and, using the method of Lagrange multipliers on this con-
strained quadratic optimisation problem, one obtains{
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)
The margin ζ > 0 is a small number used to transform the
strict inequality into inequality constraint α(2) ≥ α(1) + ζ.

For complexity and explainability purposes, it is useful to
have non-overlapping hyper-rectangle rules. For two hyper-
rectangle rules i and j, this is formalised as [Xu et al., 2019]

max
d

(∣∣∣1
2
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α
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(1)
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))
≥ 0.

Enforcing this constraint is a difficult problem in the lit-
erature. We tackle it with a simple, yet effective heuristic.
Based on the form of the constraint (the maximum is pos-
itive when only one of the values is positive), it consists
in choosing a specific dimension d and adapting either αi
or αj along d to satisfy the constraint. The corresponding
choices are taken to maximise the expected log-likelihood.
Details are discussed in the supplementary material.

3.3 CO-LEARNING STRUGMA AND BLACK-BOX
MODELS FOR RULE EXPLANATIONS

This section proposes a co-learning framework where (i)
hyper-rectangle rules of STruGMA are learned to globally
explain a black-box model and (ii) this black-box is simulta-
neously constrained by STruGMA to be easier to explain.

3.3.1 Co-learning of the Black-box Model

Let us consider a probabilistic black-box model p(y|x; θ)
that can be trained with gradient descent. Our goal is to
constrain it to follow hyper-rectangle rules of STruGMA as
much as possible. This is achieved by using the loss

λ×L(X,Y ,θ)+(1−λ)×DKL

(
p(Y|X;β)||p(Y|X;θ)

)
,

(3)
where λ ∈ [0, 1] can be a hyper-parameter, L(X,Y ,θ)) is
a usual loss on training data such as the cross-entropy, DKL

is the Kullback–Leibler divergence between the reference
model p(Y|X;β) given by STruGMA and the black-box
model p(Y|X;θ) which is optimised. This divergence acts
as a regularisation term that encourages the black-box model
to satisfy hyper-rectangle rules of STruGMA. It is a condi-
tional expectation and can be evaluated as

DKL

(
p(Y|X;β)||p(Y|X;θ)

)
=

Ex∼p(x;β)[DKL(p(Y|x;β)||p(Y|x;θ))]

≈ 1

Ns

Ns∑
i=1

C∑
c=1

p(y = c|x̂i;β) log
p(y = c|x̂i;β)

p(y = c|x̂i;θ)
,

where {x̂i}Ns
i=1 is a new sample obtained from STruGMA

to compute a Monte-Carlo estimate of the divergence term.
Sampling from STruGMA has a complexity which is linear
with respect to the input space dimension D.

One issue regarding the performance of the learned black-
box model, after optimising Eq. 3, is its sensitivity with
respect to the choice of λ. Indeed, it can result in a (too)
weakly or strongly constrained black-box model. This prob-
lem is ubiquitous in multi-objective optimisation. To alle-
viate this sensible choice of λ, we apply the multiple gra-
dient descent algorithm (MGDA)[Sener and Koltun, 2018,
Désidéri, 2009], which consists in finding, at each iteration,
the λ∗ that gives the direction of gradient that improves



 both terms of Eq. 3. This λ∗ is the one that minimises
||λ∇θf(θ) + (1 − λ)∇θg(β,θ)|| and is obtained using

λ∗ =

[
(∇θg(β,θ)−∇θf(θ))

>∇θg(β,θ)

‖∇θf(θ)−∇θg(β,θ)‖22

]
+, 1T

, (4)

where f(θ) = L(X,Y ,θ), g(β,θ) =
ˆDKL

(
p(Y|X;β)||p(Y|X;θ)

)
, and [·]+, 1T =

max(min(., 1), 0) is a clipping operation to [0, 1].

3.3.2 Co-learning of STruGMA through Knowledge
Distillation

As we want STruGMA to globally explain the black-box
model with hyper-rectangle decision rules, one approach
is to use knowledge distillation. Training instances X are
relabelled with the outputs Yθ of the black-box model and
STruGMA is learned from this new dataset. As a result,
STruGMA approximates the black-box model on the whole
input space. The resulting co-learning Algorithm 1 (see also
Figure 1) summarises how to learn both models. It has the
key advantage to work with any black-box model that is
learned through gradient descent.

Algorithm 1 Co-learning of a black-box model with
STruGMA
Input: training set {xi, yi}Ni=1, black-box model with pa-

rameters θ, number of epochs Nepochs, number of gra-
dient descent steps in the M-step NSTruGMA, number of
rules K per class, size of MC sample Ns

Output: trained black-box model and STruGMA
1: initialise STruGMA with GMMs per class
2: while not converged do
3: // update black-box model (regularised GD)
4: draw an MC sample {x̂i}Ns

i=1 from STruGMA
5: get λ∗ from Eq. 4 and train the black-

box model with λ∗L(X,Y ,θ) + (1 −
λ∗) ˆDKL(p(Y|X;β)||p(Y|X;θ)) for Nepochs epochs

6: // update STruGMA (knowledge distillation)
7: relabel training set with black-box model
8: E-step of STruGMA with Eq. 1 (responsabilities)
9: M-step of STruGMA with Eq. 2 (NSTruGMA itera-

tions of gradient descent + gradient projection)
10: end while
11: return STruGMA and the black box

4 EMPIRICAL EVALUATION

Experiments assess whether (i) after co-learning with
STruGMA the black-box’s decision boundary becomes eas-
ier to approximate by a rule learner with a limited impact on

Table 1: Details of the datasets for the experiments.

Dataset Size Dimension

Wine 178 13
Pima Indian diabetes (Pima) 768 8

Ionosphere 351 34
Magic gamma (Gamma) 19020 11

Bank marketing (Marketing) 4119 20
German credit (Credit) 1000 20

Waveform 5000 40

its accuracy, (ii) decision rules explanations from distilled
decision trees after co-learning are more faithful than those
without co-learning and (iii) extracted rules comply with
domain knowledge by the means of a qualitative evaluation.

4.1 EXPERIMENTAL SETTINGS

We validate our method2 on a synthetic dataset and on seven
commonly used machine learning datasets from UCI [Dua
and Graff, 2017] for which neural networks usually outper-
form decision trees; see Table 1 for their details.

We chose deep neural networks with architectures inspired
from the literature [Wu et al., 2020, Ribeiro et al., 2018,
Pedapati et al., 2020], as they work well for tabular data.
Our dense hidden layers have ELUs as activation functions
and the last layer has the dimension of the number of classes.
Details about these architectures are left in the supplemen-
tary material. At each iteration of the co-learning, only
Nepochs = 1 epochs are spent for updating the MLP. In-
deed, if the complexity of the black-box model changes too
rapidly, STruGMA will not be able to explain it and the
DKL term will not be able to play its role as a complexity
regulariser. The number of iterations NSTruGMA = 100 for
the M-step ensures that STruGMA is a good approximation
of the black-box model at each iteration. The size of the
Monte Carlo sample to approximate the divergence between
the two models is set to Ns = 10 × N . The margin ζ be-
tween α(1) and α(2) is set to a relatively small value of 0.2.
A Gaussian mixture model is used to initialise STruGMA,
with α(1)

k = µk − 0.2σk and α(2)
k = µk + 0.4σk for each

component. The number of components K is the same for
each STruGM per class and is chosen in {2, 3, 4} to avoid
complex rule explanations. This hyper-parameter is chosen
with a separate validation set. Both STruGMA and the black-
box model are learned using the gradient-based optimiser
Adam [Kingma and Ba, 2015] with 10−3 as learning rate.

We use the accuracy (percentage of correct predictions) to
assess the quality of predictions and the fidelity (percentage
of predictions where a black-box and a white-box model

2Our implementation is available at https://github.
com/gerald4/Co-learning_with_STruGMA.

https://github.com/gerald4/Co-learning_with_STruGMA
https://github.com/gerald4/Co-learning_with_STruGMA


 

(a) Two-layer MLP with-
out co-learning

(b) TreeExplainer for the
MLP in Figure 3a

(c) Two-layer MLP co-
learned with STruGMA

(d) STruGMA co-learned
with the MLP in Figure 3c

(e) TreeCoExplainerHR
with STruGMA splits

Figure 3: Decision boundary of several models, (a-b) without and (c-e) with co-learning, on a two-dimensional example.
The black box model is easier to explain with rules after co-learning (c) than in the standard case (a).

agree) to measure the mutual agreement.

It is possible to directly use hyper-rectangle rules of
STruGMA as explanations when the input space dimension
D is relatively low. However, to get simple rules with limited
size, we resort to decision trees as rule learners to provide
global explanations. When co-learning is done, similarly
as post-hoc methods, a distilled decision tree is trained by
mimicking predictions of the co-learned black-box model.
We explore two possibilities: either we use the predictions
of the co-learned black-box model with original features
to train a distilled decision tree (TreeCoExplainerBB) or
we use the predictions of the co-learned black-box model
with hyper-rectangle splits transformed as binary features
to train the distilled decision tree (TreeCoExplainerHR).
Both are compared with a baseline (TreeExplainer) where
the distilled decision tree is trained to mimic the black-box
model without co-learning. This baseline is representational
of the global post-hoc (through decision trees) explanation
methods discussed in Section 2.1.

4.2 EFFECT OF CO-LEARNING ON MODEL
INFERENCE

Figure 3 illustrates the effect of co-learning on a synthetic
two-dimensional toy example. Figure 3a shows a black-box
model learned without any kind of co-learning, returning a
decision boundary which is somewhat complex for a sim-
ple toy problem. A distilled decision tree is then learned in
Figure 3b to explain this black-box model. Although the
region where x1 < −1 and x2 > 1.1 contains training in-
stances, the decision tree fails to explain it correctly. This
problem is avoided with the co-learning of the black-box
model in Figure 3c and STruGMA in Figure 3d. The corre-
sponding distilled decision tree (our TreeCoExplainerHR) in
Figure 3e globally explains the co-learned black-box model.
This toy example illustrates how co-learning rectifies the
decision boundary of a black-box model to be compatible
with rules. The co-learned black-box model is very likely
to follow rule explanations extracted by rule learners such
as decision trees. Note that the black-box model in Fig-
ure 3a may be more accurate than its co-learned version in

Table 2: Impact of co-learning on the test fidelity. Mean and
standard deviation over 10 repetitions are reported. TreeEx-
plainer is the distilled decision tree obtained with the predic-
tions of the black-box model without co-learning, whereas
TreeCoExplainerHR (resp. TreeCoExplainerBB) is our dis-
tilled decision tree of the co-learned black-box model using
the hyper-rectangle rules of STruGMA as binary features
(resp. original features).

TreeEx- TreeCoEx- TreeCoEx-
Dataset plainer plainerHR plainerBB

Bank 95.97 (0.74) 96.18 (0.63) 96.49 (0.89)
Credit 77.3 (3.47) 81.25 (3.47) 81.5 (3.43)

Ionosphere 87.32 (3.25) 90.28 (3.42) 88.87 (5.69)
Gamma 93.31 (2.08) 93.15 (0.85) 95.6 (0.36)

Pima 88.44 (2.41) 88.9 (1.35) 92.01 (3.24)
Waveform 80.26 (1.53) 80.52 (1.87) 80.86 (1.28)

Wine 89.17 (4.62) 92.78 (4.93) 89.72 (2.64)

Table 3: Predictive accuracy of co-learned black-box mod-
els (coBB) and decision trees (DT). Mean and standard
deviation over 10 repetitions are reported.

Dataset coBB DT

Bank 90.68 (0.77) 90.81 (0.96)
Credit 75.65 (3.88) 71.05 (3.3)

Ionosphere 90.98 (3.88) 90.28 (4.43)
Gamma 80.57 (0.49) 82.72 (0.43)

Pima 73.12 (2.31) 72.02 (2.59)
Waveform 85.97 (0.87) 75.24 (1.23)

Wine 96.94 (2.43) 87.78 (4.93)

Figure 3c.
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Figure 4: Evolution of mean of accuracy and fidelity over five repetitions of the first 50 iterations of co-learning.
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Figure 5: Evolution of the losses over the first 50 iterations of co-learning (one repetition/dataset). Cross_entropy is the
cross-entropy of the co-learned black-box model whereas add_KL is the divergence between the same model and STruGMA.
Combined_loss is the convex combination of cross_entropy loss and the add_KL loss whereas neg_expected_log_LL is the
negative expected log-likelihood of the STruGMA. Plots (a–c) share the same legend.

Table 4: Predictive accuracy of co-learned black-box models
(coBB) and black-box models without co-learning (BB).
Mean and standard deviation are shown over 10 repetitions.

Dataset coBB BB

Bank 90.68 (0.77) 90.99 (0.84)
Credit 75.65 (3.88) 74.75 (3.5)

Ionosphere 90.98 (3.88) 90.56 (3.45)
Gamma 80.57 (0.49) 82.79 (2.53)

Pima 73.12 (2.31) 75.39 (1.77)
Waveform 85.97 (0.87) 86.15 (0.7)

Wine 96.94 (2.43) 97.5 (2.05)

4.3 IMPACT ON FIDELITY AND ACCURACY

Table 2 shows the test fidelity of the baseline TreeEx-
plainer and our methods TreeCoExplainerHR and TreeCo-
ExplainerBB. Tree depth is chosen on a separate validation
set. On all datasets, results show that co-learning improves
fidelity between the black-box model and distilled decision
trees. This means that one can be more confident in ex-
planations based on decision trees after co-learning with
STruGMA than without co-learning.

Table 5: Predictive accuracy of distilled trees. Mean and
standard deviation over 10 repetitions are reported.

TreeEx- TreeCoEx- TreeCoEx-
Dataset plainer plainerHR plainerBB

Bank 91.29 (0.94) 90.42 (1.0) 90.81 (0.99)
Credit 69.15 (3.33) 71.5 (2.59) 71.55 (4.7)

Ionosphere 88.03 (3.89) 87.18 (4.01) 86.34 (3.45)
Gamma 80.79 (2.09) 77.04 (1.12) 79.16 (0.37)

Pima 72.4 (1.44) 71.24 (3.17) 71.88 (2.12)
Waveform 76.43 (1.9) 76.38 (1.83) 76.71 (1.58)

Wine 89.17 (3.33) 91.67 (4.54) 88.89 (3.93)

Table 4 shows the accuracy of the black-box model (BB)
without co-learning and the co-learned black-box model
(coBB). It can be seen that the co-learning usually negatively
impacts the test accuracy of the black-box model (except on
Credit and Ionosphere). However, the difference is usually
not important, as it is usually around 2%. This difference
is also perceived on the accuracy of distilled decision trees
in Table 5. Nonetheless, as it can be seen in Table 3, our
co-learned black-box models still usually perform better
than an interpretable decision tree. Overall, in addition to



 providing faithful global explanations thanks to co-learning
with STruGMA, our coBB models remain competitive in
terms of predictive performance compared to decision trees.

4.4 EVOLUTION OF THE DISTANCE BETWEEN
THE BLACK-BOX MODEL AND STRUGMA

Figure 4 shows the evolution of the accuracy and fidelity
over the first 50 co-learning iterations for each dataset. De-
spite the iterative nature of the co-learning that alternates
between learning the black-box model and its STruGMA sur-
rogate, the fidelity of the two models increases throughout
iterations. This means that the main goal which is essen-
tially to minimise the distance between the two models can
be achieved with co-learning. Moreover, in Figure 5, the
losses decrease properly and a local optimal can usually be
reached after or even before 50 iterations of co-learning.

4.5 RELEVANCE OF DECISION RULES
EXPLANATIONS

We finish our experiments with a study of 2 use cases in the
medical domain where a black-box model is learned through
co-learning and TreeCoExplainerHR is used to globally ex-
plain it. The first use case is to diagnose patients in the heart
disease (Cleveland) dataset [Dua and Graff, 2017]. The sec-
ond use case studies the survival after one year of patients
who underwent major lung resections for primary lung can-
cer in the thoracic surgery dataset. Indeed, according to
Doshi-Velez and Kim [2017], one way to measure inter-
pretability is to get feedback from a relevant domain expert.
We, therefore, asked a medical doctor if these explanations
are convincing and can be clinically accepted.

Table 6 (a) shows the explainer TreeCoExplainerHR of a
co-learned black-box model. The first remark on rules (first,
second and third) in the left part is that although the pa-
tient is asymptomatic (no chest pain), the thallium stress
test reveals malformations on the heart vessels. Therefore,
if it is reversible (i.e., it can be fixed, but has not already
been fixed) or it is fixed but there still exist damaged heart
vessels, the patient has heart disease. According to the med-
ical doctor, these rules are completely in accordance with
medical knowledge because the chosen attributes and their
values are clinically correct. Nonetheless, the fourth rule
was not very satisfactory because the medical doctor would
have expected other attributes. Furthermore, according to
the medical doctor, the fifth rule is the typical patient that
cardiologists usually encounter every day because of dam-
aged major vessels damaged and thallium test. The sixth
rule was also clinically correct because the patient is symp-
tomatic (i.e., suffers); if he has damaged heart vessels, it is
obvious (according to the doctor) that he has the disease.

For the second use case in Table 6 (b), according to the
medical doctor, the first and third rules are fully compli-
ant with clinical requirements, as they can be considered
as rules of thumb. Indeed, if a patient has a large tumour
(diameter greater than 1cm), surgery should be avoided. The
same applies to patients who have tumours with metastases
(multiple tumours). He was able to understand the second
rule, but he did not fully accept it as he expected to see other
attributes to decide to accept or reject the explanation.

In summary, for the doctor that we interviewed, even though
he does not know how the complex black-box model works,
thanks to TreeCoExplainerHR, he was able to understand
the logic behind predictions and, more importantly, to make
connections with similar patients he already consulted.

5 CONCLUSION

This paper proposes a co-learning framework for global ex-
planations of black-box models with decision rules. In this
framework, a black-box model is explained by co-learning
a newly introduced soft truncated Gaussian mixture analy-
sis (STruGMA) that encapsulates hyper-rectangle decision
rules. Simultaneously, the black-box model is encouraged
by a penalty term to satisfy the hyper-rectangle rules of
STruGMA. Results show that our framework improves the
fidelity of global explanations, while having a limited im-
pact on the accuracy of the black-box model, which remains
competitive. Yet, in further works, the user interview in Sec-
tion 4.5 should be extended as a user study to compare the
interest of rules learned with or without co-learning. Our
framework also opens up a wide range of perspectives since
it can be used for any black-box model trainable through gra-
dient descent. Future works will consider other black-box
models like SVMs and other rule learners to provide global
explanations. In addition, one can directly inject strong pri-
ors on STruGMA to automatically get decision rules expla-
nations. Finally, it will be interesting to perform experiments
with image data to provide more faithful global explanations
of deep CNNs in the light of Zhang et al. [2019].



 
Table 6: Distilled decision trees TreeCoExplainerHR and decision rules for heart disease (top) and thoracy surgery (bottom).
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