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Abstract

We study linear contextual bandits with access to a
large, confounded, offline dataset that was sampled
from some fixed policy. We show that this problem
is closely related to a variant of the bandit problem
with side information. We construct a linear ban-
dit algorithm that takes advantage of the projected
information, and prove regret bounds. Our results
demonstrate the ability to take advantage of con-
founded offline data. Particularly, we prove regret
bounds that improve current bounds by a factor
related to the visible dimensionality of the contexts
in the data. Our results indicate that confounded
offline data can significantly improve online learn-
ing algorithms. Finally, we demonstrate various
characteristics of our approach through synthetic
simulations.

1 INTRODUCTION

The use of offline data for online control is of practical
interest in fields such as autonomous driving, healthcare,
dialogue systems, and recommender systems [Mirchevska
et al., 2017, Murphy et al., 2001, Li et al., 2016, Covington
et al., 2016]. There, an abundant amount of data is readily
available, potentially encompassing years of logged experi-
ence. This data can greatly reduce the need to interact with
the real world, as such interactions may be both costly and
unsafe [Amodei et al., 2016]. Nevertheless, as offline data is
usually generated in an uncontrolled manner, it poses major
challenges, such as unobserved states and actions. Failing to
take these into account may result in biased estimates that
are confounded by spurious correlation [Gottesman et al.,
2019a]. This work focuses on utilizing partially observable
offline data in an online bandit setting.

We consider the stochastic linear contextual bandit setting
[Auer, 2002, Chu et al., 2011, Zhou et al., 2019]. Here, the

context is a vector x ∈ Rd encompassing the full state of in-
formation. We assume to have additional access to an offline
dataset in which only L < d covariates (features) of the
context are available. The unobserved covariates in the data
are known as unobserved confounding factors in the causal
inference literature [Pearl and Mackenzie, 2018], which
may cause spurious associations in the data, rendering the
data useless unless further assumptions are made [Neuberg,
2003, Shpitser and Pearl, 2012, Bareinboim et al., 2015]. In
this work we assume that, when interacting with the online
environment, the full context is accessible, and search for
methods to combine both sources of information (online
and offline) to quickly converge to an optimal solution.

We construct an algorithm that is provably superior to an
algorithm which does not utilize the (partially observable)
information in the data. We recognize the following fun-
damental observation: Confounded offline data can (still)
be used to improve online learning, and specifically, that
partially observable offline data can be utilized as linear side
information (linear constraints) for the bandit problem.

While the bandit setting with confounded offline data has
already been explored, its combination with a fully observ-
able online environment is a new setting with particular
challenges and benefits. First, one cannot ensure identifi-
cation of an optimal policy with confounded offline data
(see Section 3). This has implications on safety and applica-
bility of algorithms which are based solely on offline data,
e.g., the confounding bias of offline critical care datasets
[Johnson et al., 2016]. Second, in contemporary widespread
applications, an abundant of offline data is readily available.
These application do not necessarily prevent interactions
with the real world. On the contrary, countless real-world
applications can access the real world. Still, such interac-
tions may be costly, time consuming, or unsafe. It is thus
vital to utilize the enormous amounts of previously collected
offline data to reduce as much as possible the need for online
interactions. We discuss two concrete examples from the
healthcare and traffic management domains below.
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Figure 1: (a) Block diagram of our setup: an online learner interacting with an environment while utilizing partially observable offline
data that was generated by a behavior policy πb. (b) This plot depicts the projection of Mw∗ = b. We show that partially observable
offline data can provide us with approximate linear side information of this form. The online learner must then estimate the orthogonal
subspace, attempting to reduce the effective dimensionality of the problem.

Healthcare. Consider the important challenge of cancer
chemotherapy control; specifically, optimal drug dosing for
cancer chemotherapy [Sbeity and Younes, 2015]. Clinicians
usually follow established guidelines for treating each pa-
tient, prescribing drug doses according to the stage of the
tumor, the weight of the patient, white blood cell levels,
concurrent illnesses, and the age of the patient. Suppose
we are given access to large amounts of medical records
of chemotherapy plans, specifying the frequency and dose
of drug administration as well as their effect on the patient.
Due to privacy regulations, the patients’ socioeconomic char-
acteristics are removed from the data. Nevertheless, these
features may have affected the physician’s decisions, as well
as the outcome of the prescribed treatments. Next, suppose
we are able to interact with the world, where the full state of
the patients’ information is available to us. How would we
efficiently construct an algorithm to automate chemother-
apy treatment while also utilizing the partially observable,
confounded data?

Smart City Traffic Management. Consider the problem
of adjusting traffic signals based on real-time traffic con-
ditions using video footage of cameras located over inter-
sections. The development time of the system consists of
continual addition of new labels (classes) for the different
types of vehicles and pedestrians based on relevant char-
acteristics that may affect traffic congestion. Due to this
recurrent process, data that was gathered in previous times
may render itself useless, outdated, and even harmless, un-
less handled properly. This is due to the fact that some of the
new information in the state was not previously collected,
yet is needed for training future control strategies. How
should one use the partially observable historical data for
improving the most recent online system?

In this work we show how the confounded information in the
data can be utilized for the online bandit problem. Figures 1
and 2 illustrate our basic setup and approach. We show

how confounded offline data can be thought of as linear
constraints to the online problem. These linear constraints,
are not fully known. They are in fact dependent on the cross-
correlation matrix of the context vector induced by policy
that generated the data (which we denote as the behavior
policy, πb). To learn these constraints and utilize them, we
approximate the cross-correlation matrix through online
interactions and carefully integrate them into our learning
algorithm, decreasing the overall regret.

The contributions of our work are as follows. As a funda-
mental contribution we propose a framework for combining
confounded offline data with online learning. This frame-
work is a gateway between fully confounded offline data
to online learning, and encompasses a variety of important
problems and applications. While this work only consid-
ers the linear bandit setting, it sets the building blocks and
insights needed for more complex settings (e.g., reinforce-
ment learning). Our second contribution shows that partially
observable confounded data can in fact be realized as linear
constraints for the online problem (see Section 3). To the
best of our knowledge, this work is the first to show this re-
lation. Finally, we prove that the overall regret can indeed be
decreased when using the confounded data. Our proof, too,
consists of technical obstacles related to the approximate
constraints, which must be learned simultaneously.

2 PROBLEM SETTING

Notations. We use [n] to denote the set {1, . . . , n}. We
denote by Im the m × m identity matrix. Let y, z ∈ Rd
and A,B ∈ Rd×d. We use ‖z‖2 to denote the `2-norm
and zT the transpose of z. The inner product is represented
as 〈z, y〉. For A semi-positive definite, the weighted `2-
norm is denoted by ‖z‖A =

√
zTAz. The minimum and

maximum singular values ofA are denoted by λmin(A) and
λmax(A) respectively. Furthermore, A � B if B − A is
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Figure 2: Previous work has dealt with bandits in the online setting. Other work integrated causal information to utilize confounded
offline data. This work combines the two through constraints on the online problem. In Section 4 we show how linear constraints can be
leveraged to achieve better regret for the bandit problem (Theorem 1). Then, in Section 5 partial linear constraints are estimated from
online interactions, and then utilized efficiently by our learning algorithm. Note that ba is not estimated as it is previously computed
from the offline data (see Section 3). Finally, due to fast convergence of the linear constraints, improved performance is still achieved
(Theorem 2).

positive semi-definite. The spectral norm of A is denoted
by ‖A‖2 = sup‖x‖2=1 ‖Ax‖2. The Moore-Penrose inverse
of A is denoted by A†. Finally, we use O(x) to refer to a
quantity that depends on x up to a poly-log expression in
d, T and δ, and Õ(x) represents the leading dependence of
x in d, T and K.

Setup. Our basic framework consists of sequential in-
teractions of a learner with an environment. We assume
the following protocol, which proceeds in discrete trials
t = 1, . . . , T . At each round t ∈ [T ] the environment
outputs a context xt ∈ X ⊆ Rd sampled from some
unknown distribution Px. We assume that x1, . . . xT are
i.i.d. Based on observed payoffs in previous trials, the
learner chooses an action at ∈ A, where A = [K] is the
learner’s action space. Subsequently, the learner observes
a reward rt =

〈
xt, w

∗
at

〉
+ ηt, where

{
w∗a ∈ Rd

}
a∈A are

unknown parameter vectors, and ηt is some conditionally
σ-subgaussian random noise, i.e., for some σ > 0

E
[
eληt

∣∣ Ft−1 ] ≤ exp

(
λ2σ2

2

)
.

Here, {Ft}∞t=0 is any filtration of σ-algebras such that
for any t ≥ 1, xt is Ft−1-measurable and ηt is
Ft-measurable, e.g., the natural σ-algebra Ft−1 =
σ ((x1, a1, η1), . . . , (xt−1, at−1, ηt−1), xt, at).

The goal of the learner is to maximize the total re-
ward

∑T
t=1

〈
xt, w

∗
at

〉
accumulated over the course of T

rounds. We evaluate the learner against the optimal strategy,
which has knowledge of

{
w∗a ∈ Rd

}
a∈A, namely π∗(x) ∈

argmaxa∈A〈x,w∗a〉. The difference between the learner
and optimal strategy’s total reward is known as the regret,
and is given by

Regret (T ) =
T∑
t=1

〈
xt, w

∗
π∗(xt)

〉
−

T∑
t=1

〈
xt, w

∗
at

〉
.

In this work we assume to have additional access to a par-
tially observable offline dataset, consisting of partially ob-

servable contexts, actions, and rewards. Specifically, we
assume a dataset D = {Qxi, ai, ri}Ni=1, in which {xi}Ni=1

are i.i.d. samples from Px, {ai}Ni=1 were generated by some
fixed behavior policy, denoted by πb, which is a mapping
from contexts x ∈ X to a probability over actions, and
{ri}Ni=1 were generated by the same model described above.
Here, we used Q ∈ RL×d to denote the rectangular matrix
Q =

(
IL 0

)
. That is, without loss of generality, we as-

sume only the first L features of xi are visible in the data.
Throughout our work we will sometimes use the notation
xo and xh to denote the observed and unobserved (hidden)
covariates of x, respectively. That is, x =

(
(xo)T , (xh)T

)T
,

where xo ∈ RL, xh ∈ Rd−L.

Notice that the distribution of D = {xoi , ai, ri}
N
i=1, the

partially observable dataset, depends on πb. Any statistic
we attempt to draw from the offline data depends on the
measure induced by πb, which we denote by Pπb 1. Figure 1
depicts a diagram of our basic setup and approach.

3 FROM PARTIALLY OBSERVABLE
OFFLINE DATA TO LINEAR SIDE
INFORMATION

Consider only having access to the partially observable of-
fline data D. Having access to such data is mostly useless
without further assumptions. Particularly, w∗a may not be
identifiable 2. In fact, it can be shown that for any behav-
ioral policy πb and induced measure Pπb , {w∗a}a∈A are not
identifiable. More specifically, for all w1 =

{
w1
a

}
a∈A, ex-

ist w2 =
{
w2
a

}
a∈A 6= w2 and probability measures P1, P2

such that P1

(
xo, a, r;w1, πb

)
= P2

(
xo, a, r;w2, πb

)
and

1More precisely, we define the measure Pπb for all Borel sets
R ⊆ [0, 1], X ⊆ X and A ∈ A Pπb(r ∈ R, x ∈ X, a ∈ A) =
P (r ∈ R|x ∈ X, a ∈ A)P (x ∈ X)

∫
x′∈X,a′∈A 1{a=a′,x=x′}dπb.

2We use the notion of identifiability as defined in Definition 2
of Pearl et al. [2009]



 πb
(
a, x;w1

)
= πb

(
a, x;w2

)
. This claim is a standard type

of result. A proof is provided in the supplementary material.

To mitigate the identification problem, prior knowledge of
characteristics of {w∗a}a∈A can be leveraged [Cinelli et al.,
2019]. Instead, here we consider access to an online envi-
ronment, where the covariates that were unobserved in the
data are supplied, i.e., fully observed. This enables us to
deconfound the data and identify {w∗a}a∈A.

Prior to constructing our algorithmic approach, we discuss
the relation of confounded offline data to partially known
linear constraints. This connection is a principal component
of our work which enables us to utilize the (possibly not
identifiable) partially observable data.

3.1 LINEAR SIDE INFORMATION

In what follows, we show how partially observable
data can be reduced to linear constraints of the form
{Maw

∗
a = ba, a ∈ A}. Nevertheless Ma will not be iden-

tifiable solely from the offline data. More specifically, we
specify a low dimensional least squares problem under a
model mismatch, showing it converges to a solution with
unique structural properties. This will become beneficial in
our analysis later on, allowing us to project the linear bandit
problem to an approximate lower dimensional subspace,
improving performance guarantees.

Let us first consider the case of fully-observable offline data,
i.e., xo = x. Here, one would be able (with large amounts
of data) to closely estimate w∗a for all a ∈ A, using, for
example, the linear regression estimator

ŵa =

(
1

Na

Na∑
i=1

xix
T
i

)−1(
1

Na

Na∑
i=1

xiri

)
,

where we denoted Na =
∑N
i=1 1{ai=a}. With N →∞, un-

der mild assumptions, this estimator would converge to the
true weights w∗a almost surely. It is tempting to try and ap-
ply a least square estimator to our partially observable data
using a lower dimensional model. Particularly, we might try
to solve the optimization problem

min
b∈RL

Na∑
i=1

(〈xoi , b〉 − ri)
2

,∀a ∈ A,

ignoring the fact that ri = xTi w
∗
a + ηi, i.e., that ri was

generated by a higher dimensional linear model. Solving
this problem yields

bLSa =

(
1

Na

Na∑
i=1

(xoi ) (x
o
i )
T

)−1(
1

Na

Na∑
i=1

xori

)
. (1)

The following proposition establishes our first main result –
a relation between the lower-dimension least-square estima-

tor bLSa and the vector w∗a in the limit of large data N →∞
(We discuss the finite data setting in Section 8).

Proposition 1. [Confoundness = Linear Constraints]
Let R11(a) = Eπb

[
xo (xo)

T
∣∣∣ a ], R12(a) =

Eπb
[
xo
(
xh
)T ∣∣∣ a ]. Assume R11(a) is invertible for

all a ∈ A 3. Then, the following holds almost surely for all
a ∈ A.

lim
N→∞

bLSa =

(
IL, R−111 (a)R12(a)

)
w∗a.

The proof of the proposition is related to regression anal-
ysis with misspecified models (see e.g., Griliches [1957])
and is provided in the supplementary material. It states that,
with an infinite amount of data, the low-dimensional least
squares estimator in Equation (1) converges to a linear trans-
formation of w∗a. This linear transformation depends on the
auto-correlation matrix of xo, R11(a), and the cross corre-
lation matrix of xo and xh, R12(a). While R11(a) can be
estimated from the data, R12(a) depends on unseen features
of x, namely xh, as well as the behavior policy πb, and can
thus not be approximated from the given data. As such, we
will later assume access to a monotonically non-increasing
bound of R12(a) for all a ∈ A. As we discuss in Section 5,
such a bound can be achieved, for example, through queries
to πb (i.e., samples a ∼ πb).

Proposition 1 provides us with a structural dependency be-
tween w∗a and the low-order least squares estimator bLSa that
can be calculated from the offline data. Specifically, every
w∗a is constrained to a set

{
w ∈ Rd :Mw = b

}
, for some

full row rank matrix M ∈ RL×d and vector b ∈ RL. A nat-
ural question arises: How can such linear side information
be used? In the next section we show that we can decrease
the effective dimensionality of our problem using such lin-
ear side information whenever M and b are known exactly.
Then, in Section 5, we expand this result using estimates of
the linear relation in Proposition 1. We provide improved
regret bounds on the linear contextual bandit problem, con-
sequently exploiting the confounded information present in
the partially observable data.

4 LINEAR CONTEXTUAL BANDITS
WITH LINEAR SIDE INFORMATION

In the previous section we showed how partially observable
data can be reduced to linear constraints. Before diving into
the subtleties of utilizing the specific structural properties
of the linear relations in Proposition 1, we form a general

3The invertibility assumption on R11 can be verified, since
R11 can be estimated by statistics of the observable covariates, xo.
If it does not hold, other covariates of xo can be chosen to satisfy
this assumption.



 result for linear bandits under linear side information when
both M and b are given. Particularly, we show that linear
side information can be used to improve performance by
decreasing the effective dimensionality of the underlying
problem.

Assume we are given linear side information

Maw
∗
a = ba , a ∈ A. (2)

In this section we assume Ma ∈ RL×d, ba ∈ RL are known,
and don’t assume any structural characteristics. Without loss
of generality assume that {Ma}a∈A are full row rank 4. One
way of using the relations in Equation (2) is by constraining
an online learning algorithm to a lower dimensional space.
Particularly, notice that for all a ∈ A,

w∗a ∈
{
w ∈ Rd : w =M†aba + Paw

}
, (3)

where Pa is the orthogonal projection onto the kernel ofMa,
and is given by Pa = I −M†aMa. Equation (3) suggests
that knowledge of the linear relation in Equation (2) may
allow us to reduce the estimation problem to that of the
projected vector, Paw∗a. Indeed, we may attempt to solve
the following corrected, low order ridge regression problem

min
w∈Rd

{
t−1∑
i=1

(〈xi, Paw〉 − ya,i)2 + λ ‖Paw‖22

}
, (4)

where ya,i = ri −
〈
xi,M

†
aibai

〉
. Taking its smallest norm

solution yields

ŵPat,a =

(
Pa

(
λI +

t−1∑
i=1

xix
T
i

)
Pa

)†
×(

t−1∑
i=1

rixi −
t−1∑
i=1

xix
T
i M

†
aba

)
. (5)

Perhaps intuitively, this least squares estimator is in fact
equivalent to one in a lower dimensional space Rm, the
rank of Pa. Indeed, letting Pa = UUT , where U ∈ Rd×m
is a matrix with orthonormal columns5, we have that (see
supplementary material for full derivation)

UT ŵPat,a =

(
λIm +

t−1∑
i=1

(
UTxi

) (
UTxi

)T)−1×(
t−1∑
i=1

ya,i
(
UTxi

))
.

4If Ma is not full row rank, we remove dependent rows. In
fact, we assume L to be the rank of Ma.

5As orthogonal projection matrices have eigenvalues which are
either 0 or 1, any projection matrix can be decomposed into P =
UUT , where U is a matrix with rank(P ) orthonormal columns.

Algorithm 1 OFUL with Linear Side Information

1: input: α > 0,Ma ∈ RL×d, ba ∈ RL, δ > 0

2: init: Va = λId, Ya = 0, ∀a ∈ A

3: for t = 1, . . . do

4: Receive context xt

5: ŵPat,a = (PaVaPa)
† (Ya − (Va − λId)M†aba

)
6: ŷt,a =

〈
xt,M

†
aba
〉
+
〈
xt, ŵ

Pa
t,a

〉
7: UCBt,a =

√
βt(δ) ‖xt‖(PaVaPa)†

8: at ∈ argmaxa∈A{ŷt,a + αUCBt,a}

9: Play action at and receive reward rt

10: Vat = Vat + xtx
T
t , Yat = Yat + xtrt

11: end for

That is, UT ŵPat,a is a least squares estimator in Rm.

We are now ready to construct a least squares variant for
w∗a, which utilizes the information in Equation (2). Having
an estimation for Paw∗a, we make use of the set defined in
Equation (3) to construct our final estimator ŵa,t =M†aba+

ŵPat,a, where ŵPat,a is given by Equation (5). Then, estimation
of ŵa,t will depend on the rank of Pa, i.e., rank(Pa) =
d − L. In what follows we will show how this projected
estimator can be integrated into a linear bandit algorithm,
reducing its effective dimensionality to that of the rank of
Pa, i.e., d− L.

Algorithm 1 describes the reduction of the OFUL algorithm
[Abbasi-Yadkori et al., 2011] to its projected variant, in
which linear side information is leveraged by means of
low order ridge regression (Equations (4)) to decrease the
effective dimensionality of the problem. In Line 5 of the
algorithm, the estimator of Equation (5) for Paw∗a is used.
This becomes useful in Line 7, as the confidence set around
w∗a is reduced to a lower dimension, i.e., d− L.

For all a ∈ A, assume ‖Paxi‖2 ≤ Sx,o al-
most surely and ‖Paw∗a‖2 ≤ Sw,o. Letting√
βt(δ) = λ1/2Sw,o + σ

√
(d− L)log

(
K(1+tS2

x,o/λ)

δ

)
,

the following theorem provides the improved regret of Al-
gorithm 1. Its proof is given in the supplementary material,
and is based on a reduction of the linear bandit problem to a
lower dimensional space, based on Equation (5).

Theorem 1. For all T ≥ 0, with probability at least 1− δ,
the regret of Algorithm 1 is bounded by

RegretT ≤ Õ
(
(d− L)

√
KT

)
.

Indeed, by Theorem 1, linear relations of rank L reduce the
linear bandit problem to a lower dimensional problem, with
regret guarantees that are equivalent to those of a linear ban-
dit problem of dimension d−L. However, these results hold



 Algorithm 2 OFUL with Partially Observable Offline Data

1: input: α>0, δ>0, T , ba∈RL (from dataset)

2: for n = 0, . . . , log2 (T )− 1 do

3: Use 2n previous samples from πb to

update the estimate of M̂2n,a, ∀a ∈ A

4: Calculate M̂†2n,a, P̂2n,a, ∀a ∈ A

5: Run Algorithm 1 for 2n time steps with bonus√
βn,t(δ) and M̂2n,a, ba

6: end for

only for Ma, ba that are fully known. When {Ma}a∈A are
unknown, we must rely on estimations of Ma. The accuracy
of our estimation as well as its rate of convergence would
highly affect the applicability of such constraints. As we
will see next, the linear transformation of Proposition 1 can
be efficiently estimated whenever R12 can be efficiently es-
timated. Such an assumption will allow us to achieve similar
regret guarantees under mild conditions.

5 DECONFOUNDING PARTIALLY
OBSERVABLE DATA

This section builds upon the observations collected in the
previous sections in order to construct our second main
result: an algorithm that leverages large, partially observ-
able, offline data in the online linear bandit setting. While
Proposition 1 seemingly provides us with linear side infor-
mation in the form of linear equalities Maw

∗ = ba, the
matrix Ma cannot be obtained from the partially observable
offline data, since R12(a) depends on the unobserved co-
variates xh, as well as the behavior policy πb. Nevertheless
Ma =

(
IL, R−111 (a)R12(a)

)
can be efficiently estimated

whenever R12(a) = Eπb
[
xo
(
xh
)T ∣∣∣ a ] can be efficiently

estimated. Particularly we make the following assumption.

Assumption 1. We assume for every t > 0 we can approxi-
mate R12(a),∀a ∈ .A such that∥∥∥R12(a)− R̂12(a, t)

∥∥∥
2
≤ g(d, L)√

t
w.h.p.

5.1 CASE STUDY: QUERIES TO πb

Consider the problem of identifying the statistic R12(a).
Due to its dependence on πb, this may be impossible with-
out access to πb or other information on its induced mea-
sure, Pπb . As such, we assume that during online interac-
tions, the online learner can query πb, i.e., sample an action
ab ∼ πb(x).

Having access to queries from πb, we can construct an online
estimator for the cross-correlation matrix R12(a). More

specifically, at each round t ∈ [T ], we observe a context xt
and query πb by sampling abt ∼ πb(xt). We then estimate
R12(a) using the empirical estimator6

R̂12(a, t) =
1

t

t∑
i=1

1{ai=a}

Pπb(a)
(xoi )

(
xhi
)T
,

where Pπb(a) is known due to the offline data. Assuming
‖xo‖2 ≤ S1 and

∥∥xh∥∥
2
≤ S2 a.s., it can be shown that

with probability at least 1− δ (see supplementary material,
Lemma ??, for proof)∥∥∥R12(a)− R̂12(a, t)

∥∥∥
2
≤

O

S1S2

√√√√1

t

(√
trace (R11) trace (R22)

S1S2

)
log

(
d

δ

) ,

indeed, satisfying Assumption 1. We can now naturally
construct an estimator for Ma. Its estimator is given by

M̂t,a =

(
IL, R−111 (a)R̂12(a, t)

)
. (6)

A natural question arises: can the estimated linear con-
straints M̂aw

∗
a = ba be used as linear side information

while still maintaining the regret guarantees of Theorem 1,
i.e., decrease the effective dimensionality of the problems
from d to d−L? Specifically, we wish to construct a variant
of Algorithm 1 in which M̂t,a are used as linear side infor-
mation. In this setting the estimated projection matrix P̂t,a
and the estimated Moore-Pensore Inverse M̂†t,a are directly
calculated from M̂t,a, i.e., these matrices are approximate.

Algorithm 2 describes the linear bandit variant with
partially observable confounded data. Note that, unlike
Algorithm 1, Algorithm 2 is not an anytime algorithm,
but rather acts knowing the horizon T . Assuming
‖xi‖2 ≤ Sx a.s. and ‖w∗a‖2 ≤ Sw for all a ∈ A,
the algorithm uses an augmented confidence, given by√
βn,t(δ) = λ1/2Sw + (σ + SxSwfn)

√
(d− L)log

(
1+tS2

x/λ
δ/2log(T )K

)
,

where fn = fB1 + fB22
−n/2, fB1 =

Õ
(
maxa

λmin(R11(a))
−1

Pπb (a) Sx(trace (R11(a)) trace (R22(a)))
1/4
)

and fB2 = Õ
(
maxa

λmin(R11(a))
−1

Pπb (a) S2
x

)
. At every time

step t ∈ [T ], the learner uses the estimate M̂t,a and
subsequently considers it to be linear side information, as
in Algorithm 1. The following theorem provides regret
guarantees for Algorithm 2, proving partially observable
data can be beneficial for online learning.

6In fact, we can construct a tighter estimator for R12(a) using
our knowledge of Eπb [xo | a ], which can be estimated exactly
from the offline data. We leave its analysis out for clarity.
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Figure 3: All experiments were conducted with the same vectors w∗a of dimension d = 30 and K = 30 arms. (a) Plot compares effect
of L when R12 is known (solid lines) vs. estimated (dashed lines). For L = 0 (i.e., no side information) we executed Algorithm 1 without
using the dataset. (b) Comparison of different values of α using an offilne dataset and L = 25. (c) Effect of dataset size on performance
for L = 25.

Theorem 2. For any T > 0, with probability at least 1 −
δ, the regret of Algorithm 2 with the estimator given in
Equation (6) is bounded by

Regret(T ) ≤ 3

√
T (d− L)Klog

(
λ+

TS2
x

d− L

)
×(

σε

√
(d− L)log

(
1 + TS2

x/λ

δ/(2Klog (T ))

)
+ λ1/2Sw

)
+

O
(
(d− L)

√
KSxSwfB2

)
,

where ε = SxSwfB1 and σε = σ + ε. This leads to,
Regret (T ) ≤ Õ

(
(1 + fB1

)(d− L)
√
KT

)
.

Notice that, unlike Theorem 1, the regret of Algo-
rithm 2 is worsened asymptotically by a factor re-
lating to fB1

. This function can also scale with
d, due to its dependence on (trace (R11(a)))

1/4 and
(trace (R22(a)))

1/4. Specifically, a worst case depen-

dence yields fB1
≤ Õ

(
maxa

(L(d−L))1/4
Pπb (a)

)
, where here

maxa
1

Pπb (a) ≥ K. That is, fB1
is a factor indicating how

hard it is to approximate the linear constraints, dependent
on the amount of information in x as well as the support of
the behavior policy, πb. Still, in settings in which d and T
are prominent over K, a significant improvement in perfor-
mance is achieved.

The proof of the theorem is provided in the supplementary
material. Unlike in Theorem 1, we do not have access to
the true matrices M†a , Pa, but to increasingly more accurate
estimates of these matrices. To deal with this more challeng-
ing situation we use the doubling trick. The algorithm acts
in exponentially increasing episodes. In each such episode,
we fix the estimation of Ma, i.e., we use the estimate of Ma

available at the beginning of the episode. The analysis of this
algorithm amounts to study the performance of the exact al-
gorithm (as in Theorem 1) up to a fixed, approximated, Ma,

which induces errors in the used M†a , Pa. Finally, summing
the regret on each episode, we obtain the result.

The proof heavily relies on the convergence prop-
erties of Pa,M

†, which are shown to converge
at a rate of O(T−1/2). These convergence rates
are due to the special structure of Ma. Specifi-
cally, we prove that

∥∥∥Pa − P̂t,a∥∥∥ ≤ 2
∥∥∥Ma − M̂t,a

∥∥∥ and∥∥∥M†a − M̂†t,a∥∥∥ ≤ 2
∥∥∥Ma − M̂t,a

∥∥∥, meaning, the conver-

gence of P̂t,a and M̂†t,a is well controlled by the convergence
of M̂t,a. This property does not hold for general matrices.
In fact, for a general matrix A, A† is not even continuous
w.r.t. perturbations in A (see e.g., Stewart 1969). Thus, the
structure of Ma establishes convergence rates of P̂t,a, M̂

†
t,a

sufficient to achieve the desired regret.

Algorithm 2 is highly wasteful w.r.t. the information gath-
ered through time. Specifically, it discards all information
upon updates of M̂t,a. In a practical setting, we expect the
algorithm to achieve similar performance guarantees even
when information is not discarded. Moreover, as we show
empirically in the next section, significant improvement can
still be achieved without applying the doubling trick, i.e., by
running Algorithm, 1 with the approximated M̂t,a.

6 EXPERIMENTS

In this section we demonstrate the effectiveness of us-
ing offline data in a synthetic environment. Our environ-
ment consisted of K = 30 arms and vectors w∗a ∈ R30

uniformly sampled in
[
0, 1d

]d
and fixed across all exper-

iments. Contexts were sampled from a uniform distribu-
tion in [0, 1]

d and normalized to have norm 1. The behav-
ioral policy πb was chosen to follow a softmax distribution
πb(a, x) ∝ exp

(
φTa x

)
, where φa ∈ Rd were randomly

chosen and fixed across all experiments.



 Figure 3a illustrates the effectiveness of using partially ob-
servable data. We used a dataset of 1 million examples to
simulate a sufficiently large dataset. Solid lines depict regret
when R12(a) are known in advance, allowing us to apply
Algorithm 1 without estimations (Section 4). Dashed lines
depict regret for the estimated case using queries to πb, i.e.,
Ma were estimated at every iteration using an estimate of
R12(a) (see Section 5). Note that L = 0 corresponds to
the linear bandit problem with no side information, i.e., the
original OFUL algorithm. It is evident that utilizing the
partially observable data can significantly improve perfor-
mance, even when using approximate projections. We note
that the experiments were run under constant updates of
M̂t,a, i.e., without epoch schedules.

Figure 3b depicts the effect of the optimism parameter α
(see Algorithm 1) on overall performance when utilizing a
dataset with L = 25 observed features. A gap is evident be-
tween the proposed theoretical confidence and the practical
results, as very small values of α showed best performance.
This gap is most likely due to worst case scenarios that were
not imposed by our simulated environments.

Finally, Figure 3c depicts experiments with varying amount
of data. While the number of examples has an effect, it does
not significantly deteriorate overall performance, suggesting
that partially observable offline data can be used even with
finite datasets, as long as they are sufficiently large.

7 RELATED WORK

The linear bandits problem, first introduced by Auer [2002],
has been extensively investigated in the pure online setting
[Dani et al., 2008, Rusmevichientong and Tsitsiklis, 2010,
Abbasi-Yadkori et al., 2011], with numerous variants and
extensions [Agrawal and Devanur, 2016, Kazerouni et al.,
2017, Amani et al., 2019].

The offline (logged) bandit setting usually assumes the algo-
rithm must learn a policy from a batch of fully observable
data [Shivaswamy and Joachims, 2012, Swaminathan and
Joachims, 2015, Joachims et al., 2018]. The use of offline
data has also been investigated under the reinforcement
learning framework, including batch-mode off-policy rein-
forcement learning and off-policy evaluation [Ernst et al.,
2005, Lizotte et al., 2012, Fonteneau et al., 2013, Precup,
2000, Thomas and Brunskill, 2016, Gottesman et al., 2019b]

More related to our work are attempts to establish unbi-
ased estimates or control schemes from confounded offline
data [Lattimore et al., 2016, Oberst and Sontag, 2019, Ten-
nenholtz et al., 2020]. Other work in which partially ob-
servable data is used usually consider the standard con-
founded setting (e.g., identification of P (r|do(a))) [Zhang
and Bareinboim, 2019, Ye et al., 2020]. Wang et al. [2016]
also consider hidden features, where biases are accounted
for under assumptions on the hidden features. In these works

the unobserved features (confounders) are never disclosed
to the learner. Prior knowledge is thereby usually assumed
over their support (e.g., known bounds). When such priors
are unknown, these methods may thus fail. Moreover, they
are sub-optimal in settings of fully observable interactions,
where unobserved confounders become observed covariates.

In this work we view the problem from an online learner’s
perspective, where offline data is used as side information.
Specifically we project the given information, reducing our
problem to its orthogonal subspace. Projections have been
previously used in the bandit setting for reducing time com-
plexity and dimensionality [Yu et al., 2017]. Other work
consider bandits under constraints [Agrawal and Devanur,
2019]. Finally, Djolonga et al. [2013] consider subspace-
learning by combining Gaussian Process UCB sampling and
low-rank matrix recovery techniques.

8 DISCUSSION AND FUTURE WORK

In this work we showed that partially observable confounded
data can be efficiently utilized in the linear bandit setting.
In this section we further discuss two central assumptions
made in our work; namely, infinite data and bounding the
cross correlation matrix R12.

Finite Data. Throughout our work we assumed the limit of
infinite sized data. From a technical perspective, the use of
finite data would introduce an error in the least squares esti-
mator [Krikheli and Leshem, 2018]. A straightforward anal-
ysis would propagate this error as additional linear penalty
to the regret that is dependent on the number of samples in
the data. More involved techniques may combine optimistic
bounds on the finite samples in the data. We chose to leave
its derivation out to focus on the topic of missing covariates
in the data. Finally, our experiments demonstrate that the
number of samples does not greatly affect performance, as
long as they are sufficiently large, i.e., when the error is
small relative to T .

Bounding R12. Being able to estimate R12(a) is an essen-
tial requirement for deconfounding the partially observable
data. Nevertheless, R12(a) is dependent on πb, raising the
question, can R12(a) be estimated without knowledge of
πb? In our work we showed how one can estimate it using
queries to πb. In fact, we did not require knowledge of πb,
nor did we require interactions of πb with the environment
(i.e., we do not act according to πb), but rather, only view
samples from πb. While such an assumption may be strict
in some settings, it is reasonable in others. For instance,
when πb was controlled by us when the data was recorded.
Other settings for estimating R12(a) are also possible, e.g.,
having access to additional fully observable datasets that
were generated by πb [Kallus et al., 2018].

Consider the examples of the healthcare and traffic manage-
ment settings presented in Section 1. In the medical setting,



 quering πb would amount to asking the clinician that in-
duced the data what she would have done in a provided
situation. In this scenario, cooperation of the clinician is
needed to deconfound the data. Nevertheless, note that this
approach is not limited by the amount of confounding bias
inherent in the data, allowing us identify optimal control
policies. Unlike the medical example, in the traffic manage-
ment example we have access to the behavior policy that
generated the data. In this scenario, the querying assumption
is insignificant.

Future Work. While this work assumed a monotonically
vanishing error of R̂12(a) (i.e., asymptotic identifiability),
future work can consider looser bounds on the estimate.
It is also interesting to understand the contextual bandit
algorithms, both in the linear as well as the general function
class settings. It is also interesting to generalize our results
to the reinforcement learning setting.
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