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Abstract

We design a new efficient strategy synthesis
method applicable to adversarial patrolling prob-
lems on graphs with arbitrary-length edges and
possibly imperfect intrusion detection. The core
ingredient is an efficient algorithm for computing
the value and the gradient of a function assigning
to every strategy its “protection” achieved. This
allows for designing an efficient strategy improve-
ment algorithm by differentiable programming and
optimization techniques. Our method is the first
one applicable to real-world patrolling graphs of
reasonable sizes. It outperforms the state-of-the-art
strategy synthesis algorithm by a margin.

1 INTRODUCTION

Patrolling games are a special type of security games where
a mobile Defender moves among vulnerable targets and
aims to detect possible ongoing intrusions initiated by an
Attacker. The targets are modelled as vertices in a directed
graph where the edges correspond to admissible Defender’s
moves. At any moment, the Attacker may choose some target
𝜏 and initiate an intrusion (attack) at 𝜏. Completing this
intrusion takes 𝑑 (𝜏) time units, and if the Defender does not
visit 𝜏 in time, he is penalized by utility loss determined by
the cost of 𝜏.

In adversarial patrolling games [Vorobeychik et al., 2012,
Agmon et al., 2008a, 2009, Basilico et al., 2012, 2009,
de Cote et al., 2013, Lin et al., 2019], the Attacker knows
the Defender’s strategy and can even observe the Defender’s
moves1. These assumptions are particularly appropriate in

1The Defender may choose the next move randomly according
to a distribution specified by its moving strategy. Although the
Attacker knows the Defender’s strategy (i.e., the distribution), it
cannot predict the way of resolving the randomized choice.

situations where the actual Attacker’s abilities are unknown
and the Defender is obliged to guarantee a certain level of
protection even in the worst case. This naturally leads to
using Stackelberg equilibrium [Sinha et al., 2018, Yin et al.,
2010] as the underlying solution concept, where the De-
fender/Attacker play the roles of the leader/follower, i.e., the
Defender commits to a moving strategy 𝛾, and the Attacker
follows by selecting an appropriate counter-strategy 𝜋. The
value of 𝛾, denoted by Val(𝛾), is the expected Defender’s
utility guaranteed by 𝛾 against an arbitrary Attacker’s strat-
egy. Intuitively, Val(𝛾) corresponds to the “level of protec-
tion” achieved by 𝛾.

The basic algorithmic problem in patrolling games is to
compute a Defender’s strategy 𝛾 such that Val(𝛾) is as large
as possible. Since general history-dependent strategies are
not algorithmically workable (see Sec. 3.1), recent works
[Kučera and Lamser, 2016, Klaška et al., 2018] concentrate
on computing regular strategies where the Defender’s de-
cisions depend on finite information about the history of
previously visited vertices. As Kučera and Lamser [2016]
observed, regular strategies provide better protection than
memoryless strategies where the Defender’s decision de-
pends only on the currently visited vertex. However, the
mentioned algorithms apply only to patrolling graphs where
all edges have the same length (traversal time). A longer
distance between vertices can be modelled only by adding a
sequence of auxiliary vertices and edges, quickly pushing

Figure 1: We synthesize an efficient strategy for patrolling
the net of Montreal’s ATMS.
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 the resulting graph’s size beyond the edge of feasibility (see
Sec. 5). Even the currently best algorithm of Klaška et al.
[2018] fails to solve small real-world patrolling graphs such
as a network of selected ATMs in Montreal (Fig. 1).

Our contribution

1. We prove that regular Defender’s strategies are not
only better than memoryless strategies, but they are
arbitrarily close to the power of general strategies.
Therefore, the scope of strategy synthesis can be safely
restricted to regular strategies. This resolves the open
question of previous works.

2. We design an efficient Regstar2 algorithm for comput-
ing regular Defender’s strategies in general patrolling
graphs with edges of arbitrary length. Regstar ap-
plies to scenarios with imperfect intrusion detection,
where the probability of discovering an intrusion at a
target 𝜏 by the Defender visiting 𝜏 is not necessarily
equal to one.

3. We validate Regstar experimentally. We compare
Regstar against the best existing algorithm when ap-
plicable, and we perform a set of real-life experiments
demonstrating its strengths and limits.

We depart from the fact that the function Val assigning the
protection value to a given regular Defender’s strategy is
differentiable. The very heart of our algorithm is a novel,
efficient procedure for computing the value and the gradient
of Val. Since the size of the closed-form expression rep-
resenting Val is exponential, the task is highly non-trivial.
We apply differentiable programming techniques and de-
sign an efficient strategy improvement algorithm for regular
strategies based on gradient ascent. The Regstar algorithm
randomly generates many initial regular strategies, improves
them, and returns the best strategy.

The efficiency of Regstar is evaluated experimentally in
Sec. 5. In the first series of experiments, we compare the
efficiency of Regstar against the algorithm of Klaška et al.
[2018]. In the second series, we demonstrate the applica-
bility of Regstar to a real-world patrolling graph with 18
targets corresponding to selected ATMs in Montreal. In the
last series, we document the power of regular strategies on
patrolling graphs modelling buildings with corridors and
offices. Here, the information about the history of visited
vertices is crucial for achieving reasonable protection.

Experiments prove that Regstar outperforms the method
of Klaška et al. [2018] and can solve instances far beyond
the reach of this algorithm. Our approach adopts the infinite
horizon patrolling game model, and therefore it does not
suffer from the scalability issues caused by increasing the
time bound in finite-horizon security games (see Sec. 2
for more comments). For practical applications, solving

2REGular STrategy ARchitect.

patrolling graphs with about 20–30 targets seems sufficient,
as the protection achievable by a single Defender becomes
low for a higher number of targets, and the patrolling task
needs to be solved by multiple Defenders3.

2 RELATED WORK

Patrolling games are a special type of security games where
game-theoretic concepts are used to determine the optimal
use of limited security resources [Tambe, 2011]. Security
games with static allocation have been studied in, e.g., [Jain
et al., 2010, Kiekintveld et al., 2009, Pita et al., 2008, Tsai
et al., 2009, Xu et al., 2018, 2015, Gan et al., 2017]. For
patrolling games, where the Defender is mobile, most of the
existing works assume the Defender is following a positional
strategy that depends solely on the current position of the
Defender [Basilico et al., 2012]. Since positional strategies
are weaker than general history-dependent strategies, there
were also attempts to utilize the history of the Defender’s
moves. This includes the technique of duplicating each node
of the graph to distinguish internal states of the Defender (for
example, Agmon et al. [2008a] consider a direction of the
patrolling robot as a specific state; this is further generalized
in Bošanský et al. [2012]). Another concept is higher-order
strategies [Basilico et al., 2009], where the Defender takes
into account a bounded sequence of previously visited states.
In our work, we use regular strategies [Kučera and Lamser,
2016, Klaška et al., 2018], where the information about the
history of Defender’s moves is abstracted into finitely many
memory elements.

The existing strategy synthesis algorithms for patrolling
games are based either on (1) mathematical programming
with non-linear constraints, or (2) restricting the graph topol-
ogy to some manageable subclass, or (3) strategy improve-
ment, or (4) reinforcement learning. The first approach (see,
e.g., [Basilico et al., 2012, 2009, Bošanský et al., 2011])
suffers from scalability issues. In Bošanský et al. [2011],
the authors consider mobile targets, which forces the strat-
egy to be time-dependent. Basilico et al. [2012] consider
higher-order strategies in theory, but they perform experi-
ments with positional strategies only due to computational
infeasibility (one can easily construct examples where posi-
tional strategies are weaker than regular strategies and the
protection gap is up to 100%. The experiments of Vorob-
eychik et al. [2012] are also limited to positional strategies.
Lin et al. [2019] make full use of the history, yet they study
only perimeters (i.e., cycles), so their approach does not
apply to graphs with arbitrary topologies.

The second approach applies only to selected topologies,
such as lines, circles [Agmon et al., 2008a,b], or fully con-
nected graphs with unit distance among all vertices [Brázdil

3Patrolling by multiple Defenders is studied independently, see,
e.g., [Beynier, 2017, Gan et al., 2018]



 et al., 2018]. The third approach has been applied only to
patrolling graphs with edges of unit length. The algorithm of
Kučera and Lamser [2016] requires a certain level of human
assistance because the underlying finite-state automaton
gathering the information about the Defender’s history must
be handcrafted. Klaška et al. [2018] overcome this limita-
tion by designing an automatic strategy synthesis algorithm,
and it is the most efficient strategy synthesis procedure ex-
isting before our work. There is a high-level similarity to
our algorithm because both use a variant of gradient ascent
and construct regular strategies. However, the internals of
the two algorithms is different. The core of our method is a
novel procedure for computing the value and the gradient
of the value function. In particular, our algorithm avoids the
blowup in the number of states when modeling real-world
patrolling scenarios with variable length edges. This allows
for processing instances far beyond the reach of the algo-
rithm of Klaška et al. [2018], as documented experimentally
in Sec. 5.2.

The fourth approach has been successful mainly for games
with the finite horizon [Wang et al., 2019, Karwowski et al.,
2019] and suffers from the exponential blowup in the num-
ber of finite paths with the increasing time bound.

3 PATROLLING GAMES

We recall the standard model of adversarial patrolling games
and fix the notation used.

Patrolling graphs A patrolling graph is a tuple 𝐺 =

(𝑉,𝑇, 𝐸, time, 𝑑, 𝛼, 𝛽), where

• 𝑉 is a non-empty set of vertices;

• 𝑇 ⊆ 𝑉 is a non-empty set of targets;

• 𝐸 ⊆ 𝑉 ×𝑉 is a set of edges;

• time : 𝐸 → N denotes the time to travel an edge;

• 𝑑 : 𝑇 → N specifies the time to complete an attack;

• 𝛼 : 𝑇 → R+ defines the costs of targets;

• 𝛽 : 𝑇 → (0, 1] is the probability of a successful intru-
sion detection.

For short, we write 𝑢 → 𝑣 instead of (𝑢, 𝑣) ∈ 𝐸 , and de-
note 𝛼max = max𝜏∈𝑇 𝛼(𝜏) and 𝑑max = max𝑡 ∈𝑇 𝑑 (𝑡). In the
sequel, let 𝐺 be a fixed patrolling graph.

3.1 DEFENDER’S STRATEGY

A Defender’s strategy is a recipe for selecting the next ver-
tex. In general, the Defender may choose the next vertex
randomly depending on some information about the history
of previously visited vertices.

Let H be the set of all finite paths in 𝐺, including the
empty path 𝜆. A Defender’s strategy for 𝐺 is a function
𝛾 : H → Dist(𝑉) where Dist(𝑉) is the set of all probability
distributions on 𝑉 such that whenever 𝛾(ℎ) (𝑣) > 0, then
either ℎ = 𝜆 or 𝑢 → 𝑣 where 𝑢 is the last vertex of ℎ. Note
that 𝛾(𝜆) corresponds to the initial distribution on 𝑉 .

Unrestricted Defender’s strategies may depend on the whole
history of previously visited vertices when selecting the next
vertex, and they may not be finitely representable.

3.2 ATTACKER’S STRATEGY

We consider the same patrolling game as in Klaška et al.
[2020], where the time is spent by moving along the edges.
We also use the same notion of Attacker’s strategy, assuming
that, in the worst case, the Attacker can determine the next
edge taken by the Defender immediately after the Defender
leaves the currently visited vertex. This means that the At-
tacker’s decision is based not only on the history of visited
vertices but also on edge taken next.

The Attacker cannot gain anything by delaying his attack
until the Defender arrives at the next vertex. Therefore we
can assume an attack is initiated at the moment when the
Defender leaves the currently visited vertex. Furthermore,
the Attacker can attack at most once during a play4.

An observation is a finite sequence 𝑜 = 𝑣1, . . . , 𝑣𝑛,
𝑣𝑛→𝑣𝑛+1, where 𝑣1, . . . , 𝑣𝑛 ∈ H . The set of all observa-
tions is denoted by 𝛺. An Attacker’s strategy for a patrolling
graph 𝐺 is a function 𝜋 : 𝛺 → {wait, attack𝜏 : 𝜏 ∈ 𝑇}.
We require that if 𝜋(𝑣1, . . . , 𝑣𝑛, 𝑣𝑛→𝑢) = attack𝜏 for some
𝜏 ∈ 𝑇 , then 𝜋(𝑣1, . . . , 𝑣𝑖 , 𝑣𝑖→𝑣𝑖+1) = wait for all 1 ≤ 𝑖 < 𝑛

ensuring that the Attacker can attack at most once.

3.3 EVALUATING DEFENDER’S STRATEGY

Let 𝑜 = 𝑣1, . . . , 𝑣𝑛, 𝑣𝑛→𝑣𝑛+1, 𝑛 ≥ 1, be an observation,
𝜏 ∈ 𝑇 a target and consider an attack at 𝜏 after observing 𝑜.

By Path(𝑜, 𝜏) we denote the set of all finite paths 𝑢 from
𝑣𝑛+1 to 𝑣𝑛+1+𝑘 = 𝜏 of the length 𝑘 ≥ 0 such that the to-
tal time needed to traverse from 𝑣𝑛 to 𝜏 along 𝑢 does not
exceed 𝑑 (𝜏).

For 𝑢 ∈ Path(𝑜, 𝜏), let Eval(𝜏 | 𝑢) be the value defended
at 𝜏 when the Defender discovered the attack in the last
vertex of 𝑢. The probability of detecting the attack at 𝜏 after
traversing 𝑢 equals (1 − 𝛽(𝜏))#𝜏 (𝑢)−1 · 𝛽(𝜏), where #𝜏 (𝑢)
stands for the number of visits to 𝜏 along 𝑢. Indeed, since

4Even if the Attacker can perform another attack after complet-
ing the previous one, the best choice the Defender is to follow an
optimal strategy constructed for the single attack scenario. This is
no longer true when the Defender has to spend some time respond-
ing to the discovered attack [Lin et al., 2019] or when multiple
Attackers can perform several attacks concurrently.



 the intrusion detection is not perfect, the Defender failed
to discover the attack at the first #𝜏 (𝑢) − 1 trials with the
probability 1 − 𝛽(𝜏) and succeeded at the last one with the
probability 𝛽(𝜏). Specially, when 𝛽 = 1 and #𝜏 (𝑢) = 1,
the factor becomes 00, interpreted as 1. Therefore, as 𝛼(𝜏)
denotes the cost of 𝜏,

Eval(𝜏 | 𝑢) = 𝛼(𝜏) · (1 − 𝛽(𝜏))#𝜏 (𝑢)−1 · 𝛽(𝜏). (1)

The protection achieved by 𝛾 against an attack at 𝜏 initiated
after observing 𝑜 is defined as

P𝛾 (𝜏 | 𝑜) =
∑︂

𝑢∈Path(𝑜,𝜏)
Prob𝛾 (𝑢 | 𝑜) · Eval(𝜏 | 𝑢), (2)

where Prob𝛾 (𝑢 | 𝑜) is the probability of performing 𝑢 after
observing 𝑜, i.e.,

Prob𝛾 (𝑢 | 𝑜) =
𝑘∏︂
𝑖=1

𝛾(𝑣1, . . . , 𝑣𝑛+𝑖) (𝑣𝑛+𝑖+1). (3)

Similarly, we use Prob𝛾 (𝑜) to denote the probability that
observation 𝑜 occurs, i.e.,

Prob𝛾 (𝑜) =
𝑛∏︂
𝑖=0

𝛾(𝑣1, . . . , 𝑣𝑖) (𝑣𝑖+1). (4)

Now let 𝜋 be an Attacker’s strategy. For every 𝜏 ∈ 𝑇 , let
Att(𝜋, 𝜏) be the set of all 𝑜 ∈ 𝛺 such that 𝜋(𝑜) = attack𝜏 .
The expected Attacker’s utility for 𝛾 and 𝜋 is defined as

E𝑈𝐴(𝛾, 𝜋) =
∑︂
𝜏∈𝑇

∑︂
𝑜∈Att(𝜋,𝜏)

Prob𝛾 (𝑜) ·
[︁
𝛼(𝜏) − P𝛾 (𝜏 | 𝑜)

]︁
.

(5)
Note that E𝑈𝐴(𝛾, 𝜋) corresponds to the expected amount
“stolen” by the Attacker. Consistently with Klaška et al.
[2018], the expected Defender’s utility is defined as

E𝑈𝐷 (𝛾, 𝜋) = 𝛼max − E𝑈𝐴(𝛾, 𝜋) . (6)

The Defender/Attacker aims to maximize/minimize the ex-
pected protection E𝑈𝐷 (𝛾, 𝜋), respectively. The value of a
given Defender’s strategy 𝛾 is the expected protection guar-
anteed by 𝛾 against an arbitrary Attacker’s strategy, i.e.,

Val𝐺 (𝛾) = inf
𝜋
E𝑈𝐷 (𝛾, 𝜋) . (7)

Maximal protection achievable in 𝐺 is then

Val𝐺 = sup
𝛾

Val𝐺 (𝛾) . (8)

4 THE METHOD

Our approach consists of three stages. First, since the value
function from (7) is not a priori tractable, we analyze the
value of regular strategies for 𝐺. This yields a closed-form
differentiable value function. Secondly, we design an effi-
cient algorithm that computes the value function and its
gradient. This is the heart of our contribution. Finally, we
combine these elements into the Regstar algorithm, which
generates the best regular strategies via gradient ascent.

4.1 REGULAR DEFENDER’S STRATEGIES

An algorithmically workable subclass of Defender’s strate-
gies are regular strategies used by Kučera and Lamser
[2016], Klaška et al. [2018]. In this concept, the information
about the history of visited vertices is abstracted into a finite
set of memory elements assigned to each vertex.

Formally, we turn vertices 𝑣 ∈ 𝑉 of 𝐺 into eligible pairsˆ︁𝑉 = {(𝑣, 𝑚) : 𝑣 ∈ 𝑉, 1 ≤ 𝑚 ≤ mem(𝑣)} in which the mem-
ory sizes mem: 𝑉 → N are fixed. A regular Defender’s
strategy for 𝐺 is a function 𝜎 : ˆ︁𝑉 → Dist(ˆ︁𝑉) satisfying
𝜎(𝑣, 𝑚) (𝑣′, 𝑚′) > 0 only if 𝑣 → 𝑣′. Intuitively, the De-
fender traverses the vertices of𝐺 updating memory elements
and thus “gathering” some information about the history of
visited vertices. The probability that 𝑣′ with information
represented by 𝑚′ is visited after the current 𝑣 with infor-
mation 𝑚 is given by 𝜎(𝑣, 𝑚) (𝑣′, 𝑚′). A regular strategy 𝜎

is called deterministic-update if 𝜎(𝑣, 𝑚) (𝑣′, 𝑚1) > 0 and
𝜎(𝑣, 𝑚) (𝑣′, 𝑚2) > 0 imply 𝑚1 = 𝑚2. This means that when
the Defender is in (𝑣, 𝑚), he may randomize to choose the
next vertex 𝑣′, but the next memory element is then deter-
mined uniquely by (𝑣, 𝑚) and 𝑣′.

For a regular strategy 𝜎, we derive an expression RVal𝐺 (𝜎)
which corresponds to the value of 𝜎 against an Attacker
who can observe even the current memory element. This
approach is consistent with the worst-case paradigm dis-
cussed in Sec. 1, as it is not clear whether the Attacker is
capable of that. We show that the expression RVal𝐺 (𝜎) is
indeed a lower bound on Val𝐺 (𝜎) (i.e., 𝜎’s value against
an Attacker who cannot observe the current memory ele-
ment, c.f. (7)) and under reasonable assumptions, they are
equal (Claim 1). Since RVal𝐺 (𝜎) is in a closed form, this
makes regular strategies algorithmically workable. Further-
more, we show that regular strategies can achieve protection
arbitrarily close to the optimal protection achievable by un-
restricted strategies. Thus, they offer a convenient trade-off
between optimality and tractability.

Theorem 1. Let 𝐺 be a patrolling graph and Reg the class
of all regular Defender’s strategies in 𝐺. Then

sup
𝜎∈Reg

Val𝐺 (𝜎) = Val𝐺 (9)

Proof (sketch). First, we fix an optimal Defender’s strategy
𝛾 : H → Dist(𝑉) satisfying Val𝐺 (𝛾) = Val𝐺 (the existence
of 𝛾 has been proven in [Brázdil et al., 2015]).

To every history ℎ, we associate a finite tree 𝑇ℎ of depth
𝑑max such that:

• The set of nodes contains all histories ℎ′ such that ℎℎ′
is also a history and the length of ℎ′ is bounded by
𝑑max;

• The root of 𝑇ℎ is the empty history 𝜆;



 
𝜆

ℎ̄

𝑇ℎ̄

ℎ𝑣

𝑇ℎ𝑣

optimal strategy 𝛾

𝜆

ℎ̄

𝑇ℎ̄

strategy 𝜎𝛿

Figure 2: Folding 𝛾 into 𝜎𝛿 .

• ℎ′
𝑥→ ℎ′𝑣 is an edge of 𝑇ℎ iff the distribution 𝛾(ℎℎ′)

selects the vertex 𝑣 with probability 𝑥 > 0.

We say that histories ℎ, ℎ̄ are 𝛿-similar for a given 𝛿 > 0
iff ℎ, ℎ̄ end in the same vertex and the trees 𝑇ℎ and 𝑇ℎ̄ are
the same up to 𝛿-bounded differences in edge probabilities.
Observe that one can construct a fixed sequence of finite
trees 𝑇1, . . . , 𝑇𝑛 such that every 𝑇ℎ is 𝛿-similar to some 𝑇𝑖 ,
where the 𝑛 depends just on 𝐺 and 𝛿. Furthermore, we say
that a history ℎ has 𝛿-similar prefix ℎ̄ iff ℎ = ℎ̄𝑤 where ℎ, ℎ̄

are 𝛿-similar and the length of 𝑤 is larger than 𝑑max.

Let 𝐻𝛿 be the set of all histories ℎ such that Prob𝛾 (ℎ) > 0
and no prefix of ℎ (including ℎ itself) has a 𝛿-similar pre-
fix. Observe that the maximal length of such a history is
bounded by 𝑛 · (𝑑max+1) where the 𝑛 is defined above, and
hence 𝐻𝛿 is a finite set. Let mem be a function assigning
|𝐻𝛿 | memory elements to every vertex. To simplify our nota-
tion, we identify memory elements with the elements of 𝐻𝛿 .
Now consider the regular strategy 𝜎𝛿 defined as follows: for
every eligible pair (𝑣, ℎ), we have that 𝜎𝛿 (𝑣, ℎ) (𝑣′, ℎ′) = 𝑥

iff 𝛾(ˆ︁ℎ) (𝑣′) = 𝑥 and ℎ′ = ˆ︁ℎ, where

ˆ︁ℎ =

{︄
ℎ̄ if ℎ𝑣 has a 𝛿-similar prefix ℎ̄,
ℎ𝑣 otherwise.

Intuitively, 𝜎𝛿 is obtained by “folding” the optimal strat-
egy 𝛾 after encountering a history ℎ𝑣 with a 𝛿-similar prefix
ℎ̄, see Fig. 2.

The proof is completed by showing that
lim𝛿→0+ Val𝐺 (𝜎𝛿) = Val𝐺 . This is intuitively plausi-
ble, because 𝜎𝛿 becomes more similar to 𝛾 for smaller 𝛿.
However, the argument also depends on the subgame-perfect
property of optimal strategies.

Since 𝜎𝛿 is a deterministic-update regular strategy, Theo-
rem 1 holds even for the subclass of deterministic-update
regular strategies.

Let us fix a regular strategy 𝜎. For convenience, we write
𝜎(ˆ︁𝑢,ˆ︁𝑣) for 𝜎(ˆ︁𝑢) (ˆ︁𝑣). The set of eligible edges ˆ︁𝐸 consists of
all edges 𝑒 ∈ ˆ︁𝑉 × ˆ︁𝑉 such that 𝜎(𝑒) > 0. These are exactly
the edges actually used by the Defender. A finite sequence

of eligible pairs 𝑢 = (𝑣1, 𝑚1), . . . , (𝑣𝑛, 𝑚𝑛) is called an
eligible path if 𝑣1, . . . , 𝑣𝑛 is a path in 𝐺. The probability of
executing 𝑢 is

Prob𝜎 (𝑢) =
𝑛−1∏︂
𝑖=1

𝜎
(︁
(𝑣𝑖 , 𝑚𝑖), (𝑣𝑖+1, 𝑚𝑖+1)

)︁
(10)

For 𝑒 = ((𝑣, 𝑚), (𝑣1, 𝑚1)) ∈ ˆ︁𝐸 and 𝜏 ∈ 𝑇 , let Path(𝑒, 𝜏)
denote the set of all eligible paths (𝑣1, 𝑚1), . . . , (𝑣𝑘 , 𝑚𝑘 )
such that 𝑣𝑘 = 𝜏, 𝑘 ≥ 1 and the traversal time of the path
𝑣, 𝑣1, . . . , 𝑣𝑘 is at most 𝑑 (𝜏).

We can now express the value of a regular strategy 𝜎 as
follows:

RVal𝐺 (𝜎) = 𝛼max − max
𝑒∈ˆ︁𝐸, 𝜏∈𝑇

{︁
𝛼(𝜏) − P𝜎 (𝑒, 𝜏)

}︁
, (11)

where

P𝜎 (𝑒, 𝜏) =
∑︂

𝑢∈Path(𝑒,𝜏)
Prob𝜎 (𝑢) · Eval(𝜏 | 𝑢). (12)

Claim 1. Let 𝜎 be a regular strategy. Then

Val𝐺 (𝜎) ≥ RVal𝐺 (𝜎) (13)

Moreover, if the graph (ˆ︁𝑉, ˆ︁𝐸) is strongly connected and 𝜎

is deterministic-update, then the above holds with equality.

Proof (sketch). It is easy to observe that the edge lengths,
the target cost 𝛼(𝜏) and the detection probability 𝛽(𝜏) are
correctly accounted for in the definition of P𝜎 (𝑒, 𝜏). The
rest of the argument is the same as in [Kučera and Lamser,
2016, Klaška et al., 2018].

A regular strategy 𝜎 depends only on reasonably many vari-
ables 𝜎(𝑒), 𝑒 ∈ ˆ︁𝐸 . Hence we identify 𝜎 as an element of
R | ˆ︁𝐸 | . The function RVal𝐺 : R | ˆ︁𝐸 | → R of variable 𝜎 is dif-
ferentiable up to the set where the points of maxima in (13)
are not unique.

Claim 1 equips us with a closed-form formula for strategy
evaluation. Hence, it enables us to apply methods from
differentiable programming to obtain the value of a strategy
and its sensitivity to the change of the input.

4.2 STRATEGY EVALUATION

We describe our algorithm that evaluates RVal𝐺 and its
gradient at a given point 𝜎. According to (13), we first eval-
uate all the protection values P𝜎 (𝑒, 𝜏) and their gradients
∇P𝜎 (𝑒, 𝜏). The value RVal𝐺 (𝜎) and its gradient should
then be simply the smallest of all values and its gradient. In
practice, we replace this minimum with its “soft” version.
The details are addressed in Sec. 4.3.



 Computing P𝜎 and ∇P𝜎 Given 𝑒 ∈ ˆ︁𝐸 and 𝜏 ∈ 𝑇 , a
naive approach based on explicitly constructing P𝜎 (𝑒, 𝜏) is
inevitably inefficient, because the set Path(𝑒, 𝜏) may con-
tain exponentially many different paths. We overcome this
problem by performing a search on the graph during which
(sub)paths with the same endpoints and the same traver-
sal time are “aggregated” into a single term, resulting in a
more compact representation of P𝜎 (𝑒, 𝜏) and ∇P𝜎 (𝑒, 𝜏).
The search is guided by a min-heap H , similarly as in Dijk-
stra’s shortest path algorithm. However, unlike in Dijkstra’s,
where the search is initiated from each vertex at most once,
we must consider all paths from 𝑒 to 𝜏 whose traversal time
does not exceed 𝑑 (𝜏), and we must keep track of their proba-
bility and the corresponding gradient. To that purpose, each
item of H corresponds to a certain set of paths. Moreover,
instead of initiating the search at 𝑒, we initiate it at 𝜏 and
search the graph backwards. This trick allows us to compute
P𝜎 (𝑒, 𝜏) for a given 𝜏 ∈ 𝑇 and all 𝑒 ∈ ˆ︁𝐸 at once, thereby
saving a factor of |ˆ︁𝐸 | in the resulting time complexity.

In particular, for any (𝑣, 𝑚) ∈ ˆ︁𝑉 and 𝑡 ≤ 𝑑 (𝜏), let L𝑣,𝑚,𝑡

denote the set of all paths which start at (𝑣, 𝑚), end at (𝜏, ·)
and have traversal time 𝑡. Further, for any L ⊆ L𝑣,𝑚,𝑡 , let

P𝜎 (L) =
∑︂
𝑢∈L

Prob𝜎 (𝑢) · Eval(𝜏 | 𝑢) (14)

As a result of the search, each L𝑣,𝑚,𝑡 is partitioned into pair-
wise disjoint sets L1, . . . ,L𝑘 in such a way that the sets L𝑖

are in one-to-one correspondence with the items of H . In
Alg. 1, each L𝑖 is represented by a tuple (𝑣, 𝑚, 𝑡, 𝑝, 𝑝grad)
where 𝑝 and 𝑝grad correspond to the value and the gra-
dient of P𝜎 (L𝑖) at 𝜎, respectively. Then, writing 𝑒 =

((𝑣′, 𝑚′), (𝑣, 𝑚)), the value of P𝜎 (𝑒, 𝜏) (cf. (12)) can be
computed as the sum of P𝜎 (L𝑣,𝑚,𝑡 ) over all 𝑡 ≤ 𝑑 (𝜏) −
time(𝑣′, 𝑣) where P𝜎 (L𝑣,𝑚,𝑡 ) is computed as the sum of
P𝜎 (L𝑖) over the sets L𝑖 that form the partition of L𝑣,𝑚,𝑡 .
The gradient is computed analogously. In Alg. 1, we also use
two auxiliary arrays V and G for storing the value and the
gradient of P𝜎 (L𝑣,𝑚,𝑡 ) for all (𝑣, 𝑚) ∈ ˆ︁𝑉 and the currently
examined traversal time 𝑡.

The body of the main loop (lines 8–36) is executed for every
𝜏 ∈ 𝑇 and computes P𝜎 (𝑒, 𝜏) and ∇P𝜎 (𝑒, 𝜏) for every
𝑒 ∈ ˆ︁𝐸 . The correctness of the algorithm follows from the
fact that after executing line 14, for every (𝑣, 𝑚) ∈ ˆ︁𝑉 we
have that

P𝜎 (L𝑣,𝑚,ℓ) =
∑︂

(𝑣,𝑚,ℓ, 𝑝, 𝑝grad) ∈H
𝑝 (15)

and
∇P𝜎 (L𝑣,𝑚,ℓ) =

∑︂
(𝑣,𝑚,ℓ, 𝑝, 𝑝grad) ∈H

𝑝grad, (16)

which can be proved by induction on the number of iterations
of the loop at lines 12–36 (the value of ℓ assigned at line 14
always increases between successive iterations).

Algorithm 1: Compute P𝜎 and ∇P𝜎

input :A patrolling graph 𝐺, a regular strategy 𝜎

output :The sets {P𝜎 (𝑒, 𝜏)} and {∇P𝜎 (𝑒, 𝜏)}
1 P𝜎 : array indexed by edges ˆ︁𝐸 and targets 𝑇
2 ∇P𝜎 : array indexed by edges ˆ︁𝐸 and targets 𝑇
3 V : array indexed by eligible pairs ˆ︁𝑉
4 G : array indexed by eligible pairs ˆ︁𝑉
5 H : min-heap of tuples (𝑣, 𝑚, 𝑡, 𝑝, 𝑝grad) sorted by 𝑡

6 set all elements of P𝜎 to 0 and ∇P𝜎 to 0⃗
7 foreach 𝜏 ∈ 𝑇 do
8 set H to empty heap
9 foreach 𝑚 such that (𝜏, 𝑚) ∈ ˆ︁𝑉 do

10 H .insert(𝜏, 𝑚, 0, 𝛼(𝜏)𝛽(𝜏), 0⃗)
11 end
12 while not H .empty do
13 set all elements of V to 0 and G to 0⃗
14 ℓ = H .peek.𝑡
15 repeat
16 (𝑣, 𝑚, 𝑡, 𝑝, 𝑝grad) = H .pop
17 V(𝑣, 𝑚) += 𝑝

18 G(𝑣, 𝑚) += 𝑝grad
19 until H .empty or H .peek.𝑡 > ℓ

20 foreach (𝑣, 𝑚) such that V(𝑣, 𝑚) > 0 do
21 foreach 𝑒 = ((𝑣′, 𝑚′), (𝑣, 𝑚)) ∈ ˆ︁𝐸 do
22 𝑡 = time(𝑣′, 𝑣)
23 if ℓ + 𝑡 ≤ 𝑑 (𝜏) then
24 P𝜎 (𝑒, 𝜏) += V(𝑣, 𝑚)
25 ∇P𝜎 (𝑒, 𝜏) += G(𝑣, 𝑚)
26 𝑝 = V(𝑣, 𝑚) · 𝜎(𝑒)
27 if 𝑣′ = 𝜏 then 𝑝 *= 1 − 𝛽(𝜏)
28 foreach 𝑒′ ∈ ˆ︁𝐸 do
29 𝑝grad (𝑒′) = 𝜎(𝑒) · G(𝑣, 𝑚) (𝑒′)
30 if 𝑒′ = 𝑒 then

𝑝grad (𝑒′) += V(𝑣, 𝑚)
31 if 𝑣′ = 𝜏 then

𝑝grad (𝑒′) *= 1 − 𝛽(𝜏)
32 end
33 H .insert(𝑣′, 𝑚′, ℓ + 𝑡, 𝑝, 𝑝grad)
34 end
35 end
36 end
37 end
38 return P𝜎 , ∇P𝜎

Complexity analysis Let 𝛬 be the total number of pair-
wise different 𝑡’s for which there exists 𝑢 ∈ Path(𝑒, 𝜏)
with traversal time equal to 𝑡. Note that there are at most
|ˆ︁𝐸 | · 𝛬 items in H , so each heap operation takes time
O(log( |ˆ︁𝐸 | · 𝛬)). An analysis of the main loop (lines 8–36)
reveals that the time complexity of Alg. 1 is

O
(︁
|𝑇 | · |ˆ︁𝐸 |2 · 𝛬 · ( |ˆ︁𝐸 | + log( |ˆ︁𝐸 | · 𝛬))︁ . (17)

The size of 𝛬 plays a crucial role. It stays reasonably small
even if 𝐺 contains “long” edges. In the worst case, 𝛬 can
be equal to 𝑑max, but this is rarely the case in practice.



 Clearly, the traversal time of every 𝑢 ∈ Path(𝑒, 𝜏) is at
least 𝑡min = min𝑣→𝑣′ time(𝑣, 𝑣′); and for many other 𝑡’s be-
tween 1 and 𝑑max, there may exist no 𝑢 ∈ Path(𝑒, 𝜏) with
traversal time equal to 𝑡. This also explains why applying
the algorithm of Klaška et al. [2018] to the modified graph
obtained from 𝐺 by splitting the long edges into sequences
of unit-length edges is far less efficient than applying our
algorithm directly to 𝐺. Such modification increases the
number of vertices very quickly, even if 𝛬 is small. This is
confirmed experimentally in Sec. 5.

4.3 REGSTAR ALGORITHM

Having a fast, efficient and differentiable algorithm for strat-
egy evaluation enables us to apply gradient ascent methods.
For a given patrolling graph 𝐺 and fixed memory sizes mem,
we start with strategy 𝜎 having its values assigned randomly.
Then, in an optimization loop, we examine RVal𝐺 (𝜎) and
modify 𝜎 in the direction of its gradient until no gain is
achieved (see Alg. 2).

The Regstar algorithm constructs a Defender’s strategy by
running Alg. 2 repeatedly for a given number of random 𝜎

and selecting the best outcome. This results in high-quality
strategies, as experimental results confirm.

Normalization By definition, a regular strategy 𝜎 is a
bunch of probability distributions. A modification of 𝜎 by
an update vector 𝜉 can (and does) violate this property. A
workable solution then requires the use of a normalization.
Our normalization procedure 𝑁1 (𝜎) crops all elements of 𝜎
into the interval [0, 1] and then returns 𝜎(ˆ︁𝑣)/|𝜎(ˆ︁𝑣) | for ev-
eryˆ︁𝑣 ∈ ˆ︁𝑉 , where |𝜎(ˆ︁𝑣) | = ∑︁

(ˆ︁𝑣,𝑣) ∈ˆ︁𝐸 𝜎(ˆ︁𝑣, 𝑣). The function
𝜎 ↦→ 𝑁1 (𝜎) is again differentiable at almost every point 𝜎.
Therefore, the composition of normalization and evaluation
results in a differentiable algorithm whose gradient is, by
the chain rule, the composition ∇RVal𝐺 (𝑁1 (𝜎)) · ∇𝑁1 (𝜎).

Prior works [Kučera and Lamser, 2016, Klaška et al., 2018]
omitted this step assuming that the parameter space is the set
of normalized strategies. They implicitly modify their gradi-
ents in order that the update results in a normalized strategy.
This approach can be modelled in our setting by consider-
ing different “pivoted” normalization, denoted by 𝑁𝑝 (𝜎). It
crops the values as well and, forˆ︁𝑣 ∈ ˆ︁𝑉 , 𝑁𝑝 (𝜎) (ˆ︁𝑣, 𝑣) equals
to 𝜎(ˆ︁𝑣, 𝑣) for all (ˆ︁𝑣, 𝑣) ∈ ˆ︁𝐸 except one “pivot”, say 𝑣𝑝, for
which 𝜎(ˆ︁𝑣, 𝑣𝑝) = 1 −∑︁

(ˆ︁𝑣,𝑣) ∈ˆ︁𝐸,𝑣≠𝑣𝑝
𝜎(ˆ︁𝑣, 𝑣).

Pivoting normalization 𝑁𝑝 yields very sparse gradients ∇𝑁𝑝

in oppose to ∇𝑁1 and filters the signal propagation back to 𝜎.
This potentially slows down the optimization, as demon-
strated in our experiments (see the supplementary material).

Minima softening So far, we supposed that RVal𝐺 (𝜎) re-
turns a value P𝜎 (𝑒, 𝜏) that attains the minimal value. There-
fore, only the top candidate is taken into account in the

Algorithm 2: Strategy optimization.
input :A patrolling graph 𝐺, a regular strategy 𝜎

output :A regular strategy 𝜎′

1 repeat
2 (𝜎,∇𝜎) = Normalize(𝜎)
3 (𝑝,∇𝑝) = RVal𝐺 (𝜎)
4 𝜎′ = Step(𝜎,∇𝑝 · ∇𝜎)
5 until RVal𝐺 (𝜎′) − 𝑝 ≤ threshold
6 return 𝜎′

optimization. In contrast, one can consider more competi-
tors P𝜎 (𝑒, 𝜏) that are close to the minima and optimize for
them simultaneously. We implement the very same “soft-
ening” method as in the baseline algorithm [Klaška et al.,
2018].

Strategy update In each optimization step, we update
the strategy 𝜎 by a proportion of the proper gradient 𝜉 =

∇RVal𝐺 ·∇𝑁1. We use the same scheduling as proposed
by Klaška et al. [2018], where a variant of an update 𝜎′ =
𝜎 + (1 − 𝛿)𝑘𝜉 is being used.

5 EXPERIMENTS

In many natural patrolling scenarios, the targets are distin-
guished geographic locations (banks, patrol stations, ATMs,
tourist attractions, etc.). The connecting edges model the ad-
missible moves of patrolling units (drones, police cars, etc.).
Such graphs naturally contain edges of varying traversal
time.

All the existing strategy improvement algorithms are de-
signed for patrolling graphs with edges of unit traversal
time. They can be applied to graphs with general topology
once every “long” edge is replaced with a path consisting
of edges of the unit length passing through fresh auxiliary
vertices. We will apply this modification to graphs when
necessary, without further notice.

In the first experiment, we compare the efficiency of
Regstar against currently the best Baseline [Klaška et al.,
2018]. In the second experiment, we demonstrate the capa-
bility of Regstar on a real-world patrolling problem that
is far beyond the limits of Baseline. In the last experiment,
we examine the impact of available memory size on the
protection achieved by Regstar.

5.1 COMPARISON TO BASELINE

We consider patrolling graphs where ten targets are selected
randomly from 𝑛 × 𝑛 grid. The traversal time between two
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Figure 3: Comparison of Regstar against Baseline. The
time (in secs., logscale) needed to finish 50 optimization
runs on various graphs is shown. The timeout is 1600 s.

vertices corresponds to their 𝐿1 distance5. For each 𝑛 =

4, . . . , 9, we randomly select five graphs 𝐺𝑛 (1), . . . , 𝐺𝑛 (5).
Thus, we obtain a collection of 30 patrolling graphs. Note
that these graphs tend to contain longer edges with the
increased 𝑛. The targets’ cost is selected randomly be-
tween 180 and 200, and intrusion detection is perfect. The
time needed to complete an attack is the same for all tar-
gets in 𝐺𝑛 (𝑖), and it is set to a value for which the De-
fender can achieve a reasonably high protection (𝑑 (𝜏) =

timemax + timeavg + 3, where timemax and timeavg is the max-
imal and the average traversal time of an edge). For each
𝐺𝑛 (𝑖), we report the total running time Regstar and Base-
line need to improve the same set of 50 randomly generated
initial regular strategies. The timeout was set to 1600 s. This
is repeated 10 times for every 𝐺𝑛 (𝑖), outcoming 20 accu-
mulated times shown in Fig. 3. Note that the time scale is
logarithmic.

Observe that Regstar terminates in about 100–200 seconds
in all cases while Baseline reaches the timeout even for
some 𝐺7 (𝑖) graphs and for all 𝐺9 (𝑖) graphs. This demon-
strates that Regstar outperforms the Baseline. When both
algorithms terminate, the achieved protection values are
about the same.

5.2 PATROLLING AN ATM NETWORK

We examine a patrolling graph where the vertices corre-
spond to selected ATMs in Montreal (Fig. 1). All parameters
of the graph are chosen in the same way as in Sec. 5.1, except
for 𝑑 (𝜏) = 2 ∗ timemax + timeavg and imperfect intrusion de-
tection, which is set randomly to a value between 0.8 and 1.

5We use the 𝐿1 (taxicab, Manhattan) distance instead of Eu-
clidean distance because the former is considered as a better ap-
proximation of commuting distance.

Table 1: Analysis of Regstar on Montreal’s ATMs.

𝑚 RValbest RValavg close (%) iter time (s)

1 64 57 ± 3 46 280 ± 30 5 ± 1
2 75 70 ± 2 83 684 ± 41 79 ± 8
3 80 77 ± 2 100 1045 ± 60 360 ± 58
4 81 79 ± 1 100 1346 ± 75 1250 ± 196
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Figure 4: A building with three floors connected by stairs.

Note that the corresponding graph adjustment needed to
run the Baseline results in more than 3 thousand auxiliary
vertices, far beyond its limits. Klaška et al. [2018] claim that
Baseline can solve instances with about 100 vertices.

The results achieved by Regstar are summarized in Tab. 1.
For 𝑚 = 1, . . . , 4 we randomly generate 100 initial regular
strategies where every vertex is assigned 𝑚 memory ele-
ments. We report the best and the average protection value
achieved by Regstar, the percentage of runs for which the
resulting value reached at least 90% of the best value (la-
beled “close”), and the average number of iterations and
time needed by one Regstar run.

Note that even for 𝑚 = 4, the algorithm can improve one
strategy in about 20 mins. The number of runs for which the
optimization produces a high-value strategy is consistently
very high and increases with 𝑚.

5.3 PATROLLING AN OFFICE BUILDING

We consider three office buildings with one, two, and three
floors. On each floor, there are ten offices alongside a corri-
dor. Stairs connect the floors on both sides of the corridors.

The building with three floors is shown in Fig. 4. The squares
represent the offices, and the circles represent the corridor
locations where the Defender may decide to visit the neigh-
bouring offices. The “long” edges represent stairs. Every
office’s cost is set to 100, and the probability of successful
intrusion detection is 0.9. The time needed to complete an
intrusion is set to 100, 200, and 300 for the building with



 
Table 2: Analysis of Regstar on office buildings.

𝑚
One floor Two floors Three floors

RValbest close (%) time (s) RValbest close (%) time (s) RValbest close (%) time (s)

1 27 6 0.02 ± 0.01 32 29 0.6 ± 0.5 29 3 2 ± 1
2 41 28 1.2 ± 0.5 37 35 11 ± 8 32 5 10 ± 16
3 44 84 4.8 ± 2.1 45 30 47 ± 44 44 0.5 78 ± 142
4 47 83 11.7 ± 5.8 53 4 102 ± 118 44 3 238 ± 469
5 47 75 24.7 ± 14.2 56 12 236 ± 283 50 0.5 286 ± 635
6 47 65 45.2 ± 32.8 57 11 268 ± 420 55 0.5 641 ± 1557
7 51 45 74.8 ± 64.8 58 18 543 ± 877 53 1 1278 ± 3414
8 52 22 112.0 ± 111.8 59 9 515 ± 1116 56 1 1486 ± 4466

one, two, and three floors, respectively.

The outcomes achieved by Regstar are summarized in
Tab. 2. For every building and every 𝑚 ∈ {1, . . . , 8}, 200
runs were processed with all nodes having 𝑚 memory el-
ements. We report the best value found, the percentage of
runs for which the resulting value reached at least 90% of
the best value (labeled “close”), and the average runtime.

We observe that the achieved protection substantially in-
creases with more memory elements. This is because the
considered patrolling graphs are relatively sparse, and “re-
membering” the history of previously visited vertices is
inevitable for arranging optimal moves. In contrast, the pa-
trolling graphs of ATM networks presented in Sec. 5.2 are
fully connected, and the extra memory elements have not
brought many advantages.

The Regstar algorithm discovers the relevant information
about the history fully automatically. To examine this capa-
bility, we again consider the building with one floor, but we
change the probability of successful intrusion detection to 1
and increase the attack time to 112 units. This is precisely
the time the Defender needs to visit every target before an
arbitrary attack is completed to achieve a perfect protection
equal to 100. The Defender must schedule his walk to visit
every office precisely once and with appropriate timing.

This experiment (see Tab. 3) show that Regstar can indeed
discover this “clever” walk. For every 𝑚 ∈ {1, . . . , 8}, 500
runs were processed. The third column shows the percentage
of runs resulting in a perfect protection strategy. Observe
that four memory elements are sufficient to achieve perfect
protection, and the chance of discovering a perfect strategy
further increases with more memory elements.

6 CONCLUSION

Our efficient and differentiable regular-strategy evaluation
algorithm proved to apply to patrolling graphs with arbitrary
edge lengths and imperfect intrusion detection. The experi-
mental results are encouraging and indicate that high-quality
Defender’s strategies can be constructed by optimization

Table 3: Reaching perfect protection for a one-floor office
building with tight attack time.

𝑚 RValbest close (%) time (s)

1 34 0 0.05 ± 0.03
2 50 0 2.1 ± 1.0
3 55 0 8.6 ± 4.8
4 100 1.2 20 ± 13
5 100 5.0 37 ± 31
6 100 12.2 73 ± 67
7 100 11.8 107 ± 122
8 100 8.6 119 ± 180

methods in a reasonable time for real-world scenarios.

Our experiments also show that the current optimization
methods do not often converge to the best possible strategy.
This suggests that an extra performance could be gained in
exploration and improvement on the optimization side.

In Theorem 1, we proved that regular strategies approxi-
mate the optimal strategy to arbitrary precision 𝜀 > 0. The
needed memory size depends on 𝜀. We evaluated various
memory sizes 𝑚 experimentally from 𝑚 = 1 up to the high-
est computable values in Sec. 5.2 and Sec. 5.3. Finding the
best 𝑚 (or even proving that regular strategies achieve the
optimality) is a challenging open problem.
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