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Abstract

Detecting out-of-distribution (OOD) samples is
of paramount importance in all machine learn-
ing applications. Deep generative modeling has
emerged as a dominant paradigm to model com-
plex data distributions without labels. However,
prior work has shown that generative models tend
to assign higher likelihoods to OOD samples com-
pared to the data distribution on which they were
trained. First, we propose Adversarial Mirrored Au-
toencoder (AMA), a variant of Adversarial Auto-
Encoder, which uses a mirrored Wasserstein loss
in the discriminator to enforce better semantic-
level reconstruction. We also propose a latent
space regularization to learn a compact manifold
for in-distribution samples. The use of AMA pro-
duces better feature representations that improve
anomaly detection performance. Second, we put
forward an alternative measure of anomaly score
to replace the reconstruction-based metric which
has been traditionally used in generative model-
based anomaly detection methods. Our method
outperforms the current state-of-the-art methods
for anomaly detection on several OOD detection
benchmarks.

1 INTRODUCTION

When deploying machine learning models in the real
world, we need to ensure safety and reliability along with
the performance. The models which perform well on the
training data can be easily fooled when deployed in the
wild[Nguyen et al., 2014, Szegedy et al., 2013]. Recogniz-
ing novel or anomalous samples in the landscape of con-
stantly changing data is considered an important problem in
AI safety [Amodei et al., 2016]. Flagging anomalies is of ut-
most importance in many real-life applications of machine

learning such as self-driving and medical diagnosis. The
task of identifying such novel or anomalous samples has
been formalized as Anomaly Detection (AD). This problem
has been studied for several years under various names, as
thoroughly discussed in [Hodge and Austin, 2004, Chan-
dola et al., 2009, Chalapathy and Chawla, 2019, Ruff et al.,
2020].

If the training data has the class labels available, several
approaches have been proposed for OOD detection with a
neural network classifier [Liang et al., 2017, Vyas et al.,
2018, Hendrycks et al., 2018, Lee et al., 2018, Hsu et al.,
2020]. While these methods perform exceptionally well,
they cannot be used in unsupervised or one class classifi-
cation scenarios where labels are missing or not available
for most of the classes. For instance, in credit card fraud
recognition task, we are presented with a lot of normal trans-
actions but no additional label available for transaction type.
A rather obvious choice in such cases is to learn the un-
derlying distribution of the data using generative models.
Within deep generative models, two styles of approaches
are popular, (1) likelihood based techniques, in which we
train likelihood models such as flows [Kingma and Dhari-
wal, 2018] or Autoregressive models [Salimans et al., 2017],
and use the likelihood scores from the trained models to de-
tect outliers,(2) Auto-Encoder (AE) style approaches where
reconstruction error of a given input is used to recognize
the anomalies. While likelihood based approaches allow
computation of exact likelihood for a given sample, they are
found to assign high likelihood score to out-of-distribution
samples as noted in the recent literature [Choi et al., 2018,
Nalisnick et al., 2018, Ren et al., 2019]. The goal of AE
based approaches is to learn a good latent representation
of data by either performing reconstruction or adversarial
training with a discriminator [Schlegl et al., 2017, Zenati
et al., 2018, Akçay et al., 2019, Ngo et al., 2019].

In this work, we focus on the latter, i.e., the AE style
methods and resolve two specific problems associated with
them. First, the `p loss used for reconstruction in Auto-
Encoder (AE) methods compares only pixel-level errors
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 but does not capture the high-level structure in the image.
[Munjal et al., 2020, Rosca et al., 2017] proposed to allevi-
ate this problem by introducing an adversarial loss [Good-
fellow et al., 2014]. While adversarial loss fixes the prob-
lem of blurry reconstructions in low-diversity settings such
as CelebA [Liu et al., 2018] faces, quality of reconstruc-
tion remains poor for more diverse datasets such as CI-
FAR [Krizhevsky et al., 2009] with many unrelated sub-
classes like cats, and airplanes [Munjal et al., 2020]. We
posit that this issue arises because the loss function in [Mun-
jal et al., 2020] compares distributions for a batch of samples
but not the individual samples themselves. Hence a cat im-
age reconstructed as an airplane is still a feasible solution
since both airplane and cat belong to the same unlabeled
input distribution. To address this problem, we propose Mir-
rored Wasserstein loss, where for a given sample x and its
reconstruction x̂, a discriminator measures the Wasserstein
distance between the joint distribution (x,x) and (x, x̂).
Stacking the image with its reconstruction allows discrimina-
tor to not only minimize the distance between distributions
of images and reconstructions as before but also ensures that
each reconstruction is pushed closer to its ground truth. In
§ 3.1, we give an intuition on how the mirrored Wasserstein
loss improves the reconstructions quality as compared to
the Wasserstein loss.

The second problem associated with AE methods is the
regularization of latent space. In absence of explicit regular-
ization, the model ends up over-fitting the training distribu-
tion. Several regularization approaches have been proposed
in the past [Kingma and Welling, 2013, Makhzani et al.,
2015], typically with a goal of sampling from the latent
distribution. In our work, we consider regularizing the la-
tent space of the model from the perspective of anomaly
detection. Ideally, we want the latent space to be smooth
and compact for the samples within the distribution, while
simultaneously pushing away out-of-distribution samples.
To this end, we perform a simplex interpolation between
latent representations of multiple samples in the training
data to ensure that decoder reconstructions of these latents
are also realistic [Berthelot et al., 2018]. For the training
purposes, we generate synthetic negative samples by sam-
pling from atypical set in latent space [Cover, 1999]. Our
latent space regularizer ensures high quality reconstructions
for in-distribution latent codes, thus improving the Anomaly
Detection performance as demonstrated quantitatively in
Section 4.

In summary, our main contributions are:

• We propose Adversarial Mirrored AutoEncoder
(AMA), an Auto-Encoder Discriminator style network
that uses Mirrored Wasserstein loss in the discriminator
to enforce better reconstructions on diverse datasets.

• We propose latent space regularization during train-
ing by performing Simplex Interpolation of normal

samples in the latent space and by sampling synthetic
negatives by Atypical Selection and optimizing the
latent space to be away from them.

• We propose an anomaly score metric that generates
likelihood-like estimate for a given sample with respect
to the distribution of reconstruction scores of training
data.

Please find the AMA implementation at https://
github.com/somepago/AMA

2 RELATED WORK

The problem we are trying to solve is OOD detection in
datasets with no class labels. This problem is studied under
various names in the literature such as One-class classifica-
tion, Novelty detection, and so on.

Likelihood based approaches: Since generative modeling
techniques such as Glow [Kingma and Dhariwal, 2018],
PixelRNN [Oord et al., 2016], or PixelCNN++ [Salimans
et al., 2017] allow us to compute exact likelihood of data
samples, several anomaly detection methods are built on the
top of the likelihood estimates provided by these models.
LLR [Ren et al., 2019] proposes to train two models, one
on the background statistics of the training data by random
sampling of pixels and second model on the training data
itself. Given an image, anomaly score is given by the ratio
of likelihoods predicted by these two models. WAIC [Choi
et al., 2018] suggests to use Watanabe Akaike Information
Criteria calculated over ensembles of generative model as
anomaly scoring metric. Serrà et al. [2019] proposes an
S-criterion, which is calculated by subtracting complexity
estimate of the image from the negative log-likelihood pre-
dicted by a PixelCNN++ or a Glow model. Typicality test
is used for OOD detection in Nalisnick et al. [2019] by em-
ploying a Monte-Carlo estimate of the empirical entropy. A
limitation of this method is that it needs multiple images at
the same time for evaluation.

Some recent studies [Choi et al., 2018, Nalisnick et al.,
2018, Ren et al., 2019] suggest that deep generative models
trained on a dataset (say CIFAR-10) could assign higher
likelihoods to some out-of-distribution (OOD) images (e.g.
SVHN). This behaviour is persistent in a wide range of
generative models such as VAE, Glow, PixelRNN, and Pix-
elCNN++ and raises the question whether the likelihood
provided by these approaches can be reliably used for de-
tecting anomalies.

Auto-Encoders or GANs based methods: A number of
methods proposed recently use a different kind of metric
for scoring anomalies. In DeepSVDD [Ruff et al., 2018],
an Encoder-Decoder network is used to learn the latent rep-
resentations of the data while minimizing the volume of a
lower-dimensional hypersphere that encloses them. They
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Figure 1: AMA pipeline: Our model consists of an Encoder E, a Generator G and a Discriminator D. (a) First we train the
model on all the training samples by optimizing the min-max objective from Eq. 3 with latent space regularization discussed
in § 3.2. (b) Next, we take the trained AMA module and pass the complete train data to generate R-scores using Eq. 5 and fit
them to a Gaussian distribution. (c) During inference, given an image xtest, we first calculate R(xtest) by passing it through
frozen-AMA module, and then A(xtest) using Eq. 6, which is essentially the likelihood of R(xtest) under the Gaussian
curve we generated in (b). Lower the A(xtest), more the likelihood of the given test sample being anomalous.

hypothesize that anomalous data is likely to fall outside the
sphere, and normal data is likely to fall inside the sphere.
This technique is inspired by traditional SVDD (Support
Vector Data Description) [Tax and Duin, 2004] where a hy-
persphere is used to separate normal samples from anoma-
lies. Ano-GAN [Schlegl et al., 2017] is one of the first works
that uses Generative Adversarial Nets (GANs) [Goodfellow
et al., 2014] for anomaly detection. In this work, a GAN is
trained only on normal samples. Since a GAN model is not
invertible, an additional optimization is performed to find
the closest latent representation for a given test sample. The
anomaly score is computed as a combination of reconstruc-
tion loss and discriminator loss. FGAN [Ngo et al., 2019]
trains a GAN on the normal samples and uses a combination
of adversarial loss and dispersion loss (distance based loss
in latent space) to discover anomalies. Akçay et al. [2019]
use a series of Encoder, Decoder and Discriminator net-
works to optimize the reconstructions as well as distance
between the representations. ALAD [Zenati et al., 2018]
uses BiGAN [Donahue et al., 2016] to improve the latent
representations of the data. Each of these methods use a
combination of discriminator-based score and reconstruc-
tion error for detecting anomalies.

A recent survey by [Chalapathy and Chawla, 2019, Ruff
et al., 2020] does a comprehensive study of anomaly detec-
tion approaches.

Negative Selection Algorithms (NSA): NSA is one of the
early biologically inspired algorithms to solve one-class clas-
sification problem, first proposed by [Forrest et al., 1994] to
detect data manipulation caused by computer viruses. The
core idea is to generate synthetic negative samples which do

not match normal samples using a search algorithm and use
them to train a downstream, supervised anomaly classifier
[Dasgupta and Majumdar, 2002]. Since the search space for
negative samples for high dimension data can grow exponen-
tially very large, it can be computationally very expensive
to sample synthetic negatives [Jinyin and Dongyong, 2011].
Recent work by Sipple [2020] proposes a simpler approach
to perform negative selection by using uniform sampling
and building a binary classifier with positives and synthetic
negatives to perform anomaly detection task.

3 ADVERSARIAL MIRRORED
AUTOENCODER (AMA)

As discussed earlier, AMA consists of 2 major improve-
ments over the conventional Auto-Encoder architectures:
(i) Mirrored Wasserstein Loss, and (ii) Latent space regu-
larization. These improvements help us outperform several
state-of-the-art likelihood, as well as reconstruction-based
anomaly detection methods. Fig. 1 shows an overview of
our overall anomaly detection pipeline using AMA. In the
following sub-sections, we discuss each of the components
of our anomaly detection framework in detail.

3.1 MIRRORED WASSERSTEIN LOSS

For training auto-encoders, `1 or `2 reconstruction loss be-
tween the original image and its reconstruction, defined as
‖x− xrec‖p, is typically used. Reconstruction losses based
on `p distances result in blurred decodings, thus producing
poor generative models. Also, the use of `p reconstruction



 losses as anomaly scores, which is the standard technique
used in Auto-Encoder based anomaly detection, has several
limitations: (1) `p distances do not measure the perceptual
similarity between images, which makes it hard to detect
outliers that are semantically different, (2) A large `p re-
construction loss between input and its decoding can be an
outcome of poor generative modeling and not because the
image is an outlier.

Motivated by the success of Generative Adversarial Net-
works (GANs) in obtaining improved generations, a number
of approaches replace the `p reconstruction losses in Auto-
Encoders with an adversarial loss that captures high-level
details in the image. While this loss is good enough to get
good reconstructions in low-diversity datasets like MNIST,
CelebA, but it is not enough to reconstruct diverse datasets
like CIFAR-10 or Imagenet [Munjal et al., 2020].

A regular Wasserstein loss function only ensures the input
and its generated sample both belong to the same distribu-
tion, but doesn’t necessarily make input and its reconstruc-
tion look alike.

To resolve this problem, for a given sample x ∼ PX and
its reconstruction x̂ ∼ PX̂ , we perform a Wasserstein min-
imization between the joint distributions PX,X and PX,X̂ .
The discriminator now takes in stacked pairs of input im-
ages (x,x) and (x, x̂). This clearly avoids the problems
discussed in the previous part as the distribution (x,x) al-
ways has pairs of samples that are similar looking. If a car
image is reconstructed as an airplane, the generated distri-
bution will contain a (car, airplane) sample, which is never
found in the input distribution (x,x). Hence, the model will
aim to generate samples sharing the same semantics. Fig-
ure 2 shows the difference in image reconstructions using
AMA with regular Wasserstein loss versus AMA with Mir-
rored Wasserstein loss. While both the models perform well
in terms of image quality, we can see that for the first image,
the ground truth is the number 30, and regular Wasserstein
loss model is fitting number 9, though very unlike the ground
truth, but still from the same distribution, while AMA with
Mirrored Wasserstein loss is faithful to the ground truth and
reconstructed a very similar looking 30.

Formally speaking, our model formulates a distribution of
a set of samples x ∼ PX , using the Mirrored Wasserstein
loss, as follows:

W (PX,X ,PX,X̂) = max
D∈Lip−1

E
x∼PX

[D(x,x)−D(x, x̂)]

(1)

where x̂ = G(E(x)) and Lip-1 denotes the 1-Lipschitz
constraint. Note that Eq. (1) is similar to the loss function of
Wasserstein GAN [Martin Arjovsky and Bottou, 2017] with
the only difference that discriminator D acts on the stacked
images (x,x) and (x, x̂). This is equivalent to minimizing
the Wasserstein distance between conditional distributions
W (PX|X ,PX̂|X). This model also shares similarities to dis-

(a)

(b)

(c)

Figure 2: Better reconstructions with Mirrored Wasserstein
Loss. (a) Ground Truth (b) Reconstructions using AMA with
regular Wasserstein loss (c) Reconstructions using AMA
with Mirrored-Wasserstein loss. The quantitative compar-
isons are shown in Table 1

Figure 3: An illustration of the negative sampling from
atypical set in the latent space. In each of the cases, typical
set resides between the two blue d-dimensional spheres.
Synthetic negative latents are drawn from yellow region (a)
In [Sipple, 2020], a cube centered at the origin is used as
the negative sampling region. Instead, we propose to sample
the synthetic negatives closer to the typical set between the
spheres (b)

√
d− δ and

√
d or (c)

√
d and
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criminator architectures used in conditional image to image
translations such as Pix2Pix [Isola et al., 2017].

Lemma 1 If E and G are optimal encoder and generator
networks, i.e., PX,G(E(X)) = PX,X , then x = G(E(x)).

3.2 LATENT SPACE REGULARIZATION

The neural networks are universal approximators, and an
Auto-Encoder trained without any constraints on the latent
space will tend to overfit the training dataset. While several
regularization schemes have been proposed, in this section,
we develop our regularization framework adapted for the
task for anomaly detection.

Simplex Interpolation in Latent space: Berthelot et al.
[2018] showed that by forcing linear combination of latent
codes of a pair of data points to look realistic after decoding,
the encoder learns a better representation of data. This is
demonstrated by improved performance on downstream
tasks such as supervised learning and clustering. However,
Sainburg et al. [2018] argues that pairwise interpolation



 between samples of x proposed by Berthelot et al. [2018]
does not reach all points within the latent distribution, and
may not necessarily make the latent distribution compact.
Hence, we propose to use simplex interpolation between i
randomly selected points to make the manifold smoother
and amenable.

Given k normal samples x1,x2, . . . ,xk in a batch, we uni-
formly sample k scalars αi from [0, 0.5], we define an inter-
polated sample as:

x̂inter = G

(
1∑
αi

(α1e1 + α2e2 + . . . αkek)

)
ei = E(xi) ∀i

Here, x̂inter denotes the interpolated latent reconstruction.
A discriminator is then trained to distinguish between (x,x)
pair and (x, x̂inter) pair, while the generator learns by trying
to fool the discriminator. That is,

min
G

max
D∈Lip−1

E
x∼PX

[D(x,x)−D(x, x̂inter)]

where x is the input and x̂inter is the reconstruction of
interpolation in latent space between x and other data points.

This ensures that the distribution of interpolated points fol-
low the same distribution as the original data distribution,
thereby improving the smoothness in the latent space. We
use k = 3 in all our experiments. We empirically observe
that larger values of k give marginal improvements.

Negative Sampling by Atypical Selection: In our experi-
ments, we observed that regularization on the convex com-
bination of latent codes of training samples works better
if we also provide some negative examples, i.e., examples
which should not look realistic. Since we are working in
an unsupervised setting, we propose to generate synthetic
negative samples in the by sampling from “atypical set” of
the latent space distribution.

A typical set of a probability distribution is the set whose
elements have information content close to that of the ex-
pected information. It is essentially the volume that not only
covers most of mass of the distribution, but also reflects
the properties of samples from the distribution. Due to the
concentration of measure, a generative model will draw
samples only from typical set [Cover, 1999]. Even though
the typical set has the highest mass, it might not have the
highest probability density. Recent works [Choi et al., 2018,
Nalisnick et al., 2019] propose that normal samples reside
in typical set while anomalies reside outside of typical set,
sometimes even in high probability density region. Hence
we propose to sample outside the typical set in the latent
space to generate synthetic negatives.

The Gaussian Annulus Theorem [Blum et al., 2016, Ver-
shynin, 2018] states that in a d-dimensional space, a typical
set resides with high probability at a distance of

√
d from

the origin. In the absence of true negatives, we can obtain

synthetic negatives by sampling the latents just outside and
closer to the typical set than the origin and then use the gen-
erator for reconstruction. Although, our latent space is not
inherently Gaussian, we observe that due to the `2 regular-
ization placed on the latent encodings, most of the training
samples’ encodings are close to

√
d in magnitude. We sam-

ple atypical points uniformly between spheres with radii√
d and

√
d± δ as illustrated in Fig. 3 (b) (c). We call this

procedure Atypical Selection. The δ and the direction of
the selection, inward or outward are hyperparameters which
are chosen based on the true anomaly samples available
during the validation time.

Sipple [2020] proposed a similar technique where syn-
thetic negatives are sampled around the origin as shown
in Fig. 3(a). We show in the appendix that Atypical Se-
lection outperforms this style of negative selection across
multiple benchmarks.

3.3 OVERALL OBJECTIVE

Let Q̃X be the distribution of all atypical samples and let
PX be the distribution of normal samples. We consider two
different scenarios, first, when we don’t have access to any
anomalies during training, and the second case when we
have access to a few anomalies.

Unsupervised case:

We train the AMA using the following min-max objective:

min
G

max
D∈Lip−1

Lnormal − λnegLneg (2)

Lnormal part of the loss is to improve the reconstructions of
normal in-distribution samples . It consists of 3 terms, first
term is inspired by Mirrored Wasserstein loss, making sure
that reconstructions look like their ground truths, second
term is to ensure the interpolated points look similar to
normal points, and the third term is a regularization term on
encodings. −λnegLneg term penalizes the anomalies and
ensures that anomalies are not reconstructed well. In this
paper, since we assume that real anomalies are not available
to us during training, we instead use generated synthetic
anomalies in this term.

Lnormal =Ex∼PX

[
D(x,x)−D(x, x̂)+ (3)

λinter (D(x,x)−D(x, x̂inter))+

λreg‖E(x)‖
]

Lneg =Ex∼Q̃X
[D(x,x)−D(x, x̂neg)] (4)

x̂neg = G(zneg), where zneg is the latent sampled by
Atypical Selection. λneg is the Atypical Selection hyper-



 parameter, λinter is the weight for the interpolation com-
ponent, λreg is the latent space regularization weight and
‖E(x)‖ acts as regularizer for the latent representations.

Semi-Supervised case: If we have a few true anomalies
available during the training, we can use the same objective
by using real anomalies instead of synthetic negatives in the
Lneg term. Please refer to appendix for related experiments.
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Figure 4: In this figure we show the density plots of R-scores
predicted on various datasets by an AMA module trained
on CIFAR-10 train data. We can note that CIFAR-10 train
and test data distributions highly overlap. Depending on the
dataset we are considering to be OOD distribution, R-scores
of anomalous samples can trend lower or higher than the
normal samples. If we use R-score directly to tag the anoma-
lies, it will classify all the images with higher R-scores are
anomalies, including many of the CIFAR-10 test samples.
Meanwhile, all those to the left will be misidentified as nor-
mal samples. Instead of taking R-score on its face value, we
propose to create A-score which weighs in the R-score of a
given sample with respect to training data R-scores. R-score
can be computed using Eq:5 and A-score can be computed
using Eq:6

.

3.4 ANOMALY SCORE

Prior work in GAN-based anomaly detection used discrim-
inator output as anomaly score [Schlegl et al., 2017, Ngo
et al., 2019]. Zenati et al. [2018] proposed an improvement
by computing the distance between a sample and its recon-
struction in the feature space of the discriminator, R-score
(or R(x) score used interchangeably), can be written as:

R(x) = ‖f(x, x)− f(x,G(E(x)))‖1 (5)

where f(·, ·) is the penultimate layer of the discriminator.

In Zenati et al. [2018], authors claim that the anomalous
samples will have higher R(x) values compared to that of
normal samples. While this is true for the datasets consid-
ered in Zenati et al. [2018], we observed a counter-intuitive
behaviour in some OOD detection scenarios. In CIFAR-10
vs SVHN OOD detection experiment, our model and many
other AE-based anomaly detectors (including [Zenati et al.,

2018]) assign lower R-scores to OOD samples as shown
in Fig. 4. This behavior is similar to the observations in
[Nalisnick et al., 2018, Choi et al., 2018] where sample
likelihoods are used as anomaly scores. Even though the R-
scores distribution of test CIFAR-10 samples overlaps with
training distribution quite well, if we use the R-scores to
compute AUROC, it results in a very low AUC value (0.442
from Table 1), meaning most of the anomalies are classified
as normal samples. This suggests that this reconstruction-
based score is not a robust anomaly scoring function in all
OOD detection scenarios.

Hence we propose the following technique: (i) fit the R-
scores of training data to a Gaussian distribution (ii) com-
pute the anomaly score for a given test sample xi as the
likelihood of R(xi) under the Gaussian distribution. The
proposed anomaly metric, A-score (or A(x) score used in-
terchangeably) can be written as:

A(xi) =
1

σ
√
2π
e−(R(xi)−µ)2/2σ2

(6)

where µ is the mean and σ2 is the variance of the distribution
of R-scores over the training data.

A-score metric measures how similar the behaviour of test-
time sample to that of training data, while R-score looks at
relative behaviour of samples only at the test time.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETTING

Datasets: Following the setting in [Ren et al., 2019, Choi
et al., 2018, Serrà et al., 2019, Nalisnick et al., 2019], we
use CIFAR-10 [Krizhevsky et al., 2009], SVHN [Sermanet
et al., 2012] and FashionMNIST [Xiao et al., 2017] as nor-
mal datasets. We evaluate the performance of the models
when the anomalies are coming from each of the OOD
datasets, ImageNet (resized)[Deng et al., 2009], CIFAR-
100 [Krizhevsky et al., 2009], MNIST [LeCun et al., 1998],
Omniglot [Lake et al., 2019]. We also consider the case
when anomalies arise within the same data manifold (i.e.
same dataset). We evaluated this scenario on CIFAR-10 and
MNIST datasets. For these experiments, we consider one
class as normal and rest 9 classes as anomalies following
the setup from [Ruff et al., 2018, Zenati et al., 2018].

Baselines: We compare our model against various genera-
tive model based anomaly detection approaches. Ren et al.
[2019] uses likelihood based estimate from a Autoregres-
sive model to discover anomalies. WAIC [Choi et al., 2018]
proposes to use WAIC criteria on top of likelihood estima-
tion methods to find anomalies. Serrà et al. [2019] leverages
complexity estimate of images to detect OOD inputs. Typi-
cality test [Nalisnick et al., 2019] proposes to calculate an
empirical estimate of entropy of set of samples and use it to



 
Table 1: In this table we present AUROC scores on various OOD detection across various datasets. All methods in the table
have no access to OOD data during training, but a small number of anomalies during validation to choose the best model.
All the results are average AUROC values across test dataset, with one sample evaluated at a time except the result for
Typicality test[Nalisnick et al., 2019] which corresponds to using batch size of 2 of the same type. In the bottom half of the
table we show the ablation results of our model AMA with one component missing at a time from our pipeline.

Trained on: FashionMNIST CIFAR-10 SVHN
OOD data: MNIST Omniglot SVHN Imagenet CIFAR-100 CIFAR-10 Imagenet CIFAR-100
WAIC on WGAN ensemble [Choi et al., 2018] 0.871 0.832 0.623 0.626 - - - -
Likelihood-ratio on PixelCNN++ [Ren et al., 2019] 0.994 - 0.931 - - - - -
Typicality test on Glow model [Nalisnick et al., 2019] 0.140 - 0.420 0.640 - 0.980 1.000 -
DeepSVDD [Ruff et al., 2018] 0.864 0.999 0.533 0.387 0.478 0.795 0.823 0.819
S using PixelCNN++ and FLIF [Serrà et al., 2019] 0.967 1.000 0.929 0.589 0.535 - - -

AMA w/o Mirrored Wass. Loss (Ours) 0.653 0.899 0.800 0.526 0.510 0.503 0.693 0.592
AMA w/o Simplex Interpolation (Ours) 0.960 0.998 0.820 0.847 0.537 0.991 0.993 0.987
AMA w/o Atypical selection (Ours) 0.894 0.997 0.861 0.812 0.535 0.990 0.991 0.987
AMA w/o new anomaly scoring (Ours) 0.991 0.997 0.442 0.890 0.501 0.993 1.000 0.988
AMA (Ours) 0.987 0.998 0.958 0.911 0.551 0.993 1.000 0.988

recognize anomalies. DeepSVDD [Ruff et al., 2018] opti-
mizes the latent representations of images their distances in
latent space as complexity measure.

In addition to these, another set of methods [Akçay et al.,
2019, Zenati et al., 2018, Schlegl et al., 2017, Ngo et al.,
2019, Ruff et al., 2018] addresses the setting in which
anomalies come from the same data manifold (i.e. same
dataset). We compared our model to these methods in this
setting as well and we believe these methods can be ex-
tended to the case of OOD samples coming from different
data manifold. For these experiments we follow the setup
from [Zenati et al., 2018, Ruff et al., 2018, Schlegl et al.,
2017], where one class is considered normal and the rest
of the classes from the same dataset as anomalies. All the
results shown in Table 2 are for this setting. In DeepSVDD,
Global Contrast Normalization is used on the data prior to
the training. We removed this additional normalization step
to make the method comparable to other baselines.

Note that discriminative models such as [Hendrycks et al.,
2018, Vyas et al., 2018, Hsu et al., 2020] achieve higher
performance in OOD detection benchmarks, but assume
access to the class labels during training. For brevity, we
consider only unsupervised baselines.

BatchNorm Issue: We noticed that one of the earlier
work [Akçay et al., 2019]1 evaluated their model in the
training mode instead of setting to the evaluation mode. Due
to this issue, the BatchNorm is calculated for the test batch,
rather than using the train-time statistics.

Hence, while reporting results for Akçay et al. [2019], we re-
evaluate their models by freezing the BatchNorm statistics
during the test time. We follow the same protocol for all the
models.

Network Architectures and Training: The generator and
the discriminator in our model have residual architectures
and are borrowed from SN-GAN [Miyato et al., 2018]. Our

1https://github.com/samet-akcay/skip-ganomaly

Encoder is a 4 layered convolution network with BatchNorm
and LeakyRelu nonlinearity. Please refer to the appendix for
the complete model architecture and training details.

Following the setting in [Zenati et al., 2018, Ren et al., 2019]
we assume that we have access to a small number of anoma-
lies during validation time (≈ 50 in number). To generate
the test set, we randomly sample anomalies from the an
OOD dataset, 20% the size of normal samples, compared to
sampling equal number of normal and anomalies scenario
presented in [Ren et al., 2019, Choi et al., 2018]. We believe
our scenario is far more realistic and more stringent.We keep
the test data and normalizations same during training for our
model as well as the baselines to make them comparable.

4.2 ANOMALY DETECTION PERFORMANCE

We consider two common scenarios used in literature to
benchmark the performance of our model. In the first sce-
nario, we consider images from a given dataset as the normal
samples and images from a different dataset (typically with a
different underlying distribution) as anomalies (Eg. CIFAR-
10 vs SVHN). In the second scenario, we consider images
from one of the categories in the dataset as normal images
while all other as anomalies (Eg. digit 0 vs rest in MNIST).
Note that, in some papers, these two scenarios are referred
as as out-of-distribution (OOD) and in-distribution anoma-
lies respectively. Even though they are treated as different
problems in previous work, they share the common goal of
flagging samples that are different from input distribution.
Hence we do not make this distinction and use the term
“anomalies" to refer to the either scenario. We show that in
both the scenarios, our model outperforms or matches the
performance of current generative based anomaly detectors.

Images from different dataset as anomalies In Table 1,
we show the performance of our model and the baselines
against 3 different cases. Our first set of experiments uses
gray-scale images from Fashion MNIST as normal images



 
Table 2: Here we show performance of anomaly detection task when anomalies come from an unseen class of the same
dataset. Each column denotes the normal class and the rest 9 classes from that respective dataset are considered as anomalies.
The performance is measured using AUROC scores, higher the better.

MNIST 0 1 2 3 4 5 6 7 8 9 Average

FGAN[Ngo et al., 2019] 0.754 0.307 0.628 0.566 0.390 0.490 0.538 0.313 0.645 0.408 0.504
ALAD[Zenati et al., 2018] 0.962 0.915 0.794 0.821 0.702 0.79 0.843 0.865 0.771 0.821 0.828
Ano-GAN[Schlegl et al., 2017] 0.902 0.869 0.623 0.785 0.827 0.362 0.758 0.789 0.672 0.720 0.731
Skip-Ganomaly[Akçay et al., 2019] 0.297 0.877 0.393 0.486 0.618 0.540 0.455 0.633 0.426 0.584 0.531
DeepSVDD[Ruff et al., 2018] 0.971 0.995 0.809 0.884 0.920 0.869 0.978 0.940 0.900 0.946 0.921
AMA (Ours) 0.986 0.998 0.882 0.891 0.894 0.938 0.981 0.983 0.876 0.948 0.938

CIFAR-10 airplane automobile bird cat deer dog frog horse ship truck Average

FGAN[Ngo et al., 2019] 0.572 0.582 0.505 0.544 0.534 0.535 0.528 0.537 0.664 0.338 0.567
ALAD[Zenati et al., 2018] 0.679 0.397 0.685 0.652 0.696 0.550 0.704 0.463 0.787 0.391 0.601
Ano-GAN[Schlegl et al., 2017] 0.602 0.439 0.637 0.594 0.755 0.604 0.730 0.498 0.675 0.445 0.598
Skip-Ganomaly[Akçay et al., 2019] 0.655 0.406 0.663 0.598 0.739 0.617 0.638 0.519 0.746 0.387 0.597
Deep SVDD[Ruff et al., 2018] 0.682 0.477 0.679 0.573 0.752 0.628 0.710 0.511 0.733 0.567 0.631
AMA (Ours) 0.752 0.634 0.696 0.603 0.733 0.650 0.658 0.582 0.754 0.632 0.669

while the images from MNIST and Omniglot as OOD im-
ages. This is a relatively simple experiment and nearly all
the baselines and our model achieve almost perfect AUROC.
Even though our model does not have the best AUROC, it
is well within the margin of error of the best performing the
model.

Next two cases are a bit more challenging as the images are
colored and more diverse. In first case, we use normal sam-
ples from CIFAR-10, and anomalies from SVHN, Imagenet,
and CIFAR-100. In the second case, we use normal samples
from SVHN, while the anomalies coming from CIFAR-
10, Imagenet and CIFAR-100. Our model outperforms all
the baselines in both these experiments. This shows that
our model, AMA is optimizing the latent space of normal
samples well which leads to an impressive generalization
behavior. Even though AUROC scores are greater than 0.9
in most of the cases, our model falls short in case of CIFAR-
10 vs CIFAR-100 (similar behavior is observed for the other
baselines as well). This is a really hard scenario and even hu-
mans will have tough time deciding whether a given image
is from CIFAR-10 or CIFAR-100.

Images from different categories as anomalies In Table-
2, we show Anomaly Detection experiments when anoma-
lies arise from the same data manifold (i.e. same dataset).
Each column shows the results of a normal class with the
rest of 9 classes as anomalies. Our method (AMA) outper-
forms other methods in terms of average scores with 1.7%
AUROC gain over the next best method on MNIST and
3.7% gain on CIFAR-10 dataset. In terms of an individual
case comparison, we achieve best results in 8 out of 10 cases
on MNIST, while 6 out of 10 cases on CIFAR-10.

4.3 ABLATION STUDIES

We introduced 3 main ideas in this paper: Mirrored Wasser-
stein loss, Latent space regularization using Simplex Inter-
polation and Atypical Selection, and an alternative Anomaly

scoring technique. In the second half of the Table 1, we show
the ablation results, removing one component at a time. As
expected, removing Mirrored Wasserstein loss reduces the
AUROC scores the most. AUROC scores are reduced by
an order of ∼ 0.1 points whenever a part of Latent space
regularization is removed. We see that in most of the cases,
removing Atypical Selection reduces the scores a bit more
than removing Simplex Interpolation. The new anomaly
scoring metric contributes the most when the normal sample
distribution is more diverse than the OOD distribution, eg:
the case of CIFAR-10 as normal and SVHN as OOD. When
we used R-score to identify anomalies in this scenario, most
of the SVHN samples are tagged normal while most of the
CIFAR-10 images tagged as anomalies, thus resulting in
lower AUROC.

When does Atypical Selection help? In Table 1, we see
how the performance of the model gets impacted when
we removed Atypical Selection component. In most of the
cases, the drop in the performance is fairly low. When we
examine the R-score distributions between the pairs of data
sets, we notice a trend that the Atypical selection helps the
most when both the distributions are highly overlap.

5 CONCLUSION

In this paper, we introduced a new method for the unsu-
pervised anomaly detection problem, Adversarial Mirrored
Autoencoder (AMA), equipped with Mirrored Wasserstein
loss and a latent space regularizer. Our method outperforms
existing generative model based anomaly detectors on sev-
eral benchmark tasks. We also show how each of the com-
ponents in our proposed approach contribute to the model’s
performance in diverse data settings. While our model is
quite powerful in OOD detection, it still does not fare well
in harder experiments such as CIFAR-10 (as in-distribution)
vs CIFAR-100 (as OOD). This is rather similar to the setting
of anomalies arising from the same data manifold. While we



 showed some early results in Table 2, we can further extend
this work to improve for such scenarios. In the present work,
in OOD case, we only consider anomalies from a single
dataset, hence while doing Atypical Selection, we choose
the pseudo-negatives which are closer to or further away
from the origin in latent space as compared to in-distribution
points. However this may not work when anomalies are
coming from wide range of distributions, which we hope to
address in future work.
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