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Abstract

A key task in multi–label classification is modeling
the structure between the involved classes. Model-
ing this structure by probabilistic and interpretable
means enables application in a broad variety of
tasks such as zero–shot learning or learning from
incomplete data. In this paper, we present the prob-
abilistic rule stacking learner (pRSL) which uses
probabilistic propositional logic rules and belief
propagation to combine the predictions of several
underlying classifiers. We derive algorithms for
exact and approximate inference and learning, and
show that pRSL reaches state–of–the–art perfor-
mance on various benchmark datasets.
In the process, we introduce a novel multicategori-
cal generalization of the noisy–or gate. Addition-
ally, we report simulation results on the quality of
loopy belief propagation algorithms for approxi-
mate inference in bipartite noisy–or networks.

1 INTRODUCTION

Classifiers that predict a single class have been studied and
improved in detail in the past years. However, recent applica-
tions in complex real–world environments make it necessary
to respect a whole set of different classes and labels [Reining
et al., 2019] [Raies and Bajic, 2018]. The success of multi–
label classifiers has shown that exploiting the structure be-
tween those classes is key to exceeding the performance of
isolated classifiers [Pakrashi et al., 2016].

As an example, take the human activity recognition task por-
trayed in Figure 1 [Niemann et al., 2020] where we want to
detect the actions of a warehouse worker. Three embedded
machine learning sensors provide probabilistic information
about the worker’s stance and hand position and a first guess
on whether the worker is performing overhead work. Intu-
itively, we would combine those beliefs to wrap our heads

Figure 1: Human Activity
Recognition: The three em-
bedded ML sensors tell us:
P (overhead work) = 0.5,
P (standing) = 0.95,
P (hands high) = 0.7.
Given the rules:
if standing and hands high
then often overhead work,
if normal work then almost al-
ways hands centered or low,
not standing iff legs moving,
what is the new probabil-
ity P (overhead work) that the
worker does overhead work?

around the situation the worker is in. To decide how likely
the worker is working overhead, we may use rules that tell
us whether some beliefs contradict or support other beliefs.
We can easily formulate such rules like the three exemplary
ones given in Figure 1. However, the challenging question is
how to mathematically apply those non–deterministic rules
to the uncertain input beliefs to calculate updated beliefs.

Our model, pRSL, approaches this multi–label classification
problem via Bayesian belief propagation along probabilisti-
cally generalized propositional logic rules. Thereby, it stays
interpretable and allows for a wide variety of relations be-
tween the classes. Besides expert–given rules, it can learn
rules from data that achieve competitive performance.

This paper is structured as follows: In Section 2, we dis-
cuss existing approaches to multi–label classification and
belief combination. In Section 3, we define pRSL and ex-
plain it along the above example. We propose algorithms for
exact and approximate inference, learning rules from pos-
sibly incomplete data, and suitable regularization. Section
4 concerns the inference methods’ approximation quality
and benchmarks of pRSL’s against the state–of–the–art. The
paper closes with a discussion in Section 5.
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 2 RELATED WORK

This section gives an overview of recent approaches in multi–
label learning with an emphasis on models that are stacked
on top of ground learners. Such models take the ground
learners’ probabilistic estimates as input and refine them
via modeling the structure between the classes in different
ways: We group them into attribute–class, knowledge graph,
Bayesian network, and probabilistic rule based methods.

Attribute–Class: Attribute–class approaches emerged
from classical "flat" classification [Lampert et al., 2013]
to give a better insight into the reasoning and utilize knowl-
edge of previously learned classes. They add a layer of
semantically interpretable attributes in–between the raw in-
puts and the output classes. In Atzmon and Chechik [2018]
this layer is connected to the classes via and–or formu-
las describing each class while grouping similar attributes.
Liu et al. [2020] model the inter–class structure as a graph
where classes sharing similar attributes are close to each
other. Attribute–class approaches allow solving zero–shot
problems [Xian et al., 2018] in which a new class has to be
recognized not by example but by an attribute description.

Knowledge Graphs: Other approaches do not split labels
into attributes and classes but utilize knowledge graphs in-
stead, thus allowing for broader relations between the labels.
Wu et al. [2018] use a graph that embodies hierarchical
and co–occurrence relations between labels which allows
learning even when not all ground truth labels are provided.
Lee et al. [2018] and Liu et al. [2020] apply a form of be-
lief propagation where initial beliefs on labels are shared
between one another to obtain a joint solution. Knowledge
graphs are easy to interpret and applied to large scale prob-
lems, but often require ground truth graphs and allow only
a few types of heuristic relations between the labels.

Bayesian Networks: Bayesian networks allow extend-
ing these relations to the probabilistic setting. While they
have been applied as stand–alone approaches [Wang and
Li, 2013], they experience a recent interest as stacking ap-
proaches on top of ground learners [Chen et al., 2020]. For
example, Shen et al. [2018] employ a Bayesian network as
an ensemble learner that combines beliefs of several CNNs.
A limitation of a Bayesian network is that its directed graph
must be acyclic, thus raising design choices that can be
difficult outside obvious causal relations.

Probabilistic Rules: When discussing probabilistic rule
learners, a distinction has to be made regarding the goal.
Rule mining [Mencía and Janssen, 2016] [Pham and Aksoy,
1995] generally evolves around analytical insight, while in
multi–label classification rules are learned to improve classi-
fication accuracy. Although crisp rules have been explored to
define classes in programming APIs [Krupka et al., 2017],
probabilistic rules take uncertainties into account by not

completely ruling out contradicting labels, but only weight-
ing them down as in Ding et al. [2015]. Moreover, Rapp
et al. [2020] recently proposed a boosting–based method for
finding soft if–then rules. Using propositional logic as the
starting point for multi–label classification allows formulat-
ing complex rules but loses some of the interpretability of
the aforementioned graph models.

Our approach borrows principles from all previously de-
scribed methods: Our model may be stacked onto any
ground learners for initial beliefs on the labels or no classi-
fier may be provided to enable zero–shot classification. We
use Bayesian networks as underlying framework due to their
probabilistic interpretation and the ability to perform fast
belief propagation. However, labels are not connected di-
rectly to one another but only via rules in a bipartite manner
to ensure acyclicity. Rules can take the form of any proposi-
tional logic expression and are extended to the probabilistic
setting to allow for vast relations between the labels. Like in
knowledge graphs, prior knowledge may be incorporated as
expert–given rules, but rules can also be learned from data.

3 METHODS

3.1 BAYESIAN NETWORKS

A Bayesian network [Pearl, 1988] is a compact repre-
sentation of the joint distribution of N random variables
X1, . . . , XN . In our case they are categorical. Each Xn

stochastically depends only on a subset of other variables
denoted Pa(Xn) as specified in their conditional probability
tables P (Xn|Pa(Xn)), n = 1, . . . , N . These dependencies
form a directed acyclic graph, where each node is a random
variable and each edge shows a dependence. Observations
are fed into the network by updating priors or providing
hard evidence on the states some variables take. The new in-
formation is then propagated through the network to update
the beliefs on all variables. In the sequel, we use Bayesian
networks as probabilistic foundation of our proposed model.

3.2 PROBABILISTIC RULE STACKING
LEARNER

The probabilistic rule stacking learner (pRSL) models the
multi–label stacking problem using three kinds of nodes:
Classifiers, labels, and rules. The model structure is visual-
ized in Figure 2 and described in the following paragraphs.

Classifiers Cj , j = 1, . . . , J, are plugged into the root of
pRSL. Each Cj is an arbitrary machine learning model that
accepts some input data xj and returns a vector of probabilis-
tic estimates P (Cj |xj) := (P (Cj = 1|xj), . . . , P (Cj =
M(j)|xj)) on its M(j) respective categories1 m =

1We use the terms classes and labels interchangeably. They
contain an arbitrary number of mutually exclusive categories.
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Figure 2: Graphical structure of pRSL. Squares indicate
external elements plugged into the framework and circles
indicate internal parts of pRSL.

1, . . . ,M(j). Classifiers are not restricted to predict the
same categories or use the same input data. Each classifier
is connected to a label node Lj . The label nodes contain the
same M(j) categories as their connected classifier nodes,
but recalibrate the predictions of their classifiers [Culakova
et al., 2020]. Any function dj : [0, 1]M(j) → [0, 1]M(j) can
be used for calibration, but it can also be the identity in
case the classifier already returns predictions that are not
over– or underconfident. The used calibrators are detailed
in the experiment sections below. Latent or zero–shot la-
bels are connected to dummy classifiers that always output
the labels’ priors. As for notation, L := (L1, . . . , LJ) de-
notes the vector of all labels, L :=

⊗J
j=1{1, . . . ,M(j)}

the sample space of all possible categories L can take, and
` := (`1, . . . , `J) ∈ L is a particular vector of categories.

The main part of pRSL are the rule nodesRk, k = 1, . . . ,K.
Each rule node may be connected to any selection of label
nodes2 and formulates a propositional logic formula ϕk that
holds between those labels with a probability pk. The rules’
conditional probability table generalizes truth tables:

P (Rk = 1|L = `) =

{
pk , ` |= ϕk

1− pk , ` 6|= ϕk

, (1)

where |= means that ` ∈ L logically fulfills the formula ϕk.

To perform inference, first classifiers receive their inputs
x := (x1, . . . , xJ). Their estimations P (Cj |xj), j =
1, . . . , J, are then used as priors for the classifier nodes.
Then the evidence R = 1 with R = (R1, . . . , RK) and
1 = (1, . . . , 1) indicating that all rules are true is handed
over to the network. This conditioning opens paths between
the labels to communicate and update their priors using
belief propagation as described in Section 3.5. Once the
propagation has reached an equilibrium state, we obtain

2To simplify notation, rules depend on all J possible label
nodes in the following formulas.

the updated beliefs P (Lj |R = 1,x), j = 1, . . . , J, with
P (Lj |R = 1,x) := (P (Lj = 1|R = 1, xj), . . . , P (Lj =
M(j)|R = 1, xj)).

3.3 EXAMPLE

To better understand how pRSL combines its input beliefs
with the given rules, we continue with a numerical example.

In logistics, there is a rising trend of using human activity
recognition to observe workers’ actions with sensors and
machine learning models [Reining et al., 2019]. Suppose
we have three sensors, each analyzed by a machine learning
model: A camera C1 that can distinguish walking move-
ment w from work at a normal height n and overhead work
o. Additionally, workers wear sensor shoes C2 that can dis-
tinguish standing s from gait g, and a wristband C3 that
observes high h, centered c or low l hand height. All of
these classifiers have imperfect accuracy, but we assume for
this example’s simplicity that they are well calibrated so
that we can use C and L interchangeably. We want to con-
nect C1, C2, and C3 in order to better detect the potentially
harmful overhead work. For that, we use three rules:

ϕ1 : (h ∧ s)→ o (p1 = 0.8)

expresses that in many cases when workers stand and have
their arms up, they do overhead work.

ϕ2 : n→ (c ∨ l) (p2 = 0.9)

means that during normal work the workers’ hands are al-
most always at a centered or low height. Lastly,

ϕ3 : w ↔ g (p3 = 1)

means the camera’s walking category and the sensor shoes’
gait category semantically mean the same activity.

Now, consider the camera is unsure whether the worker
performs overhead work or normal work, the sensor shoes
are quite certain the person is standing and the wristband
indicates the worker’s hands are probably high:

P (C1|x1) = (w = 0.1, n = 0.4, o = 0.5),

P (C2|x2) = (g = 0.05, s = 0.95),

P (C3|x3) = (h = 0.5, c = 0.3, l = 0.2).

Table 1 shows how pRSL uses the given rules to re–weight
which activities seem likely and which contradict the rules
and thus are less likely. For each possible ` the priors are
multiplied with the probabilities of the rules given `. The
normalized result is reported in the last column. From the
table, we conclude that ` = (o, s, h) is most likely. After
marginalizing over each label, we obtain the updated beliefs

P (L1|R = 1,x) = (w = 0.01, n = 0.05, o = 0.94),

P (L2|R = 1,x) = (g = 0.01, s = 0.99),

P (L3|R = 1,x) = (h = 0.48, c = 0.31, l = 0.21).



 
Table 1: Calculation for the pRSL Example described in Section 3.3.

`1 `2 `3 P (L = `|x) P (R1 = 1|L = `) P (R2 = 1|L = `) P (R3 = 1|L = `) P (L = `|R = 1, x)

w s h 0.1 · 0.95 · 0.5 0.2 0.9 0 0
n s h 0.4 · 0.95 · 0.5 0.2 0.1 1 0.0078
o s h 0.5 · 0.95 · 0.5 0.8 0.9 1 0.3517
w g l 0.1 · 0.05 · 0.2 0.8 0.9 1 0.0015
n s c 0.4 · 0.95 · 0.3 0.8 0.9 1 0.1688
o s c 0.5 · 0.95 · 0.3 0.8 0.9 1 0.2110
. . . . . . . . . . . . . . . . . . . . . . . .

So, after combining the information of all three sensors we
can be certain that the worker is performing overhead work.

This example shows how pRSL applies principles of prob-
abilistic logic to multi–label classification and performs
stacking of C1, C2, and C3 while remaining interpretable.
Obviously, there are more sophisticated algorithms to obtain
the updated beliefs. They are portrayed hereafter.

3.4 MULTICATEGORICAL NOISY–OR

While propositional logic allows for a broad variety of state-
ments, inference and learning are correspondingly com-
plex. However, many formulas can be written in the form
of an implication ϕ = (A ∧ B) → (C ∨ D), where
both the body and the head may contain multiple labels.
This form can be equivalently expressed as a disjunction
ϕ ≡ ¬A∨¬B ∨C ∨D. The noisy–or gate [Pearl, 1988] is
a parametrized distribution that extends the classical logic
disjunction to the probabilistic setting. It is widely adapted
in Bayesian networks [Ji et al., 2020] as it allows for faster
inference and, as we will later show, efficient learning.

In Section 2 in the appendix, we extend the noisy–or gate
to our case where the output is binary, but the labels acting
as inputs may be multicategorical. For a rule Rk, each label
m in each connected node Lj has an inhibition probability
qkjm that gives the probability that the noisy–or node is
not activated even though the label is active. The rule’s
probability previously defined in (1) is now softened:

P (Rk = 1|L = `) = 1−
J∏

j=1

qkj`j . (2)

3.5 INFERENCE

Inference on pRSL is performed using belief propagation
[Pearl, 1988]. Note that we may be interested in two kinds
of queries: Either the marginal distribution of each label

P (Lj |R = 1,x), j = 1, . . . , J, (3)

or the most probable explanation (MPE)

argmax
`∈L

P (L = `|R = 1,x), (4)

which gives the joint setup of labels that has the highest
likelihood. Dembczynski et al. [2010] have shown that the
two queries are Bayes–optimal for different loss functions.

We implement pRSL as Bayesian network in R 3.6.3 us-
ing the gRain [Højsgaard, 2012] package that provides
exact inference for marginal and MPE queries. This imple-
mentation allows processing both noisy–or and arbitrary
propositional logic based rules, but is NP–complete even for
bipartite noisy–or networks [Cooper, 1990]. To circumvent
this by utilizing the noisy–or structure, we further imple-
mented approximate algorithms for larger datasets. These
loopy belief propagation [Murphy et al., 1999] algorithms
are based on the exact sum–product and max–product algo-
rithms for acyclic networks introduced by Pearl [1988] and
can approximate marginal and MPE queries. They achieve
a runtime complexity of O(J · J0 · K) for marginal and
O(J · J0 ·K +K · 2J0) for MPE queries, where J0 is the
maximum number of labels connected to a rule. An experi-
ment on their approximation quality is found in Section 4.1.

3.6 LEARNING

All parts of pRSL can either be expert–given or learned from
data. We assume the classifiers C1, . . . , CJ to be trained in
advance and refer to Xia et al. [2020] for calibrating the
classifier outputs. Thus, we focus on learning the noisy–or
rules determined by q = (q111, . . . , q

K
JM(J)). Our objective

is to improve the predictive performance

argmax
q

log(P (L = `∗|R = 1,x)), (5)

where `∗ are the true categories of a given observation with
classifier input data x.

To find the optimal rules, we apply batchwise ADAM op-
timization [Kingma and Ba, 2015]. In Section 1.1 in the
appendix, we build partial derivatives of (5) by qkjm for all
rules simultaneously. The resulting gradients can be trans-
formed into expressions that depend only on

P (Lj = m|Rk = 0, Rv = 1, v 6= k,x), (6)
P (Rk = 1|Rv = 1, v 6= k,x), (7)



 and particular values of q, so that for each rule’s gradient
we need to perform only two marginal queries on the pRSL,
thus avoiding the higher costs of MPE queries.

We can also perform gradient descent when not all true la-
bels are known, such as in zero–shot problems or incomplete
datasets. The known labels {L′ = `′} may be different for
each observation. Then, the optimization goal is

argmaxq log(P (L
′ = l′|R = 1,x)). (8)

We derive corresponding gradients in Section 1.2 in the
appendix, which is even possible for such qkjm that belong
to labels Lj 6∈ L′ with missing ground–truth. The gradients
consist of (6), (7), specific values of q, and additionally

P (Lj = m|L′ = l′, Rk = 0, Rv = 1, v 6= k,x) and (9)
P (Rk = 1|L′ = l′, Rv = 1, v 6= k,x), (10)

i.e. two additional marginal queries are required per rule.

Overall, the number of parameters q to learn is linear in
the number of rules and labels, and one step in the gradient
descent can be performed in O(K2 · J · J0) runtime when
using approximate queries to compute the gradients.

3.7 REGULARIZATION

The maximum number of labels connected to each rule J0
plays a major rule in keeping computations bearable and
rules interpretable. Thus, regularization should favor qkjm =
1 for all inhibition probabilities related to one label Lj , so
that it can be disconnected from rule Rk. In consequence,
we do not regularize the qkjm directly, but their soft minimum
[Cook, 2011] per label Lj and rule Rk given by

s(k, j) = − 1

α
log

M(j)∑
m=1

exp(−αqkjm)

 , (11)

where α controls the hardness of the soft minimum.

Regularization happens twofold: On the one hand, we apply
a hard regularizer that allows only the J0 label nodes Lj

with the lowest s(k, j) to be connected to each rule Rk and
sets all other inhibition probabilities to 1, thus transposing
q to close but computationally efficient positions during the
gradient descent. On the other hand, there is a soft regular-
izer to push q towards 1. This soft regularizer is obtained
via the duality between regularizers and Bayesian priors
[Murphy, 2012]. Regarding s(k, j) as a random variable S,
we assume S ∼ Beta(β1, β2), where 0 < β1, β2 < 1 are
selected so that

P (S < 0.1) = γ0 and (12)
P (S > 0.9) = γ1, (13)

with γ0 < γ1. This prior places a high mass on 1 and a
smaller mass on 0, so that most labels are removed from the

rule to lower J0 and the ones used in the rule are pushed
towards crisp inhibition probabilities for easier interpretabil-
ity. The corresponding regularizer penalty to be added to
the optimization goal (5) is

R(q) =
λt

η
((β1 − 1)

K∑
k=1

J∑
j=1

log(s(k, j) + ε)+

(β2 − 1)

K∑
k=1

J∑
j=1

log(1− s(k, j) + ε)),

(14)

where η is the normalization constant of the Beta(β1, β2)
distribution, ε prevents dividing by zero when differentiat-
ing and λ < 1 decreases the influence of the regularization
penalty with each iteration t of the gradient descent. A
benefit of deriving the regularizer from a prior is that the
regularizer strength is given by the normalization constant η
and does not have to be tuned as a hyperparameter. In sim-
ulations not detailed here, α = 20, J0 = 5, ε = 10−4, and
λ = 0.98 proved to be good default values.

An R implementation of all above methods is found online3.

4 EXPERIMENTS

4.1 APPROXIMATION QUALITY

Though it has no quality bound, Murphy et al. [1999] have
observed that the loopy belief propagation used for pRSL’s
approximate queries may work well in the bipartite noisy–
or setting. However, the exact conditions are still under
research [Weller and Jebara, 2013]. As the scalability of
pRSL relies on the approximation quality, we compare ex-
act to approximated marginal and MPE queries in various
simulated pRSL models below. The code to reproduce the
simulations and further analyses can be accessed online4.

pRSL models of three sizes were generated, each repli-
cated 10 times. The smallest included 5 labels and 5 rules, a
medium one 10 labels and 10 rules, and the largest 30 labels
and 30 rules, after which exact inference became incom-
putable due to its exponentially rising runtime and memory
usage. The sampling procedure is detailed in Section 3 in
the appendix. In short, labels comprised a random amount
of 2 − 4 categories. Noisy–or rule related 2 − 5 random
categories with random inhibition probabilities. Finally, 100
classifier observations were simulated by drawing Dir(1)
distributed random variables for each label.

Marginal queries were approximated well, with correlation
coefficients of rs = 0.995, rm = 0.996, and rl = 0.995
between the exact and approximate queries averaged across
all replications in the small (rs), medium (rm), and large

3https://github.com/mkirchhof/rsl
4https://github.com/mkirchhof/rslSim

https://github.com/mkirchhof/rsl
https://github.com/mkirchhof/rslSim
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Figure 3: Quality of Approximation of Exact MPEs by Ap-
proximate MPEs and Approximate Marginals.

(rl) models. In terms of scalability, no strong reduction in
quality can be seen in the rising model sizes.

For MPE queries, the comparison could only be conducted
on the small and medium datasets, as the naive implementa-
tion of exact MPE queries in the gRain package ruled out
the large dataset. Besides approximating MPE queries by
the aforementioned loopy belief propagation, they were ad-
ditionally approximated in Naive–Bayes manner by combin-
ing the label–wise approximate marginal queries. Figure 3
shows how often the approximate MPE queries matched
their exact counterparts. It shows that approximate MPE
queries clearly outperform the label–wise approximation
with a median of 96.5% versus 68% correctly resembled
MPE queries on the small and 94% versus 42% on the
medium datasets. This underlines that questions regarding
MPEs are not well answered by combining marginal queries,
but need distinguished joint–label algorithms.

In summary, loopy belief propagation showed a nearly per-
fect approximation quality for marginal and a good approx-
imation quality for MPE queries. The difference between
the queries might be due to the higher sensitivity to small
inaccuracies of the underlying max–product algorithm for
MPE queries as opposed to the sum–product algorithm for
marginal queries that can marginalize them out.

4.2 PERFORMANCE BENCHMARK

4.2.1 Benchmark Datasets

In the following experiment, pRSL was compared to the
state–of–the–art on six established multi–label benchmark
datasets obtained from Mulan5. Each has a different domain
and complexity as summarized in Table 2. The three smaller
datasets – emotions, yeast, and birds – were split into a 10–
fold cross–validation with an 8/1/1 split for train–validation–
test. A 5–fold cross–validation with a 3/1/1 split was used

5http://mulan.sourceforge.net/datasets-mlc.html

Table 2: Overview of Benchmark Datasets. Cardinality gives
the Mean Number of Positive Labels per Observation. Den-
sity is the Cardinality Normalized by the Number of Labels.

Dataset Domain Labels Cardinality Density

Emotions Music 6 1.869 0.311
Yeast Genes 14 4.237 0.303
Birds Sound 19 1.014 0.053
Medical Diseases 45 1.245 0.028
Enron Emails 53 3.378 0.064
Mediamill Newscasts 101 4.376 0.043

for the three bigger datasets. pRSL used exact queries for
former and approximate queries for the latter three datasets.

4.2.2 Comparison Methods

Probabilistic random forests [Malley et al., 2012] were used
as binary relevance (BR) learner to transform the raw in-
puts into probabilistic estimates for each label individually.
We compared pRSL to three methods that further process
these initial beliefs: Two benchmark models that are based
on black box decisions (NN and MLWSE) and one recent
approach (BOOMER) similar in nature to pRSL.

The first method is a neural network (NN) with two hidden
layers that have twice the number of labels as neurons. It
uses label–wise cross–entropy as loss function and utilizes
the validation data for early stopping. Second, MLWSE [Xia
et al., 2020] optimizes a quadratic loss by linearly combin-
ing labels based on pairwise correlations. Third, we compare
with a method already mentioned in Section 2: BOOMER
[Rapp et al., 2020] is a recently published soft–rule–based
approach that optimizes a joint label cross–entropy loss. To
maintain a fair comparison, its three hyperparameters for
shrinkage, regularization strength, and number of rules were
tuned via grid–search on the validation data. Last, pRSL was
applied where the validation data served to find an optimal
number of rules. No form of calibration was applied. Exper-
iments could not be conducted on Ding et al. [2015], which
is similar to pRSL, due to unavailable implementation.

4.2.3 Evaluation Measures

As shown by Dembczyński et al. [2012], measuring the
percentage of misclassified observations label–wise, called
Hamming loss, does not suffice in multi–label classification.
Hence, following their proofs, we additionally measure the
percentage of observations where all labels are correctly
classified, which lays focus on the MPE estimates. To com-
plement these crisp–decision focused metrics with a metric
that judges the quality of the returned probability estimates,
we measure the log–likelihood of the returned beliefs, which
is the only local proper scoring rule [Parmigiani and Inoue,



 
Table 3: Results of the k–Fold Crossvalidations. Mean ± Standard Deviation Between Folds. Best Result in Bold.

Emotions Yeast Birds Medical Enron Mediamill

Joint Accuracy (higher = better)

BR 0.321± 0.005 0.174± 0.018 0.510± 0.004 0.386± 0.022 0.114± 0.026 0.148± 0.001
NN 0.309± 0.075 0.193 ± 0.018 0.540 ± 0.051 0.613 ± 0.032 0.120 ± 0.020 0.179 ± 0.003
MLWSE 0.327± 0.058 0.201± 0.013 0.541± 0.041 0.640± 0.025 0.124± 0.022 0.151± 0.001
BOOMER 0.326 ± 0.074 0.224 ± 0.022 0.527 ± 0.024 0.654 ± 0.024 0.137 ± 0.026 0.189 ± 0.004
pRSL 0.348 ± 0.067 0.236 ± 0.015 0.507 ± 0.032 0.491 ± 0.031 0.153 ± 0.020 0.149 ± 0.002

Joint log–Likelihood (higher = better) Label–wise log–Likelihood (higher = better)

BR -2.386 ± 0.145 -5.772 ± 0.198 -2.448 ± 0.160 -1.584 ± 0.091 -6.376 ± 0.182 -6.614 ± 0.062
NN -2.105 ± 0.267 -5.659 ± 0.231 -1.547 ± 0.409 -0.750 ± 0.133 -6.476 ± 0.172 -6.016 ± 0.038
MLWSE -2.140 ± 0.202 -5.512 ± 0.227 -1.502 ± 0.167 -1.125 ± 0.110 -6.018 ± 0.104 -6.371 ± 0.052
BOOMER unavailable unavailable unavailable unavailable unavailable unavailable
pRSL -1.839 ± 0.273 -3.592 ± 0.085 -2.458 ± 0.156 -1.565 ± 0.120 -6.479 ± 0.242 -6.532 ± 0.061

Label–wise Hamming Loss (lower = better)

BR 0.179 ± 0.019 0.188 ± 0.003 0.042 ± 0.003 0.017 ± 0.001 0.045 ± 0.001 0.027 ± 0.000
NN 0.183 ± 0.024 0.191 ± 0.005 0.039 ± 0.003 0.012 ± 0.001 0.046 ± 0.001 0.025 ± 0.000
MLWSE 0.183 ± 0.024 0.186 ± 0.005 0.037 ± 0.002 0.011 ± 0.001 0.044 ± 0.001 0.026 ± 0.000
BOOMER 0.183 ± 0.024 0.188 ± 0.005 0.041 ± 0.003 0.011 ± 0.001 0.046 ± 0.001 0.026 ± 0.000
pRSL 0.182 ± 0.022 0.190 ± 0.005 0.043 ± 0.002 0.015 ± 0.001 0.046 ± 0.001 0.027 ± 0.000

2009]. Precisely, we used the median log–likelihood of the
joint labels or the individual labels in case the former was
not available for a learner.

4.2.4 Results

All code required to reproduce the experiments can be found
online6. The results are reported in Table 3. As BOOMER
returns no probabilistic estimates, its log–likelihood could
not be computed. In general, the examined multi–label algo-
rithms outperformed the BR baseline across all datasets and
metrics, except the hamming loss on emotions. Interestingly,
on birds and medical, BR is outperformed by a larger mar-
gin even in terms of hamming loss which is a single label
metric that can be optimized without modeling multi–label
dependencies [Dembczyński et al., 2012].

Each of the four multi–label algorithms showed strengths
on different datasets and metrics. Except on birds, no algo-
rithm performs best across all metrics on a fixed dataset or
across all datasets on a fixed metric. In particular, MLWSE,
the only linear model, performed best on birds across all
metrics and three datasets in terms of hamming loss, plus
a nearly indistinguishable performance with BOOMER on
medical. The two soft rule based algorithms BOOMER and
pRSL performed on a nearly indistinguishable level on four
datasets when taking the estimation uncertainty into account,
except on medical and mediamill.

6https://github.com/mkirchhof/rslBench

pRSL showed the best performance among the benchmarked
state–of–the–art methods on three out of six datasets regard-
ing accuracy and two of the three datasets where the joint
log–likelihood could be estimated. It does not show im-
provements on the label–wise metrics on any dataset. This
may be a consequence of its internal joint–label loss func-
tion. It also increased the accuracy against the BR input
beliefs on two out of the three big datasets where it relied
on approximate queries. This further reinforces the claim on
approximation quality made in Section 4.1. On a side note,
pRSL showed no signs of overfitting (see Table 1 in the
appendix). Two hypotheses for pRSL’s worse performance
on birds, mediamill, and partially on medical, can be named:

The first is these datasets’ low density as seen in Table 2.
This issue is related to the problem of imbalanced classes,
which is a common pitfall in multi–label classification, es-
pecially on these particular datasets [Zhang et al., 2020].

The second hypothesis is that the initial beliefs of the under-
lying random forests that pRSL relied on were possibly in-
adequate. This is motivated by the fact that pRSL is the only
benchmarked learner that treats the inputs as probabilities,
whereas the other learners see them as scores. Additionally,
on each of the three aforementioned datasets, BR was out-
performed by its competitors in terms of hamming loss by
a considerable margin. To investigate this, Figure 4 shows
the calibration of the random forests’ probability estimates,
that is the relative amount of positive labels stratified by the
probability estimates given on them. The dashed bisector
visualizes the ideal case in which the classifier is neither

https://github.com/mkirchhof/rslBench
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Figure 4: Calibration of the Binary Relevance Classifiers on all Benchmark Datasets. Colors Indicate Different Folds.

under– nor overconfident. It can be seen that the random
forest is underconfident for birds, medical and slightly for
mediamill. To further assess the hypotheses, we calibrated
the random forests’ probability estimates using Platt scaling
[Platt, 2000] and relearned pRSL on the same hyperparame-
ter and initial values settings as before. However, the perfor-
mance stayed on an equal level despite expected sampling
uncertainty. This might indicate that the underconfidence is
not a reason but a symptom of the performance.

As a word of caution, we want to add that the aforemen-
tioned hypotheses require more elaborate testing on simu-
lation and real–world datasets. However, such experiments
are beyond the scope of this paper.

5 CONCLUSION

We introduced pRSL, a learner for multi–label classifica-
tion that relies on probabilistically extended propositional
logic rules. pRSL takes predictions of arbitrary underlying
classifiers as input and models the structure between labels
by weighting up and down combinations of labels with re-
spect to their contradiction or fulfillment of rules. These
rules can be given as any propositional logic formula or
learned in a noisy–or form. In the process, we extended the
noisy–or gate to multicategorical input. In comparing pRSL
to state–of–the–art black–box and interpretable methods on
several common benchmark datasets, we found that pRSL
is on par with them, albeit it does not outperform them by
a larger margin. We ascribe this to pRSL’s interpretable na-
ture, and to the fact that it is not yet implemented on GPU,
which could allow for a better gradient descent. Moreover,
we report promising results of loopy belief propagation al-
gorithms for approximate inference in the marginal and
most–probable–explanation case even on larger datasets.

Focusing on the methodological part in this paper, further
advanced classification problems have not been explored.
These include learning with missing data, with latent labels,
or when dynamically adding and removing classifiers and
labels from the ensemble. We will test pRSL’s robustness un-
der such conditions in upcoming work, with a focus on the
motivating logistics example. Further, we aim to gain more

theoretical insight into pRSL’s location in the field of simi-
lar approaches such as knowledge graphs and probabilistic
logic. This might allow to combine pRSL with approaches
that model the between–class structures in orthogonal ways.
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