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Abstract

This paper studies the complexity for finding ap-
proximate stationary points of nonconvex-strongly-
concave (NC-SC) smooth minimax problems, in
both general and averaged smooth finite-sum set-
tings. We establish nontrivial lower complexity
bounds of Ω(

√
κ∆Lϵ−2) and Ω(n+

√
nκ∆Lϵ−2)

for the two settings, respectively, where κ is
the condition number, L is the smoothness con-
stant, and ∆ is the initial gap. Our result reveals
substantial gaps between these limits and best-
known upper bounds in the literature. To close
these gaps, we introduce a generic acceleration
scheme that deploys existing gradient-based meth-
ods to solve a sequence of crafted strongly-convex-
strongly-concave subproblems. In the general set-
ting, the complexity of our proposed algorithm
nearly matches the lower bound; in particular, it re-
moves an additional poly-logarithmic dependence
on accuracy present in previous works. In the av-
eraged smooth finite-sum setting, our proposed
algorithm improves over previous algorithms by
providing a nearly-tight dependence on the condi-
tion number.

1 INTRODUCTION

In this paper, we consider general minimax problems of the
form (n, d1, d2 ∈ N+):

min
x∈Rd1

max
y∈Rd2

f(x, y), (1)

as well as their finite-sum counterpart:

min
x∈Rd1

max
y∈Rd2

f(x, y) ≜
1

n

n∑
i=1

fi(x, y), (2)

*Equal contribution.

where f, fi are continuously differentiable and f is L-
Lipschitz smooth jointly in x and y. We focus on the setting
when f is µ-strongly concave in y and perhaps nonconvex
in x, i.e., f is nonconvex-strongly-concave (NC-SC). Such
problems arise ubiquitously in machine learning, e.g., GANs
with regularization [Sanjabi et al., 2018, Lei et al., 2020],
Wasserstein robust models [Sinha et al., 2018], robust learn-
ing over multiple domains [Qian et al., 2019], and off-policy
reinforcement learning [Dai et al., 2017, 2018, Huang and
Jiang, 2020]. Since the problem is nonconvex in general,
a natural goal is to find an approximate stationary point
x̄, such that ∥∇Φ(x̄)∥ ≤ ϵ, for a given accuracy ϵ, where
Φ(x) ≜ maxy f(x, y) is the primal function. This goal is
meaningful for the aforementioned applications, e.g., in
adversarial models the primal function quantifies the worst-
case loss for the learner, with respect to adversary’s actions.

There exists a number of algorithms for solving NC-
SC problems in the general setting, including GDmax
[Nouiehed et al., 2019], GDA [Lin et al., 2020a], alternat-
ing GDA [Yang et al., 2020a, Boţ and Böhm, 2020, Xu
et al., 2020], Minimax-PPA [Lin et al., 2020b]. Specif-
ically, GDA and its alternating variant both achieve the
complexity of O(κ2∆Lϵ−2) [Lin et al., 2020a, Yang et al.,
2020a], where κ ≜ L

µ is the condition number and ∆ ≜
Φ(x0) − infx Φ(x) is the initial function gap. Recently,
[Lin et al., 2020b] provided the best-known complexity
of O

(√
κ∆Lϵ−2 · log2(κLϵ )

)
achieved by Minimax-PPA,

which improves the dependence on the condition number
but suffers from an extra poly-logarithmic factor in 1

ϵ .

In the finite-sum setting, several algorithms have been
proposed recently, e.g., PGSMD [Rafique et al., 2018],
SGDmax [Jin et al., 2020], Stochastic GDA [Lin et al.,
2020a], SREDAs [Luo et al., 2020]. In particular, [Lin et al.,
2020a] proved that Stochastic GDA attains the complexity
of O(κ3ϵ−4). [Luo et al., 2020] recently showed the state-
of-the-art result achieved by SREDA: when n ≥ κ2, the
complexity is Õ

(
n log κ

ϵ +
√
nκ2∆Lϵ−2

)
, which is sharper

than the batch Minimax-PPA algorithm; when n ≤ κ2, the
complexity is O

((
nκ+ κ2

)
∆Lϵ−2

)
, which is sharper than
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 Stochastic GDA.

Despite this active line of research, whether these state-of-
the-art complexity bounds can be further improved remains
elusive. As a special case by restricting the domain of y
to a singleton, lower bounds for nonconvex smooth mini-
mization, e.g., [Carmon et al., 2019a,b, Fang et al., 2018,
Zhou and Gu, 2019, Arjevani et al., 2019], hardly capture
the dependence on the condition number κ, which plays a
crucial role in the complexity for general NC-SC smooth
minimax problems. In many of the aforementioned machine
learning applications, the condition number is inversely pro-
portional the regularization parameter, and can be very large
in practice. For example, in statistical learning, where n rep-
resents the sample size, the optimal regularization parameter
(i.e. with optimal empirical/generalization trade-off) leads
to κ = Ω(

√
n) [Shalev-Shwartz and Ben-David, 2014].

This motivates the following fundamental questions: What
is the complexity limit for NC-SC problems in the general
and finite-sum settings? Can we design new algorithms to
meet the performance limits and attain optimal dependence
on the condition number?

1.1 CONTRIBUTIONS

Our contributions, summarized in Table 1, are as follows:

• We establish nontrivial lower complexity bounds for
finding an approximate stationary point of nonconvex-
strongly-concave (NC-SC) minimax problems. In the
general setting, we prove an Ω

(√
κ∆Lϵ−2

)
lower com-

plexity bound which applies to arbitrary determinis-
tic linear-span algorithms interacting with the classical
first-order oracle. In the finite-sum setting, we prove
an Ω

(
n+

√
nκ∆Lϵ−2

)
lower complexity bound (when

κ = Ω(n))1 for the class of averaged smooth functions
and arbitrary linear-span algorithms interacting with a
(randomized) incremental first-order oracle (precise defi-
nitions in Sections 2 and 3).
Our lower bounds build upon two main ideas: first, we
start from an NC-SC function whose primal function
mimics the lower bound construction in smooth noncon-
vex minimization [Carmon et al., 2019a]. Crucially, the
smoothness parameter of this primal function is boosted
by an Ω(κ) factor, which strengthens the lower bound.
Second, the function has an alternating zero-chain struc-
ture, as utilized in lower bounds for convex-concave set-
tings [Ouyang and Xu, 2019]. The combination of these
features leads to a hard instance for our problem.

• To bridge the gap between the lower bounds and existing
upper bounds in both settings, we introduce a generic Cat-

1A concurrent work by Han et al. [2021] provided a similar
lower bound result for finite-sum NC-SC problems under proba-
bilistic arguments based on geometric random variables.

alyst acceleration framework for NC-SC minimax prob-
lems, inspired by [Lin et al., 2018a, Yang et al., 2020b],
which applies existing gradient-based methods to solving
a sequence of crafted strongly-convex-strongly-concave
(SC-SC) minimax subproblems. When combined with the
extragradient method, the resulting algorithm achieves
an Õ(

√
κ∆Lϵ−2) complexity in terms of gradient eval-

uations, which tightly matches the lower bound in the
general setting (up to logarithmic terms in constants) and
shaves off the extra poly-logarithmic term in 1

ϵ required
by the state-of-the-art [Lin et al., 2020b]. When combined
with stochastic variance-reduced method, the resulting
algorithm achieves an overall Õ

(
(n+ n3/4

√
κ)∆Lϵ−2

)
complexity for averaged smooth finite-sum problems,
which has nearly-tight dependence on the condition num-
ber and improves on the best-known upper bound when
n ≤ κ4.

1.2 RELATED WORK

Lower bounds for minimax problems. Information-
based complexity (IBC) theory [Traub et al., 1988], which
derives the minimal number of oracle calls to attain an ap-
proximate solution with a desired accuracy, is often used in
lower bound analysis of optimization algorithms. Unlike the
case of minimization, e.g., [Nemirovski and Yudin, 1983,
Carmon et al., 2019a,b, Arjevani et al., 2019], lower bounds
for minimax optimization are far less understood; only a few
recent works provided lower bounds for finding an approxi-
mate saddle point of (strongly)-convex-(strongly)-concave
minimax problems [Ouyang and Xu, 2019, Zhang et al.,
2019, Ibrahim et al., 2020, Xie et al., 2020, Yoon and Ryu,
2021]. Instead, this paper considers lower bounds for NC-
SC problems of finding an stationary point, which requires
different techniques for constructing zero-chain properties.
Note that there exists another line of research on the purely
stochastic setting, e.g., [Rafique et al., 2018, Luo et al.,
2020]; constructing lower bounds in that setting is out of
the scope of this paper.

Complexity of making gradient small. In nonconvex op-
timization, most lower and upper complexity bound results
are presented in terms of the gradient norm (see a recent
survey [Danilova et al., 2020] and references therein for
more details). For convex optimization, the optimality gap
based on the objective value is commonly used as the con-
vergence criterion. The convergence in terms of gradient
norm, albeit easier to check, are far less studied in the lit-
erature until recently; see e.g., [Nesterov, 2012, Allen-Zhu,
2018, Diakonikolas and Guzmán, 2021] for convex mini-
mization and [Diakonikolas, 2020, Yoon and Ryu, 2021] for
convex-concave smooth minimax problems.

Nonconvex minimax optimization. In NC-SC setting,
as we mentioned, there has been several substantial works.
Among them, Lin et al. [2020b] achieved the best depen-



 Table 1: Upper and lower complexity bounds for finding an approximate stationary point. Here Õ(·) hides poly-logarithmic
factor in L, µ and κ. L: Lipschitz smoothness parameter; µ: strong concavity parameter, κ: condition number L

µ ; ∆: initial
gap of the primal function.

Setting Our Lower Bound Our Upper Bound Previous Upper Bound

NC-SC, general
Ω
(√

κ∆Lϵ−2
)

Theorem 3.1
Õ(

√
κ∆Lϵ−2)

Section 4.2
O(κ2∆Lϵ−2) [Lin et al., 2020a]

Õ
(√

κ∆Lϵ−2 log2 1
ϵ

)
[Lin et al., 2020b]

NC-SC, FS, AS1 Ω
(
n+

√
nκ∆Lϵ−2

)
Theorem 3.2

Õ
((

n+ n
3
4
√
κ
)
∆Lϵ−2

)
Section 4.2

{
Õ(n+

√
nκ2∆Lϵ−2) n ≥ κ2

O
((
nκ+ κ2

)
∆Lϵ−2

)
n ≤ κ2

[Luo et al., 2020]

1 FS: finite-sum, AS: averaged smooth; see Section 2 for definitions.

dency on condition number by combining proximal point
algorithm with accelerated gradient descent. Luo et al.
[2020] introduced a variance reduction algorithm, SREDA.
Guo et al. [2020] provided algorithms for NC-SC min-
imax formulation of AUC maximization problems with
an additional assumption that the primal function satis-
fies Polyak-Łojasiewicz condition. In addition, nonconvex-
concave minimax optimization, i.e., the function f is only
concave in y, is extensively explored by [Zhang et al.,
2020, Ostrovskii et al., 2020, Thekumparampil et al., 2019,
Zhao, 2020, Nouiehed et al., 2019, Yang et al., 2020b].
Recently, [Daskalakis et al., 2020] showed that for gen-
eral smooth nonconvex-nonconcave objectives, finding ap-
proximate first-order locally optimal solutions is intractable.
Therefore, another line of research is devoted to search-
ing for solutions under additional structural properties, e.g.,
[Yang et al., 2020c,a, Mertikopoulos et al., 2019, Diakoniko-
las et al., 2020, Lin et al., 2018b].

Catalyst acceleration. The catalyst framework was ini-
tially studied in [Lin et al., 2015] for convex minimization
and extended to nonconvex minimization in [Paquette et al.,
2018] to obtain accelerated algorithms. A similar idea to
accelerate SVRG appeared in [Frostig et al., 2015]. These
work are rooted on the proximal point algorithm (PPA)
[Rockafellar, 1976, Güler, 1991] and inexact accelerated
PPA [Güler, 1992]. Recently, [Yang et al., 2020b] general-
ized the idea and obtained state-of-the-art results for solving
strongly-convex-concave and nonconvex-concave minimax
problems. In contrast, this paper introduces a new cata-
lyst acceleration scheme in the nonconvex-strongly-concave
setting, which relies on different parameter settings and
stopping criterion.

2 PRELIMINARIES

Notations Throughout the paper, we use domF as the
domain of a function F , ∇F = (∇xF,∇yF ) as the full
gradient, ∥·∥ as the ℓ2-norm. We use 0 to represent zero
vectors or scalars, ei to represent unit vector with the i-th
element being 1. For nonnegative functions f(x) and g(x),
we say f = O(g) if f(x) ≤ cg(x) for some c > 0, and

further write f = Õ(g) to omit poly-logarithmic terms on
constants L, µ and κ, while f = Ω(g) if f(x) ≥ cg(x) (see
more in Appendix A).

We introduce definitions and assumptions used throughout.

Definition 2.1 (Primal and Dual Functions) For a func-
tion f(x, y), we define Φ(x) ≜ maxy f(x, y) as the primal
function, and Ψ(y) ≜ minx f(x, y) as the dual function.
We also define the primal-dual gap at a point (x̄, ȳ) as
gapf (x̄, ȳ) ≜ maxy∈Rd2 f(x̄, y)−minx∈Rd1 f(x, ȳ).

Definition 2.2 (Lipschitz Smoothness) We say a function
f(x, y) is L-Lipschitz smooth (L-S) jointly in x and y if it
is differentiable and for any (x1, y1), (x2, y2) ∈ Rd1 ×Rd2 ,
∥∇xf(x1, y1)−∇xf(x2, y2)∥ ≤ L(∥x1−x2∥+∥y1−y2∥)
and ∥∇yf(x1, y1)−∇yf(x2, y2)∥ ≤ L(∥x1−x2∥+∥y1−
y2∥), for some L > 0.

Definition 2.3 (Average / Individual Smoothness) We
say f(x, y) = 1

n

∑n
i=1 fi(x, y) or {fi}ni=1 is L-averaged

smooth (L-AS) if each fi is differentiable, and for any
(x1, y1), (x2, y2) ∈ Rd1 × Rd2 , we have

1

n

n∑
i=1

∥∇fi(x1, y1)−∇fi(x2, y2)∥2

≤ L2(∥x1 − x2∥2 + ∥y1 − y2∥2
)
.

We say f or {fi}ni=1 is L-individually smooth (L-IS) if each
fi is L-Lipschitz smooth.

Average smoothness is a weaker condition than the com-
mon Lipschitz smoothness assumption of each component
in finite-sum / stochastic minimization [Fang et al., 2018,
Zhou and Gu, 2019]. Similarly in minimax problems, the
following proposition summarizes the relationship among
these different notions of smoothness.

Proposition 2.1 Let f(x, y) = 1
n

∑n
i=1 fi(x, y). Then we

have: (a) If the function f is L-IS or L-AS, then it is L-
S. (b) If f is L-IS, then it is (2L)-AS. (c) If f is L-AS, then
f(x, y)+ τx

2 ∥x−x̃∥2− τy
2 ∥y−ỹ∥2 is

√
2(L+max{τx, τy})-

AS for any x̃ and ỹ.



 Definition 2.4 (Strong Convexity) A differentiable func-
tion g : Rd1 → R is convex if g(x2) ≥ g(x1) +
⟨∇g(x1), x2 − x1⟩ for any x1, x2 ∈ Rd1 . Given µ ≥ 0,
we say f is µ-strongly convex if g(x) − µ

2 ∥x∥
2 is convex,

and it is µ-strongly concave if −g is µ-strongly convex.

Assumption 2.1 (Main Settings) We assume that f(x, y)
in (1) is a nonconvex-strongly-concave (NC-SC) function
such that f is L-S, and f(x, ·) is µ-strongly concave for any
fixed x ∈ Rd1; for the finite-sum case, we further assume
that {fi}ni=1 is L-AS. We assume that the initial primal
suboptimality is bounded: Φ(x0)− infx Φ(x) ≤ ∆.
Under Assumption 2.1, the primal function Φ(·) is differen-
tiable and 2κL-Lipschitz smooth [Lin et al., 2020b, Lemma
23] where κ ≜ L

µ . Throughout this paper, we use the sta-
tionarity of Φ(·) as the convergence criterion.

Definition 2.5 (Convergence Criterion) For a differen-
tiable function Φ, a point x̄ ∈ domΦ is called an ϵ-
stationary point of Φ if ∥∇Φ(x̄)∥ ≤ ϵ.

Another commonly used criterion is the stationarity of f ,
i.e., ∥∇xf(x̄, ȳ)∥ ≤ ϵ, ∥∇yf(x̄, ȳ)∥ ≤ ϵ. This is a weaker
convergence criterion. We refer readers to [Lin et al., 2020a,
Section 4.3] for the comparison of these two criteria.

3 LOWER BOUNDS FOR NC-SC
MINIMAX PROBLEMS

In this section, we establish lower complexity bounds (LB)
for finding approximate stationary points of NC-SC mini-
max problems, in both general and finite-sum settings. We
first present the basic components of the oracle complexity
framework [Nemirovski and Yudin, 1983] and then proceed
to the details for each case. For simplicity, in this section
only, we denote xd as the d-th coordinate of x and xt as the
variable x in the t-th iteration.

3.1 FRAMEWORK AND SETUP

We study the lower bound of finding primal stationary point
under the well-known oracle complexity framework [Ne-
mirovski and Yudin, 1983], here we first present the basics
of the framework.

Function class We consider the nonconvex-strongly-
concave (NC-SC) function class, as defined in Assumption
2.1, with parameters L, µ,∆ > 0, denoted by FL,µ,∆

NCSC .

Oracle class We consider different oracles for the general
and finite-sum settings. Define z ≜ (x, y).

• For the general setting, we consider the first-order or-
acle (FO), denoted as OFO(f, ·), that for each query
on point z, it returns the gradient OFO(f, z) ≜
(∇xf(x, y),∇yf(x, y)).

• For the finite-sum setting, incremental first-order oracle
(IFO) is often used in lower bound analysis [Agarwal
and Bottou, 2015]. This oracle for a function f(x, y) =
1
n

∑n
i=1 fi(x, y), is such that for each query on point z

and given i ∈ [n], it returns the gradient of the i-th com-
ponent, i.e., OIFO(f, z, i) ≜ (∇xfi(x, y),∇yfi(x, y)),.
Here, we consider averaged smooth IFO and individually
smooth IFO, denoted as OL,AS

IFO (f) and OL,IS
IFO (f), where

{fi}ni=1 is L-AS or L-IS, respectively.

Algorithm class In this work, we consider the class of
linear-span algorithms interacting with oracle O, denoted
as A(O). These algorithms satisfy the following property:
if we let (zt)t be the sequence of queries by the algorithm,
where zt = (xt, yt); then for all t, we have

zt+1 ∈ Span
{
z0, · · · , zt;O

(
f, z0

)
, · · · ,O

(
f, zt

)}
. (3)

For the finite-sum case, the above protocol fits with many ex-
isting deterministic and randomized linear-span algorithms.
We distinguish the general and finite-sum setting by speci-
fying the used oracle, which is OFO or OIFO, respectively.
Most existing first-order algorithms, including simultane-
ous and alternating update algorithms, can be formulated as
linear-span algorithms. It is worth pointing out that typically
the linear span assumption is used without loss of general-
ity, since there is a standard reduction from deterministic
linear-span algorithms to arbitrary oracle based determinis-
tic algorithms [Nemirovsky, 1991, 1992, Ouyang and Xu,
2019]. We defer this extension for future work.

Complexity measures The efficiency of algorithms is
quantified by the oracle complexity [Nemirovski and Yudin,
1983] of finding an ϵ-stationary point of the primal function:
for an algorithm A ∈ A(O) interacting with a FO oracle O,
an instance f ∈ F , we define

Tϵ(f, A) ≜ inf
{
T ∈ N|∥∇Φ

(
xT
)
∥ ≤ ϵ

}
(4)

as the minimum number of oracle calls A makes to reach
stationarity convergence. For the general case, we define the
worst-case complexity

Complϵ(F ,A,O) ≜ sup
f∈F

inf
A∈A(O)

Tϵ(f, A). (5)

For finite-sum cases, we lower bound the randomized com-
plexity by the distributional complexity [Braun et al., 2017]:

Complϵ(F ,A,O) ≜ sup
f∈F

inf
A∈A(O)

E Tϵ(f, A). (6)

Following the motivation of analysis discussed in Section
1.1, we will use the zero-chain argument for the analysis.
First we define the notion of (first-order) zero-chain [Car-
mon et al., 2019b] and activation as follows.

Definition 3.1 (Zero Chain, Activation) A function f :
Rd → R is a first-order zero-chain if for any x ∈ Rd,

supp{x} ⊆ {1, · · · , i−1} ⇒ supp{∇f(x)} ⊆ {1, · · · , i},



 where supp{x} ≜ {i ∈ [d] | xi ̸= 0} and [d] = {1, · · · , d}.
For an algorithm initialized at 0 ∈ Rd, with iterates {xt}t,
we say coordinate i is activated at xt, if xt

i ̸= 0 and xs
i = 0,

for any s < t.

3.2 GENERAL NC-SC PROBLEMS

First we consider the general NC-SC (Gen-NC-SC) minimax
optimization problems. Following the above framework,
we choose function class FL,µ,∆

NCSC , oracle OFO, linear-span
algorithms A, and we analyze the complexity defined in (5).

Hard instance construction Inspired by the hard in-
stances constructed in [Ouyang and Xu, 2019, Carmon
et al., 2019b], we introduce the following function Fd :
Rd+1 × Rd+2 → R (d ∈ N+) and
Fd(x, y;λ, α) ≜ λ1⟨Bdx, y⟩ − λ2∥y∥2 −

λ2
1

√
α

2λ2
⟨e1, x⟩

+
λ2
1α

2λ2

d∑
i=1

Γ(xi)−
λ2
1α

4λ2
x2
d+1 +

λ2
1

√
α

4λ2
,

(7)

where λ = (λ1, λ2) ∈ R2 is the parameter vector, e1 ∈
Rd+1 is the unit vector with the only non-zero element in
the first dimension, Γ : R → R and Bd ∈ R(d+2)×(d+1) are

Bd =



1
1 −1

. .
.

. .
.

1 −1
1 −1
4
√
α


,Γ(x) = 120

∫ x

1

t2(t− 1)

1 + t2
dt.

(8)
Matrix Bd essentially triggers the activation of variables at
each iteration, and function Γ introduces nonconvexity in
x to the instance. By the first-order optimality condition of
Fd(x, ·;λ, α), we can compute its primal function, Φd:

Φd(x;λ, α) ≜ max
y∈Rd+1

Fd (x, y;λ, α)

=
λ2
1

2λ2

(
1

2
x⊤Adx−

√
αx1 +

√
α

2
+ α

d∑
i=1

Γ(xi) +
1− α

2
x2
d+1

)
,

(9)

where Ad ∈ R(d+1)×(d+1) is

Ad =
(
B⊤

d Bd − ed+1e
⊤
d+1

)

=



1 +
√
α −1

−1 2 −1

−1 2
. . .

. . .
. . . −1
. . . 2 −1

−1 1


.

(10)

The resulting primal function resembles the worst-case func-
tions used in lower bound analysis of minimization prob-
lems [Nesterov, 2018, Carmon et al., 2019b].

Zero-Chain Construction First we summarize key prop-
erties of the instance and its zero-chain mechanism. We
further denote êi ∈ Rd+2 as the unit vector for the variable
y and define (k ≥ 1)

Xk ≜ Span{e1, e2, · · · , ek}, X0 ≜ {0},
Yk ≜ Span{êd+2, êd+1, · · · , êd−k+2}, Y0 ≜ {0},

(11)

then we have the following properties for Fd.

Lemma 3.1 (Properties of Fd) For any d ∈ N+ and α ∈
[0, 1], Fd(x, y;λ, α) in (7) satisfies:

(i) The function Fd(x, ·;λ, α) is LF -Lipschitz smooth

where LF = max
{

200λ2
1α

λ2
, 2λ1, 2λ2

}
.

(ii) For each fixed x ∈ Rd+1, Fd(x, ·;λ, α) is µF -strongly
concave where µF = 2λ2.

(iii) The following properties hold:

a) x = y = 0 ⇒ ∇xFd ∈ X1, ∇yFd = 0.
b) x ∈ Xk, y ∈ Yk ⇒ ∇xFd ∈ Xk+1, ∇yFd ∈ Yk.
c) x ∈Xk+1, y ∈Yk ⇒ ∇xFd ∈ Xk+1,∇yFd ∈ Yk+1.

(iv) For L ≥ µ > 0, if λ = λ∗ = (λ∗
1, λ

∗
2) = (L2 ,

µ
2 ) and

α ≤ µ
100L , Fd is L-Lipschitz smooth, and for any fixed

x ∈ Rd+1, Fd(x, ·;λ, α) is µ-strongly concave.

The proof of Lemma 3.1 is deferred to Appendix C.1.1.
The first two properties show that function Fd is Lipschitz
smooth and NC-SC; the third property above suggests that,
starting from (x, y) = (0, 0), the activation process follows
an "alternating zero-chain" form [Ouyang and Xu, 2019].
That is, for a linear-span algorithm, when x ∈ Xk, y ∈ Yk,
the next iterate will at most activate the (k+1)-th coordinate
of x while keeping y fixed; similarly when x ∈ Xk+1, y ∈
Yk, the next iterate will at most activate the (d− k + 1)-th
element of y. We need the following properties of Φd for
the lower bound argument.

Lemma 3.2 (Properties of Φd) For any α ∈ [0, 1] and
x ∈ Rd+1, if xd = xd+1 = 0, we have:

(i) ∥∇Φd(x;λ, α)∥ ≥ λ2
1

8λ2
α3/4.

(ii) Φd(0;λ, α)− inf
x∈Rd+1

Φd(x;λ, α)≤ λ2
1

2λ2

(√
α
2 + 10αd

)
.

We defer the proof of Lemma 3.2 to Appendix C.1.2. This
lemma indicates that, starting from (x, y) = (0, 0) with
appropriate parameter settings, the primal function Φd will
not approximate stationarity until the last two coordinates
are activated. Now we are ready to present our final lower
bound result for the general NC-SC case.



 Theorem 3.1 (LB for Gen-NC-SC) For the linear-span
first-order algorithm class A, parameters L, µ,∆ > 0, and
accuracy ϵ satisfying ϵ2 ≤ min

(
∆L
6400 ,

∆L
√
κ

38400

)
, we have

Complϵ

(
FL,µ,∆

NCSC ,A,OFO

)
= Ω

(√
κ∆Lϵ−2

)
. (12)

The hard instance in the proof is established based on
Fd in (7). We choose the scaled function f(x, y) =
η2Fd(

x
η ,

y
η ;λ

∗, α) as the final hard instance, which pre-
serves the smoothness and strong convexity (by Lemma
B.3), while appropriate setting of η will help to fulfill the
requirements on the initial gap and large gradient norm
(before thorough activation) of the primal function. The de-
tailed statement and proof of Theorem 3.1 are presented in
Appendix C.1.3.

Remark 3.1 (Tightness) The best-known upper bounds for
general NC-SC problems are O(∆Lκ2ϵ−2) [Lin et al.,
2020a, Boţ and Böhm, 2020] and Õ

(
∆
√
κLϵ−2 log2 1

ϵ

)
[Lin et al., 2020b]. Therefore, our result exhibits significant
gaps in terms of the dependence on ϵ and κ. In order to
mitigate these gaps, we propose faster algorithms in Section
4. On the other hand, compared to the Ω(∆Lϵ−2) lower
bound for nonconvex smooth minimization [Carmon et al.,
2019a], our result reveals an explicit dependence on κ.

3.3 FINITE-SUM NC-SC PROBLEMS

The second case we consider is finite-sum NC-SC (FS-NC-
SC) minimax problems, for the function class FL,µ,∆

NCSC , the
linear-span algorithm class A and the averaged smooth IFO
class OL,AS

IFO . The complexity is defined in (6).

Hard instance construction To derive the finite-sum hard
instance, we modify Fd in (7) with orthogonal matrices
defined as follows.

Definition 3.2 (Orthogonal Matrices) For positive inte-
gers a, b, n ∈ N+, we define a matrix sequence
{U(i)}ni=1 ∈ Orth(a, b, n) if for each i, j ∈ {1, · · · , n}
and i ̸= j, U(i),U(j) ∈ Ra×b and U(i)(U(i))⊤ = I ∈
Ra×a and U(i)(U(j))⊤ = 0 ∈ Ra×a.

Here the intuition for the finite-sum hard instance is com-
bining n independent copies of the hard instance in the
general case (7), then appropriate orthogonal matrices will
convert the n independent variables with dimension d into
one variable with dimension n × d, which results in the
desired hard instance. To preserve the zero chain property,
for {U(i)}ni=1 ∈ Orth(d + 1, n(d + 1), n), {V(i)}ni=1 ∈
Orth(d + 2, n(d + 2), n), ∀n, d ∈ N+ and x ∈ Rn(d+1),
y ∈ Rn(d+2), we set U(i) and V(i) by concatenating n
matrices:

U(i) =
[
0d+1 · · · 0d+1 Id+1 0d+1 · · · 0d+1

]
,

V(i) =
[
0d+2 · · · 0d+2 Id+2 0d+2 · · · 0d+2

]
,

(13)

where 0d, Id ∈ Rd×d are the zero and identity matrices
respectively, while the i-th matrix above is the identity ma-
trix. Hence, U(i)x will be the (id− d+ 1)-th to the (id)-th
elements of x, similar property also holds for V(i)y.

The hard instance construction here follows the idea of that
in the deterministic hard instance (7), the basic motivation
is that its primal function will be a finite-sum form of the
primal function Φd defined in the deterministic case (9). We
choose the following functions Hd : Rd+1 × Rd+2 → R,
Γn
d : Rn(d+1) → R and

Hd(x, y;λ, α) ≜ λ1⟨Bdx, y⟩ − λ2∥y∥2 −
λ2
1

√
α

2λ2
⟨e1, x⟩

− λ2
1α

4λ2
x2
d+1 +

λ2
1

√
α

4λ2
,

Γn
d (x) ≜

n∑
i=1

i(d+1)−1∑
j=i(d+1)−d

Γ(xj),

(14)

then f̄i, f̄ : Rn(d+1) × Rn(d+2) → R, {U(i)}ni=1 ∈
Orth(d+1, n(d+1), n), {V(i)}ni=1 ∈ Orth(d+2, n(d+
2), n) and

f̄i(x, y) ≜ Hd

(
U(i)x,V(i)y;λ, α

)
+

λ2
1α

2nλ2
Γn
d (x),

f̄(x, y) ≜
1

n

n∑
i=1

f̄i(x, y)

=
1

n

n∑
i=1

[
Hd

(
U(i)x,V(i)y;λ, α

)
+

λ2
1α

2nλ2
Γn
d (x)

]
,

(15)

note that by denoting Γd(x) ≜
∑d

i=1 Γ(xi), it is easy to
find that

Γn
d (x) =

n∑
i=1

i(d+1)−1∑
j=i(d+1)−d

Γ(xj) =

n∑
i=1

Γd

(
U(i)x

)

=

n∑
i=1

d∑
j=1

Γ

((
U(i)x

)
j

)
.

(16)

Define u(i) ≜ U(i)x, we summarize the properties of the
above functions in the following lemma.

Lemma 3.3 (Properties of f̄ ) For the above functions
{f̄i}i and f̄ in (15), they satisfy that:

(i) {f̄i}i is LF -average smooth where LF =√
1
n max

{
16λ2

1 + 8λ2
2,

C2
γλ

4
1α

2

nλ2
2

+
λ4
1α

2

λ2
2

+ 8λ2
1

}
.

(ii) f̄ is µF -strongly concave on y where µF = 2λ2

n .

(iii) For n ∈ N+, L ≥ 2nµ > 0, if we set λ = λ∗ =
(λ∗

1, λ
∗
2) =

(√
n
40L,

nµ
2

)
, α = nµ

50L ∈ [0, 1], then
{f̄i}i is L-AS and f̄ is µ-strongly concave on y.



 (iv) With Φd is defined in (9), let Φ̄(x) ≜ maxy f̄(x, y),
then we have

Φ̄(x) =
1

n

n∑
i=1

Φ̄i(x), Φ̄i(x) ≜ Φd(U
(i)x). (17)

We defer the proof of Lemma 3.3 to Appendix C.2.1. From
Lemma 3.2, we have

Φ̄(0)− inf
x∈Rn(d+1)

Φ̄(x) ≤ 1

n

n∑
i=1

sup
x∈Rd+1

(
Φ̄(0)− Φ̄i(x)

)
≤ λ2

1

2λ2

(√
α

2
+ 10αd

)
.

(18)

Define the index set I as all the indices i ∈ [n] such that
u
(i)
d = u

(i)
d+1 = 0, ∀i ∈ I. Suppose that |I| > n

2 , by
orthogonality and Lemma 3.2 we have

∥∥∇Φ̄(x)
∥∥2 =

∥∥∥∥∥ 1n
n∑

i=1

∇Φ̄i(x)

∥∥∥∥∥
2

=
1

n2

n∑
i=1

∥∥∥∇Φd

(
u(i)
)∥∥∥2

≥ 1

n2

∑
i∈I

∥∥∥∇Φd

(
u(i)
)∥∥∥2 ≥ 1

n2

n

2

(
λ2
1

8λ2
α

3
4

)2

=
λ4
1

128nλ2
2

α
3
2 .

(19)

Now we arrive at our final theorem for the averaged smooth
FS-NC-SC case as follows.

Theorem 3.2 (LB for AS FS-NC-SC) For the linear-span
algorithm class A, parameters L, µ,∆ > 0 and component
size n ∈ N+, if L ≥ 2nµ > 0, the accuracy ϵ satisfies
that ϵ2 ≤ min

( √
αL2∆

76800nµ ,
αL2∆
1280nµ ,

L2∆
µ

)
where α = nµ

50L ∈
[0, 1], then we have

Complϵ

(
FL,µ,∆

NCSC ,A,OL,AS
IFO

)
= Ω

(
n+

√
nκ∆Lϵ−2). (20)

The theorem above indicates that for any A ∈ A, we can
construct a function f(x, y) = 1

n

∑n
i=1 fi(x, y), such that

f ∈ FL,µ,∆
NCSC and {fi}i is L-AS, and A requires at least

Ω
(
n+

√
nκ∆Lϵ−2

)
IFO calls to attain an approximate sta-

tionary point of its primal function (in terms of expectation).
The hard instance construction is based on f̄ and f̄i above
(15), combined with a scaling trick similar to the one in
the general case. Also we remark that lower bound holds
for small enough ϵ, while the requirement on ϵ is compara-
ble to those in existing literature, e.g. [Zhou and Gu, 2019,
Han et al., 2021]. The detailed statement and proof of the
theorem are deferred to Appendix C.2.2.

Remark 3.2 (Tightness) The state-of-the-art upper bound
for NC-SC finite-sum problems is Õ(n +

√
nκ2∆Lϵ−2)

when n ≥ κ2 and O
((
nκ+ κ2

)
∆Lϵ−2

)
when n ≤ κ2

[Luo et al., 2020]. Note that there is still a large gap be-
tween upper and lower bounds on the dependence in terms
of κ and n, which motivates the design of faster algorithms
for FS-NC-SC case, we address this in Section 4. Note that
a weaker result on the lower bound of nonconvex finite-
sum averaged smooth minimization is Ω(

√
n∆Lϵ−2) [Fang

et al., 2018, Zhou and Gu, 2019]; here, our result presents
explicitly the dependence on κ.

4 FASTER ALGORITHMS FOR NC-SC
MINIMAX PROBLEMS

In this section, we introduce a generic Catalyst acceleration
scheme that turns existing optimizers for (finite-sum) SC-SC
minimax problems into efficient, near-optimal algorithms
for (finite-sum) NC-SC minimax optimization. Rooted in
the inexact accelerated proximal point algorithm, the idea of
Catalyst acceleration was introduced in Lin et al. [2015] for
convex minimization and later extended to nonconvex mini-
mization in Paquette et al. [2018] and nonconvex-concave
minimax optimization in Yang et al. [2020b]. In stark con-
trast, we focus on NC-SC minimax problems.

The backbone of our Catalyst framework is to repeatedly
solve regularized subproblems of the form:

min
x∈Rd1

max
y∈Rd2

f(x, y) + L∥x− x̃t∥2 −
τ

2
∥y − ỹt∥2,

where x̃t and ỹt are carefully chosen prox-centers, and the
parameter τ ≥ 0 is selected such that the condition numbers
for x-component and y-component of these subproblems
are well-balanced. Since f is L-Lipschitz smooth and µ-
strongly concave in y, the above auxiliary problem is L-
strongly convex in x and (µ + τ)-strongly concave in y.
Therefore, it can be solved by a wide family of off-the-shelf
first-order algorithms with linear convergence rate.

Our Catalyst framework, presented in Algorithm 1, consists
of three crucial components: an inexact proximal point step
for primal update, an inexact accelerated proximal point
step for dual update, and a linear-convergent algorithm for
solving the subproblems.

Inexact proximal point step in the primal. For the x-
update in the outer loop, {xt

0}Tt=1, can be viewed as applying
an inexact proximal point method to the primal function
Φ(x), requiring to solve a sequence of auxiliary problems:

min
x∈Rd1

max
y∈Rd2

[
f̂t(x, y) ≜ f(x, y) + L∥x− xt

0∥2
]
. (⋆)

Inexact proximal point methods have been explored in min-
imax optimization in several work, e.g. [Lin et al., 2020b,
Rafique et al., 2018]. Our scheme is distinct from these
work in two aspects: (i) we introduce a new subroutine to
approximately solve the auxiliary problems (⋆) with near-
optimal complexity, and (ii) the inexactness is measured by
an adaptive stopping criterion using the gradient norms:

∥∇f̂t(x
t+1
0 , yt+1

0 )∥2 ≤ αt∥∇f̂t(x
t
0, y

t
0)∥2, (21)

where {αt}t is carefully chosen. Using the adaptive stop-
ping criterion significantly reduces the complexity of solv-
ing the auxiliary problems. We will show that the number
of steps required is only logarithmic in L, µ without any
dependence on target accuracy ϵ. Although the auxiliary



 Algorithm 1 Catalyst for NC-SC Minimax Problems

Input: objective f , initial point (x0, y0), smoothness con-
stant L, strong-concavity const. µ, and param. τ > 0.

1: Let (x0
0, y

0
0) = (x0, y0) and q = µ

µ+τ .
2: for all t = 0, 1, ..., T do
3: Let z1 = yt0 and k = 1.
4: Let f̂t(x, y) ≜ f(x, y) + L∥x− xt

0∥2.
5: repeat
6: Find inexact solution (xt

k, y
t
k) to the prob-

lem below by algorithm M with initial point
(xt

k−1, y
t
k−1):

min
x∈Rd1

max
y∈Rd2

[f̃t,k(x, y) ≜

f(x, y) + L∥x− xt
0∥2 −

τ

2
∥y − zk∥2]

(⋆⋆)

such that ∥∇f̃t,k(x
t
k, y

t
k)∥2 ≤ ϵtk.

7: Let zk+1 = ytk +
√
q−q√
q+q (y

t
k − ytk−1), k = k + 1.

8: until ∥∇f̂t(x
t
k, y

t
k)∥2 ≤ αt∥∇f̂t(x

t
0, y

t
0)∥2

9: Set (xt+1
0 , yt+1

0 ) = (xt
k, y

t
k).

10: end for
Output: x̂T , which is uniformly sampled from x1

0, ..., x
T
0 .

problem is (L, µ)-SC-SC and can be solved with linear con-
vergence by algorithms such as extragradient, OGDA, etc.,
these algorithms are not optimal in terms of the dependency
on the condition number when L > µ [Zhang et al., 2019].

Inexact accelerated proximal point step in the dual. To
solve the auxiliary problem with optimal complexity, we
introduce an inexact accelerated proximal point scheme. The
key idea is to add an extra regularization in y to the objective
such that the strong-convexity and strong-concavity are well-
balanced. Therefore, we propose to iteratively solve the
subproblems:

min
x∈Rd1

max
y∈Rd2

[
f̃t,k(x, y) ≜ f̂t(x, y)−

τ

2
∥y − zk∥2

]
, (⋆⋆)

where {zk}k is updated analogously to Nesterov’s acceler-
ated method [Nesterov, 2005] and τ ≥ 0 is the regulariza-
tion parameter. For example, by setting τ = L− µ, the sub-
problems become (L,L)-SC-SC and can be approximately
solved by extragradient method with optimal complexity, to
be discussed in more details in next section. Finally, when
solving these subproblems, we use the following stopping
criterion ∥∇f̃t,k(x, y)∥2 ≤ ϵtk with time-varying accuracy
ϵtk that decays exponentially with k.

Linearly-convergent algorithms for SC-SC subproblems.
Let M be any algorithm that solves the subproblem (⋆⋆)
(denoting (x∗, y∗) as the optimal solution) at a linear con-
vergence rate such that after N iterations:

∥xN − x∗∥2 + ∥yN − y∗∥2

≤

(
1− 1

ΛM
µ,L(τ)

)N

[∥x0 − x∗∥2 + ∥y0 − y∗∥2],
(22)

if M is a deterministic algorithm; or taking expectation to
the left-hand side above if M is randomized. The choices for
M include, but are not limited to, extragradient (EG) [Tseng,
1995], optimistic gradient descent ascent (OGDA) [Gidel
et al., 2018], SVRG [Balamurugan and Bach, 2016], SPD1-
VR [Tan et al., 2018], SVRE [Chavdarova et al., 2019],
Point-SAGA [Luo et al., 2019], and variance reduced prox-
method [Carmon et al., 2019c]. For example, in the case of
EG, ΛM

µ,L(τ) =
L+max{2L,τ}
4min{L,µ+τ} [Tseng, 1995].

4.1 CONVERGENCE ANALYSIS

In this section, we analyze the complexity of each of the
three components we discussed. Let T denote the outer-loop
complexity, K the inner-loop complexity, and N the number
of iterations for M (expected number if M is randomized)
to solve subproblem (⋆⋆). The total complexity of Algorithm
1 is computed by multiplying K,T and N . Later, we will
provide a guideline for choosing parameter τ to achieve the
best complexity, given an algorithm M.

Theorem 4.1 (Outer loop) Suppose function f is NC-SC
with strong convexity parameter µ and L-Lipschitz smooth.
If we choose αt =

µ5

504L5 for t > 0 and α0 = µ5

576max{1,L7} ,
the output x̂T from Algorithm 1 satisfies

E∥∇Φ(x̂T )∥2 ≤ 268L

5T
∆+

28L

5T
D0

y, (23)

where ∆ = Φ(x0)− infx Φ(x), D
0
y = ∥y0 − y∗(x0)∥2 and

y∗(x0) = argmaxy∈Rd2 f(x0, y).

This theorem implies that the algorithm finds an ϵ sta-
tionary point of Φ after inexactly solving (⋆) for T =
O
(
L(∆ +D0

y)ϵ
−2
)

times. The dependency on D0
y can be

eliminated if we select the initialization y0 close enough to
y∗(x0), which only requires an additional logarithmic cost
by maximizing a strongly concave function.

Theorem 4.2 (Inner loop) Under the same assumptions in
Theorem 4.1, if we choose ϵtk =

√
2µ
2 (1− ρ)k gapf̂t(x

t
0, y

t
0)

with ρ <
√
q =

√
µ

µ+τ , we have

∥∇f̂t(x
t
k, y

t
k)∥2

≤
[

5508L2

µ2(
√
q − ρ)2

+
18

√
2L2

µ

]
(1− ρ)k∥∇f̂t(x

t
0, y

t
0)∥2.

Particularly, setting ρ = 0.9
√
q, Theorem 4.2 implies after

inexactly solving (⋆⋆) for K = Õ
(√

(τ + µ)/µ log 1
αt

)
times, the stopping criterion (21) is satisfied. This complex-
ity decreases with τ . However, we should not choose τ too
small, because the smaller τ is, the harder it is for M to
solve (⋆⋆). The following theorem captures the complexity
for algorithm M to solve the subproblem.

Theorem 4.3 (Complexity of solving subproblems (⋆⋆))
Under the same assumptions in Theorem 4.1 and the choice



 of ϵtk in Theorem 4.2, the number of iterations (expected
number of iterations if M is stochastic) for M to solve (⋆⋆)
such that ∥∇f̃t,k(x, y)∥2 ≤ ϵtk is

N = O

(
ΛM
µ,L(τ) log

(
max{1, L, τ}
min{1, µ}

))
.

The above result implies that the subproblems can be solved
within constant iterations that only depends on L, µ, τ and
ΛM
µ,L. This largely benefits from the use of warm-starting

and stopping criterion with time-varying accuracy. In con-
trast, other inexact proximal point algorithms in minimax
optimization, such as [Yang et al., 2020b, Lin et al., 2020b],
fix the target accuracy, thus their complexity of solving the
subproblems usually has an extra logarithmic factor in 1/ϵ.

The overall complexity of the algorithm follows immedi-
ately after combining the above three theorems:

Corollary 4.1 Under the same assumptions in Theorem
4.1 and setting in Theorem 4.2, the total number (expected
number if M is randomized) of gradient evaluations for
Algorithm 1 to find an ϵ-stationary point of Φ, is

Õ

(
ΛM
µ,L(τ)L(∆ +D0

y)

ϵ2

√
µ+ τ

µ

)
. (24)

In order to minimize the total complexity, we should
choose the regularization parameter τ that minimizes
ΛM
µ,L(τ)

√
µ+ τ .

4.2 SPECIFIC ALGORITHMS AND
COMPLEXITIES

In this subsection, we discuss specific choices for M and the
corresponding optimal choices of τ , as well as the resulting
total complexities for solving NC-SC problems.

Catalyst-EG/OGDA algorithm. When solving NC-SC
minimax problems in the general setting, we set M to
be either extra-gradient method (EG) or optimistic gradi-
ent descent ascent (OGDA). Hence, we have ΛM

µ,L(τ) =
L+max{2L,τ}
4min{L,µ+τ} [Gidel et al., 2018, Azizian et al., 2020]. Min-
imizing ΛM

µ,L(τ)
√
µ+ τ yields that the optimal choice for

τ is L− µ. This leads to a total complexity of

Õ
(√

κL(∆ +D0
y)ϵ

−2
)
. (25)

Remark 4.1 The above complexity matches the lower
bound in Theorem 3.1, up to a logarithmic factor in L and
κ. It improves over Minimax-PPA [Lin et al., 2020b] by
log2(1/ϵ), GDA [Lin et al., 2020a] by κ

3
2 and therefore

achieves the best of two worlds in terms of dependency on κ
and ϵ. In addition, our Catalyst-EG/OGDA algorithm does
not require the bounded domain assumption on y, unlike
[Lin et al., 2020b].

Catalyst-SVRG/SAGA algorithm. When solving NC-
SC minimax problems in the averaged smooth finite-sum
setting, we set M to be either SVRG or SAGA. Hence,
we have ΛM

µ,L(τ) ∝ n+
(L+

√
2max{2L,τ}

min{L,µ+τ}
)2

[Balamurugan
and Bach, 2016]2 3. Minimizing ΛM

µ,L(τ)
√
µ+ τ , the best

choice for τ is (proportional to) max
{

L√
n
− µ, 0

}
, which

leads to the total complexity of

Õ
((

n+ n
3
4
√
κ
)
L(∆ +D0

y)ϵ
−2
)
. (26)

Remark 4.2 According to the lower bound established
in Theorem 3.2, the dependency on κ in the above up-
per bound is nearly tight, up to logarithmic factors. Re-
call that SREDA [Luo et al., 2020] achieves the com-
plexity of Õ

(
κ2

√
nϵ−2 + n+ (n+ κ) log(κ)

)
for n ≥ κ2

and O
((
κ2 + κn

)
ϵ−2
)

for n ≤ κ2. Hence, our Catalyst-
SVRG/SAGA algorithm attains better complexity in the
regime n ≤ κ4. Particularly, in the critical regime κ =
Ω(

√
n) arising in statistical learning [Shalev-Shwartz and

Ben-David, 2014], our algorithm performs strictly better.

5 CONCLUSION

In this work, we take an initial step towards understand-
ing the fundamental limits of minimax optimization in the
nonconvex-strongly-concave setting for both general and
finite-sum cases, and bridge the gaps between lower and up-
per bounds. It remains interesting to investigate whether the
dependence on n can be further tightened in the complexity
for finite-sum NC-SC minimax optimization.
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