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Abstract

People can learn new visual concepts without any
samples, from information given by language or
by deductive reasoning. For instance, people can
use elimination to infer the meaning of novel la-
bels from their context. While recognizing novel
concepts was intensively studied in zero-shot learn-
ing with semantic descriptions, training models to
learn by elimination is much less studied. Here
we describe the first approach to train an agent to
reason-by-elimination, by providing instructions
that contain both familiar concepts and unfamiliar
ones ( “pick the red box and the green wambim”).
In our framework, the agent combines a perception
module with a reasoning module that includes in-
ternal memory. It uses reinforcement learning to
construct a reasoning policy that, by considering
all available items in a room, can make a correct
inference even for never-seen objects or concepts.
Furthermore, it can then perform one-shot learning
and use newly learned concepts for inferring addi-
tional novel concepts. We evaluate this approach
in a new set of environments, showing that agents
successfully learn to reason by elimination, and
can also learn novel concepts and use them for
further reasoning. This approach paves the way to
handle open-world environments by extending the
abundant supervised learning approaches with rea-
soning frameworks that can handle novel concepts.

1 INTRODUCTION

Machine learning models are primarily trained to perform
inductive reasoning: generalizing rules from training ex-
amples. In comparison, people routinely use other forms
of reasoning, including various forms of deduction. For
example, young infants can use reasoning-by-elimination

(disjunctive syllogism) to interact with an unfamiliar object
and for learning new concepts [Cesana-Arlotti et al., 2020,
Grigoroglou et al.l 2019, Markman, |1990, Markman et al.,
2003]]. This type of reasoning with unfamiliar objects is par-
ticularly important for open-world scenarios where agents
experience a mix of familiar and unfamiliar objects. Un-
fortunately, existing SOTA methods for object recognition
struggle with novel and out-of-distribution items.

Despite its apparent utility, it is not known if and how deduc-
tive reasoning mechanisms like elimination can be learned
from data with current algorithms or if it can be employed
within the framework of statistical machine learning. The
current paper explores this problem and describes a frame-
work for training an agent to reason-by-elimination follow-
ing short language instructions in a simple synthetic world.

Reasoning by elimination (RBE), formally known as dis-
Jjunctive syllogism or modus tollendo ponens, is a fundamen-
tal mode of reasoning in classical logics [Hurleyl 2014]. It
has been lauded in popular literature as an admirable form
of deduction [[Conan Doylel, [1932] and investigated in de-
velopmental psychology as a reasoning mechanism applied
by infants [Cesana-Arlotti et al., [2020} |Grigoroglou et al.
2019, Mody and Carey, 2016, Markman, (1990, Markman
et al., [2003| and animals [Fugazza et al., [2021]).

In the simplest form of RBE, an agent is faced with two
options, P or (), one of which must be correct. It is then
told that P is incorrect and has to infer that () is correct.
It has been argued that this setting occurs naturally during
language learning. When a parent addresses a child with a
phrase that contains an unknown word, like "take the X",
the child can deduce that X stands for a novel object, rather
than a familiar one [Halberdal [2006] (but see [Xu and Tenen{
baum| 2007] for a Bayesian alternative). In a more advanced
setup, once the new concept has been identified, the agent
can learn with this new example (one-shot learning), and use
it to further identify new concepts by applying elimination
again. Elimination can therefore provide a major path to
reason in an open-world setting.
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Figure 1: Illustration of reasoning-by-elimination. (a) Single Object Task: An agent receives an instruction to pick up an
unfamiliar object. The agent has never seen a “popnap” before but has seen cyan-colored objects before. It has also seen a
bulb before. The agent needs to realize that there is only one cyan-colored object with an unseen shape so it must be the
object being referred to in the instruction. (b) Two-Object Task: An agent receives an instruction to pick up two objects
in a room, where the objects are described by unfamiliar concepts. The agent must deduce by elimination which objects
to choose. In the example, the agent is asked to retrieve a cyan-popnap and a brown-wambim, where both popnap and
wambim refer to unknown shapes: First, it finds that there is only one unfamiliar brown object (bottom-row middle) and two
unfamiliar cyan objects, and therefore it chooses the unfamiliar brown object for the brown-wambim. At this point it makes
a 1-shot learning action, and updates its perception module about the concept of wambim. Once the agent can recognize the
wambim, it can eliminate the cyan-wambim and choose the top-right object to be the cyan-popnap. See section E]for details.

In this paper, we show how agents can be trained using
reinforcement learning to make disjunctive syllogism infer-
ences, use them to learn new concepts, and apply their novel
knowledge to reason about other new concepts. We designed
a learning setup where an agent wanders in a synthetic scene
and has to follow simple instructions (see Figure[I] "Get the
cyan popnap"). The scene contains objects, some of which
have been encountered in a pre-training phase, and some
are novel. In the simplest setup (Figure[Th), the agent action
space consists of picking any object in the scene and the
agent learns to use elimination to pick an object based on the
textual instruction. In a more advanced setup (Figure [Tp),
the agent action space also includes active one-shot learning
of the new concept, and the agent learns to use it to infer the
identity of a second object. The agent follows three steps:
eliminate, learn, eliminate. Each “eliminate” step infers a
novel class without being trained with labeled samples. The
“learn” step applies one-shot learning, namely, learn a new
concept from a single observation.

This novel learning setup can be viewed as a new kind of
zero-shot learning. Novel objects are recognized through in-
ference about a group of objects. Unlike classical zero-shot
learning [Lampert et al., 2009} Romera-Paredes and Torr]
2015, |Atzmon and Chechik, [2019]], no prior information
is‘available about novel objects. Here we built a composi-
tional space of concepts, defined by color and shape, which
makes it easier to generate novel combinations from a small
vocabulary. Such zero-shot compositional generalization is
encountered in larger and more natural datasets [Atzmon
et al., 2020, Johnson et al.,[2017]].

Our main novel contributions are: (1) A formulation of a
novel learning problem where an agent has to learn to reason
by elimination. (2) A system for training an agent using re-
inforcement learning to reason by elimination. (3) We show
how the agent can be trained to actively perform one-shot
learning for learning new concepts, and use the new con-
cepts for further reasoning by elimination (4) Evaluations on
a dataset of compositional instructions, comparing various
components of the model.

2 RELATED METHODS

Word learning has been studied in cognitive psychology,
with a focus on how infants learn the meaning of new words.
It has been shown that children can use elimination for that
goal, sometimes applying a principle of "mutual exclusiv-
ity" [Cesana-Arlotti et al., |2020} |Grigoroglou et al.| 2019,
Mody and Careyl 2016, Markman| [1990]|. Situated word
learning has also been explored in the contxt of deep mod-
els. Hill et al.|[2017]] studied an agent exploring a 3D room
and rewarded when its actions match instructions. There is
also large literature on grounding language in vision and
action [Reckman et al., 2010, Tellex et al., 2011, |Chen and
Mooney, 2011, Duvallet et al.l 2013} Hemachandra et al.
2015| |/Andreas and Kleinl 2015, Misra et al.l [2017al Janner
et al.,[2018],[Anderson et al., 2018, |Krantz et al., 2020, |Q1
et al., 2020, Blukis et al., 2019} 2020]. See |Luketina et al.
[2019] for a detailed survey. Among these, the most rele-
vant work is by [Blukis et al.| [2020]], who studied a few-shot
language-conditioned object grounding task. There, as the



agent navigates the environment, it aligns natural-language
mentions within instructions to novel objects in the environ-
ment using an extensible database. The agent infers novel
objects using navigation directions and by spatial reasoning
with respect to other object mentions in the instructions. In
our setup, the agent has to rely on reasoning-by-elimination.

Most relevant to this paper is the recent work by Hill et al.
[2021]). It shows that after a single introduction to a novel ob-
ject via visual perception and language ("This is a dax"), the
agent can manipulate the object as instructed ("Put the dax
on the bed") in a simulated 3D world. Its architecture com-
bines within-episode 1-shot (“fast-mapping’) learning, with
long-term knowledge, when trained with conventional RL
algorithms. Our paper takes a step forward: (1) Rather than
having an explicit supervision that is paired with the novel
concept, our supervision is implicit, reasoning about a novel
concept from a group of objects. (2) Our policy can reason
about multiple novel concepts and resolve ambiguities. (3)
Our visual-textual concepts are compositional.

Zero-shot Learning (ZSL): The standard zero-shot learn-
ing setup [Xian et al.,|2017, |Lampert et al., 2009} Atzmon
and Chechik} 2019, [2018]], a classifier recognizes novel
classes based on an auxiliary semantic class description (“A
zebra has black and white stripes”). The problem setup in
our paper differs from standard ZSL in two ways: (1) No de-
scription is provided about the novel classes. Novel classes
are nevertheless inferred without any labeled samples. (2)
Novel objects are recognized through RBE inference about
a group of objects.

Compositional ZSL: The compositional ZSL setup trains
a classifier to recognize new combinations of known compo-
nents [[Misra et al.} 2017b, |[Nagarajan and Grauman, 2018|
Purushwalkam et al., 2019, |Atzmon et al., 2020, Mancini
et al} 2021] [Naeem et al., [2021]], like colors and shapes.
Namely, the training data includes examples of all visual
concepts in a vocabulary, but only a subset of their pairs.
For instance, the training data may consist of images of
red apples and green peppers, while the test data includes
images of green apples. The compositional setup here is
different, because some elements in the vocabulary are not
at all included in the training data.

Out-of-distribution detection: Reasoning about a single
unfamiliar object resonates with out-of-distribution detec-
tion (OOD), where images of novel concepts may be con-
sidered as “out-of-distribution” samples. There is a large
body of work on 1-class and anomaly detection which we
do not survey here. In the current context, the most relevant
works include [[Hendrycks and Gimpel, 2017, |Atzmon and
Chechik;, 2019, |Vyas et al., [2018]], by detecting an OOD
sample if the largest softmax score is below a threshold and
training the OOD detection models on a set of “leave-out”
classes. Part of the architecture of the policy network is
inspired by these ideas. The setup in our paper is different

from OOD detection in that the policy we learn can (1)
resolve ambiguities when reasoning about multiple novel
concepts at a time; (2) novel concepts can be visually entan-
gled with familiar concepts (e.g. in brown-wambim, brown
is familiar, while wambim is novel); and (3) The policy
learns when to apply a one-shot learning step in order to
extend its vocabulary about the novel concept it discovered.

Predicate logic: Learning a policy for reasoning by elimi-
nation may be modelled with soft predicate logic applied as
constraints or potentials [Richardson and Domingos, [2006|
Kimmig et al., 2012} |Bach et al., [2017] or with an end-
to-end differentiable deep network [Atzmon and Chechik]
2018, |Wang and Poon, [2018|]. However, such an approach
requires an additional source of external knowledge in the
form of logic predicates. Our approach is different as it does
not require external knowledge when learning the policy.

3 AN ENVIRONMENT FOR REASONING
BY ELIMINATION

We designed a new environment for evaluating reasoning by
elimination. The environment combines visual, textual, and
action modalities; see Figure[I} In each episode, an agent
enters a room that contains a set of objects O, and is given
an instruction 7" for choosing one or two of the objects in
the room. Each object 0 € O is described by two attribute
properties, a “shape” (0®) and a “color” (o).

Some of the shape and color concepts are known in advance
(“seen”) to the agent while other concepts are unknown (“un-
seen”). An object may exhibit any combination of seen or
unseen concepts. For example, a cyan-key, where both con-
cepts, cyan and key, are seen (“familiar”); a cyan-popnap,
with a previously unseen shape (“popnap”); or a smaragdine-
popnap, where both shape and color were not seen before.

The instruction T = (7y,75...T;,) contains the shape
and color attribute for each one of the goal objects T; =
{TF,TC},i = 1..m. The goal of the agent is to select the
objects specified in the instruction. We have studied the
cases with m = 1 and m = 2, but the extension to more
complicated instructions follows naturally.

Action space: At each time step, the agent can either call
a "NEXT" action and move to the next object, or call a
"CHOOSE #k" action to indicate it found the object in the
k—th part of the instruction. Once all objects are chosen,
the episode ends. When all |O| objects in the episode were
observed, the "NEXT" action cycles back to the first object.

With this setup, we designed two reasoning and learning
challenges for the agent.

3.1 SINGLE-OBJECT TASK

Reward: In the first task, the goal of the agent is to select
a single object by matching the given textual description.



When the chosen object matches the instruction, the agent
receives a positive reward and receives no reward if there
is a mismatch. To encourage the agent to solve the task as
quickly as possible, it receives a (negative) slack penalty
after each action.

Episode creation: Environments are generated with five
objects. Each object is assigned a shape and a color. Some
objects in the environment are familiar (“seen”) in the sense
that the agent was pretrained to match their visual represen-
tation to a textual description, others are novel ("unseen").
In each room, there is only a single object that can match
the textual description. It can either be a seen object or an
unseen object. See examples in Fig. 1a. When the instruc-
tion refers to a familiar object, the agent has to learn to pick
the object that matches the description. When the instruc-
tion refers to an unseen object (either with a novel color,
or shape, or both), the agent has to deduce by elimination
which unseen object relates to the novel description.

To make the task solvable, the set of objects obeys some con-
straints. For example, given an instruction “cyan-popnap”,
whose shape description (“popnap’’) was not encountered
before, the set of objects can not include both “cyan-popnap”
and “cyan-wambim” as it is not possible to distinguish be-
tween two unseen shapes (“popnap” and “wambim”). In gen-
eral, if the text instruction contains an unseen attribute (e.g.,
unseen shape), the environment will contain just one ob-
ject with the corresponding unseen attribute and the match-
ing complementary attribute (e.g., color) in the object set.
Likewise, if both the shape and the color in the instruction
were unseen before, the episode can not contain two objects
where both attributes were unseen before.

3.2 TWO-OBJECT TASK

The second task extends the single-object task in a fun-
damental way, by adding a one-shot learning component.
First, the agent has to infer one object using elimination.
Then, it has to use its decision as a supervision signal for
learning the new concepts. Finally it needs to select a second
novel object which can only be detected correctly based on
the first novel object. The agent therefore has to perform
a combination of Eliminate-Learn-Eliminate steps which
combines reasoning with one-shot-learning.

Reward: Same as in single-object task, but here the agent
is rewarded when recognizing both novel concepts.

Episode creation: In each episode, instructions require the
agent to retrieve two objects with novel (previously un-
seen) attributes from a set with a total of five objects (Fig-
ure [T). Each environment may contain up to three visual
objects with one novel property. Two of the novel objects
share a seen property (Figure [} cyan-popnap and cyan-
wambim), and the third novel object can be used to re-
solve the ambiguity between the first two (Figure [} brown-

wambim). The agent has to deduce by elimination which
is the non-ambiguous object, and then use that knowledge
in order to disambiguate between the objects that share the
seen property. For instance, given a set of five objects in
Figure [T and the instruction "Get the cyan-popnap and
the brown-wambim", the agent can easily learn what a
"wambim" is because there is only one unseen shape that
has a "brown" color. Having learned what a "wambim" is,
the agent can now disambiguate between "cyan-popnap"
and "cyan-wambim" to retrieve the "cyan-popnap". Natu-
rally, we also allow the instruction to specify the easier case
of retrieving familiar objects.

Notation: Below, we denote the set of all shape labels by
S, all colors by C, and set of all object instances present in
the environment by . We use subscript notation to denote
the subset of seen e.g. Cseerp, OF unseen (novel) concepts.

4 APPROACH

The goal of the agent is to reason about an instruction and
choose the correct (seen or unseen) objects in a room con-
taining both seen and unseen objects. Consider first the
most naive approach, where one learns a policy based solely
on the visual representation of the objects observed in the
episode and the textual instruction representation. This ap-
proach succeeds if the target object was seen during training,
but fails if this is not the case. Such representation can not
reason about new, unseen objects.

Our proposed architecture allows an agent to reason-by-
elimination in a multi-modal environment, and progressively
learn novel concepts. These new deduced concepts can be
used in an online manner when reasoning about multiple
novel concepts.

The agent has two key components: a perception module —
which casts the textual instruction and the visual objects pre-
sented in the episode to a shared embedded representation,
and a reasoning policy, which retrieves the correct objects.
The reasoning module uses this embedding to infer which
unseen object in the environment must match with the novel
textual description using elimination.

Next, we describe each component in more detail. First,
we consider the Single-Object Task. Later, we extend our
approach by augmenting the action space with one-shot
learning for the Twwo-Object Task.

4.1 THE PERCEPTION MODULE

The perception module is designed to cast both the textual
instruction and the visual appearance of an object into a joint
multi-modal embedding space (Figure[2). It is composed of
a visual encoder, which take as input the object image and
cast it to shape and color representations, and text encoder,



C
[ﬂﬂ]—) ] Linear i pf vy piy
ﬁ Text Encoder Projection s
Bub ) > —> u;
Color C
Encoder Vi
N Visual Linear
" Encoder Projection b vl G g
Shape S
EncoF(‘:Ier —> V; N x N Cosine Similarity N x N Cosine Similarity
Matrix For Shape Matrix For Color
uC Textual Color .S Textual Shape +,C Visual Color (.S Visual Shape Maximize similarity Minimize similarity for
? Encoding ¢ Encoding v Encoding "¢  Encoding for aligned pairs unaligned pairs

Figure 2: The Perception Module. It casts both the textual instruction and the visual appearance of an object into a joint
multi-modal embedding space. The two mappings are learned by maximizing the cosine-similarity between the visual and

textual feature vectors using symmetric contrastive loss.

which maps each attribute to a feature vector of the same
dimension. The mappings are learned by maximizing the
cosine-similarity between the visual and textual feature vec-
tors using symmetric contrastive loss [Zhang et al., 2020].
See supplementary for additional details.

The visual encoder receives as input an object image and
processes it with a 3-layer convolutional neural network
backbone to obtain a visual representation of the object
x € R®'2, x is then projected into two separate represen-
tations: v € R32 representing the shape, and v© € R32
representing the color.

The text encoder processes the textual instruction given to
the agent. We encode each attribute label (color or shape)
with a pretrained BERT model [Devlin et al.,[2019] followed
by a non-linear projection to R32. This yields a dense feature
vector for the color-label u® and for the shape-label u®.

Losses and training details. We pre-train the perception
module to recognize the vocabulary of seen concepts. Dur-
ing the pre-training stage, we sample a mini-batch of N
aligned image-text pairs such that all the concepts occurring
in the batch are unique. We learn to maximize the cosine
similarity between the visual and textual representations of
the same object, using a sum of symmetric contrastive loss
functions [Zhang et al.,|2020] for both the shape and color.
For an image indexed by ¢ in a batch of N aligned image-
text feature pairs {vg, uk}szl, the symmetric contrastive
loss is defined by

exp ({ui, vi))

Zszl (u;, vi) 7
(D

—log b (<vi7 u1>) —log

Zszl (vi, uk)

where (u, v) denotes the cosine similarity.

f(i;{Vk,uk}ivﬂ) =

The perception loss for a minibatch of N aligned image-
text pairs, takes the color image-text representations
{u“y,vO |, shape representations{u®y, v},
and averages the contrastive losses across the mini-batch

samples:

N
1
[,pRCp =] N Zﬁ(l, {uck,vok}szl)—‘r((i; {uszﬁvsk}ﬁ;l).
=1
@)

4.2 POLICY NETWORK

The policy network learns to reason about the instruction in
the environment, to retrieve the matching objects.

For all known concepts, a policy can retrieve the object
described in an instruction, just by choosing the one that
maximizes the cosine-similarity in the vision-language em-
bedding space, while the irrelevant (known) objects will
yield low-magnitude similarities with the instruction. How-
ever, when an instruction refers to an unseen concept, its
textual embedding will not match any of the objects in the
room, neither known nor unknown.

In particular, a textual description containing an unknown
attribute will yield a low-magnitude similarity score with
the visual representation (the output of the visual encoder)
of every object in the environment, seen or unseen, whether
it is the goal object or not. Hence, without proper reasoning,
all objects are likely to be chosen uniformly.

Policy Architecture. We propose an architecture (Figure [3))
that can provide additional information to the policy net-
work, allowing it to deduce that an observed object consists
of unknown properties and that the given instruction refers
to unknown concepts.

Inputs. The policy gets as input the output of the perception
module: a feature representation of the current object image
and the textual instruction. Additionally, the policy stores
a dictionary of all the textural representations for each at-
tribute (shape or color) seen during the pretraining stage.
The information is used to form an internal state representa-
tion, which incorporates seen concept indicators.
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Seen concept indicator. As it is difficult to distinguish an
unseen object just by its similarity score with the textual
instruction, we construct an additional "seen indicator". This
indicator is the top score of the object visual embedding
with all the corresponding seen textual attributes (color /
shape) encoding. Ideally, this should be close to one for
images of seen attributes, while providing a significantly
lower score for images of unseen concepts. For example, the
visual shape encoding v° of “blue key’ should be similar
to the textual encoding u” of a “key” if keys were part of
the seen training set. Similarly, the visual shape encoding of
a “brown wambim’ v would not be similar to any textual
encoding, when a “wambim” is excluded from the seen
training set vocabulary.

Internal state. The policy holds an internal state represen-
tation, which is a 4 x |O| x m-dimensional tuple. It is
initialized as a zeros tuple, and for each encountered object
o and each goal object T; the agent constructs a 4-tuple as
follows:

1. The first term is the similarity term ¢°(o,1)
(v,,u%;) between the representation of the object
shape v, and the textual representation of each shape
mentioned in the instruction u®;.

Similarly, the second term is the similarity ¢ (o,i) =

(v®,,u’;) between the representation of the object

color v©,, and the color representation of each object

mentioned in the instruction u®;.

The top similarity score of shape representation of

the visual object with all the shape embeddings in the

vocabulary. This is the value of the seen shape indicator.

Concretely, we compute:

0°(0) = max{(v¥,,u%;): j € S} 3)
4. Similarly, we compute the top similarity score for the
color (seen color indicator) as follows:

90(0) = maX{ <Vcov qu) 1J € Cseen}- “@
To summarize, for every goal object in the instruction
T; € T, each observed object o € O is represented by a 4-
dimensional tuple {¢°(0,1), ¢ (0,1),0%(0),0 (0)}. Thus,
for the single-object task (m = 1), each observed object
is represented by a 4-dimensional tuple and 8-dimensional
tuple for two-object task (m = 2).

In addition, the policy is aware of the agent position in the
environment p € [1,|O]], and a 2m-dimensional instruc-
tion embedding indicating whether the shape and color
attribute mentioned in the textual description are novel.
{Is,...(T9). dc,.., (TS} VT € T

Output. The policy module constructs the internal state tu-
ple, and outputs a score for each action. During training,
these scores are converted to a probability distribution us-
ing a softmax function, while during inference the highest
scored action is chosen.

4.3 THE TWO-OBJECT TASK: 1-SHOT
LEARNING OF NEW CONCEPTS

While the single-object task requires to reason about a single
out-of-distribution object, the two-object task is harder. It
requires the agent to disambiguate the first object and then



use that newly acquired knowledge to disambiguate the
second object.

One approach would be to memorize the first chosen object
using an external memory [Hill et al.,[2021]], and build an
architecture that can reason about it with respect to the
remaining objects in the room, before choosing the second
object. Such architecture may be complex to construct, and
would be hand-crafted for this specific task.

Instead, in our approach we take a simpler alternative: We
augment the action space of the agent with two additional
actions, "CHOOSE & LEARN CONCEPT FROM #k" for
k = 1, 2. This action performs a one-shot learning action
that updates the weights of the perception module with re-
spect to the k*” instruction. Sequentially, it calls "CHOOSE
#k" at the environment. (See the ‘step’ function in List-

ing

The one-shot learning action updates the perception module
to match the novel text term with the novel visual attribute
of the object. This action affects the internal representation
in the agent model and does not affect the physical environ-
ment. For simplicity, we implement it by a simple sequence
of gradient updates with respect to the perceptual loss in
Eq. (2) using the few encountered seen objects in the episode
so-far. The seen concepts in the episode are the object with
high seen concept indicators (> 0.9) both for the shape and
color concepts. The update step is described in the function
‘update’ in Listing[I] Note that these updates only affect
the perception module of the agent.

With these update actions, the agent can now learn a novel
concept from the first chosen object, and use that knowl-
edge to disambiguate the second object. Note that if the
agent applies the update action incorrectly, it is penalized
by a wasted turn. Furthermore, such incorrect updates are
noisy (there are just a few, usually two negative samples for
the contrastive loss) and those updates may deteriorate the
perception module accuracy considerably.

As each "CHOOSE & LEARN CONCEPT FROM #k"ac-
tion requires gradient updates, which are computationally
heavy, in practice, we limit the number of such actions to 2
per episode.

Listing 1: Pseudo-code describing the agent policy.

def update (perception_module, env, k):
# Update(the perception module for
— learning a new concept.

current_obj = env.get_current_object ()
ins._obs = instruction([k] # kth object
— features.
if ins_obs.shape == "unseen":
update_attr = "shape"
else:
update_attr = "color"

# Find seen objects and associated labels
— by checking the similarity score of
— each observed object againstwthe seen
— concepts vocabulary.

seen_objects, seen_object_labels =

— perception_module (env.get_observation(),

— update_attr)

batch_vis = seen_objects + [current_obj]
batch_labels = seen_object_labels +
— [ins_obs[update_attr]]

visual_emb, text_emb =

— perception_module (batch_vis,

— Dbatch_labels)

loss = contrastive_loss (visual_emb,
— text_emb)

loss.backward()

def take_action(env, action):
if action in ["next", "choose #1",

< "choose #2"]:

reward = env.step(action)
elif action matches "choose and learn
— #i":

reward = env.step("choose #1i")

update (perception_module, env, 1)

# \Update input features of the policy

— \ based on the new perception module.

observations =

— perception_module.observe (env)
return reward

S EXPERIMENTS

Next, we describe our experimental protocol, evaluation
metrics and compared methods.

5.1 TRAINING

The policy is trained via PPO [Schulman et al., [2017]]. The
agent receives a positive reward whenever it retrieves the
correct object. The agent receives no reward when it chooses
the incorrect object and the episode ends. To solve the task
as quickly as possible, the agent receives a negative slack
penalty. We used a positive reward of 2.0, and a slack penalty
of -0.1 for our experiments.

5.2 EXPERIMENTAL PROTOCOL

Shapes and Colors. For visual objects, we use 50 ran-
domly sampled classes from CIFAR-100 [Krizhevsky),
2009] and obtain icons from NounProject (https://
thenounproject.com/), a dataset of black-and-white
icons. Our dataset consists of 60 shapes like {fish, bike, spi-
der; castle}, which we color using 13 colors {red, green,
blue, cyan, yellow, grey, orange, purple, brown, pink, violet,
puff, olive}. From these 60 shapes and 13 colors, we ran-
domly choose 50 shapes and 10 colors as seen concepts. The
remaining 10 shapes and 3 colors are designated as unseen
novel concepts, used for evaluation at test time.


https://thenounproject.com/
https://thenounproject.com/

Held-out Set for Policy Training. If the agent would have
been trained with all the shapes and colors available in the
training set, it would have never encountered a situation
with a novel concept, which is the main goal of this paper.
To expose the agent to scenes with novel concepts, we held-
out a subset of 10 shapes and 3 colors from the seen set of
50 seen shapes and 10 seen color. We treat these held-out
concepts as unseen during training stage. We do not expose
the agent to the unseen test set during the training time.
Thus, when learning the policy, we do not pre-train the per-
ception to recognize the remaining 40 shapes and 7 colors.
For the single-object task, the training dataset for policy
training consists of 1000 episodes in which the instruction
contains a seen object, as well as, 1000 episodes which con-
tain novel objects in the instruction. For the two-object task,
the training dataset consists of 1000 episodes. The unseen
attributes mentioned in the instruction in both these datasets
are chosen from the held-out subset (10 shapes, 3 colors).

Test Set. At test time, we introduce 10 new shapes and 3
new colors. These 10 shapes and 3 colors are different from
the concepts in the held-out subset and were never observed
before. For the single-object task, the test-set contains 100
episodes where the instruction refers to a seen object and
100 episodes instructions referring to an unseen one. For the
two-object task, the test-set contains 100 episodes whose
instructions refer to two novel objects (as in Figure 1b).

Evaluation Metrics. We evaluate the compared approaches
by the accuracy in choosing the objects in the instruction.
For the single-object task, we report ‘Seen Success (%)’
which calculates the accuracy of agent in picking the right
object when the instruction mentions a seen concept. Addi-
tionally, we report ‘Unseen Success (%)’, which calculates
the accuracy of the agent in picking the right novel ob-
ject when the instruction mentions an unseen object (either
single or both attributes are unknown. For the two-object
task, we report ‘1% Object Success (%)’ which computes
how frequently the agent correctly infers at least one of the
objects mentioned in the instruction. We also report 2™
Object Success (%)” which computes how frequently the
agent correctly retrieves both the objects mentioned in the
instruction.

5.3 COMPARED METHODS

Single-Object Task: We compare with the following:

1. Random: Pick one of the |O| objects in the room uni-
formly at random.

2. Raw Features: It is expected that using raw features
would work well for seen concepts, but not for novel
categories since the perception model was not trained
on unseen concepts. This policy takes just these raw
features as input and and does not explicitly generate
the internal state representation.

3. Without Top-1 Score and Instruction Embedding:
In this ablation, we only use the similarity score
#°(0,4) and ¢ (0,). We do not feed the top-1 scores
and the instruction 2m-dimensional instruction em-
bedding. This will help us evaluate the importance of
feeding top-1 scores along with the similarity scores.

4. Without Instruction Embedding: In this ablation, we
use full internal state tuple but do not feed the instruc-
tion 2m-dimensional instruction embedding.

5. Our approach: Our approach, which uses the full in-
ternal state tuple as well as the instruction embedding.

Two-object Task. We compare our method with the fol-
lowing baselines. All baselines utilize the full input: the
internal state tuple, the agent’s position, and the instruction
embedding.

1. Random: Pick two objects of the |O| objects in the
room uniformly at random.

2. Without Gradient Update: In this ablation, after the
agent picks the first object, we will not update the
perception model to recognize the novel concept. This
will help us evaluate the importance of the one-shot
learning step.

3. With Gradient Update: This is our approach. In this,
after the agent infers one of the objects specified in the
instruction, it updates the perception model and uses
the updated perception module to infer the other object
mentioned in the instruction.

4. Oracle Perception: To get an upper bound on the per-
formance on this task using our policy, we also replace
the perception model with an oracle perception model
that was trained on all seen and unseen concepts.

6 RESULTS
6.1 SINGLE OBJECT TASK

# Method Sim Top-1 Ins. Seen Unseen
Score Score Type Success @+ Success @)t
1 Random 20+3.97 20+3.97
2 Raw Features 1000 33422
3 Ours v 8843.24 671472
4 QOurs v v 87+3.36 79+4.01
5 Ours v v v 97+1.40 8T+3.36

Table 1: Evaluation on the single object task.

Table [T] gives the accuracy of picking the correct object
in the single-object task. Several observation worth noting.
First, using similarity scores leads to better performance
than using raw feature vectors. Second, using top-1 scores
boosts reasoning performance, since it helps calibrate the
similarity score for seen vs. unseen concept. Finally, using



Instruction (underlined attributes are unseen) : Get the "Green Skunk" and the "Blue Whale"
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Instruction(underlined attributes are unseen): Get the "Olive Tractor" and the "Buff Butterfly"
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Figure 4: Two-Object Task Qualitative Examples. In the figure, underlined attributes are unseen. Object with blue boundaries
are novel. In (a), the agent walks through the environment and infers the concept ‘Whale’ because there is no other
blue-colored object. After updating its perception model, the agent is able to disambiguate between ‘“Whale’ and ‘Skunk’
and chooses the ‘Green Skunk’ correctly. In (b), the agent can reason about both unseen colors using elimination.

instruction embedding is necessary for reasoning. We found
that even for seen instructions, the agent learns to stop at ob-
jects which only matches part of the instruction (e.g., when
the shape matches but not the color). Explicitly specifying
which attributes of the instruction are seen vs. unseen helps
the agent to continue exploring and stopping at an object
that fully matches the instruction.

6.2 TWO-OBJECT TASK

w/ Gradient 1st object 2nd object

Method Update  Success @7 success 7
1 Random - 20+0.1290 5+o.07
2 Ours - 86+3.85 22+4.15
3 Ours v 82+3.84 33+4.70
4 Oracle Perception - 95+42.18 95+2.18

Table 2: Evaluation on the two unseen object task

Table [2] gives the accuracy in the two-object task, leading to
the following observations. First, picking the first object us-
ing our perception and reasoning module is easy. The agent
can often successfully reasons about one of the objects that
is unambiguous. Second, the agent performs poorly without
a 1-shot learning step to learn the unseen concept associated
with the first object. In this case, it cannot disambiguate
between two objects in the scene that can potentially match
with the second object in the instruction. Third, when the
agent updates its perception module with a 1-shot learn-
ing step, it better resolves the ambiguity between the two
objects. We provide qualitative examples in Figure ]

To showcase the efficacy of the policy, we also run an ex-

periment with an oracle perception model that was trained
using both seen and unseen concepts. This sets an upper
bound on the performance of the policy as all concepts are
considered seen, and therefore there is no ambiguity while
reasoning about the two objects specified in the instruction.

7 CONCLUSIONS

This paper addressed the problem of training an agent to
reason over a set of objects and learn to use elimination
for learning new concepts in a zero-shot manner. We find
that agents can be successfully trained using reinforcement
learning to achieve this task. This study introduces a new ap-
proach to combining deep learning with abstract reasoning.
Our framework for reasoning-by-elimination can be gener-
alized to more natural visual scenarios because it does not
depend on a specific perception module. The distribution of
perception module scores, which are used as input features
for the reasoning module, can reflect uncertainties about out-
of-distribution samples in natural images, as demonstrated
in [Hendrycks and Gimpell [2017], [Atzmon and Chechik|
[2019], [Vyas et al.| [2018]]. While the current paper devel-
oped the ideas in a simple synthetic world, we show through
ablations that every component of the proposed approach
is necessary for success in this task. Various applications
are likely to benefit from RBE. For example, RBE is com-
monly used to reach a diagnosis of exclusion in medicine
and is used for differential diagnosis. RBE is also important
for fault diagnosis in computer systems and manufacturing.
Future research directions include automated approaches to
RBE with less feature engineering; finding how to collect
such “RBE" labels at scale; and considering concepts from
active learning for the RBE problem.
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