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Abstract

Exact inference in probabilistic graphical models
is particularly challenging in the presence of re-
lational and other deterministic constraints. For
discrete domains, weighted model counting has
emerged as an effective and general approach
in a variety of formalisms. Weighted first-order
model counting, which allows relational atoms and
function-free first order logic has pushed the en-
velope further, by exploiting symmetry properties
over indistinguishable groups of objects, and by
extension avoids the need to perform inference on
the exponential ground theory. Given the limitation
to discrete domains, the formulation of weighted
model integration was proposed as an extension
to weighted model counting for mixed discrete-
continuous domains over both symbolic and nu-
meric weight functions. While that formulation
has enjoyed considerable attention in recent years,
there is very little understanding on whether the
task can be solved at a lifted level, that is, whether
we can reason with relational models by avoiding
grounding. In this paper, we consider this ques-
tion. We show how to generalize algorithmic ideas
known in the circuit compilation for function-free
lifted inference to functions with a continuous
range.

1 INTRODUCTION

Unifying logic and probability is a long-standing challenge
in AI [Russell, 2015]. In that regard, statistical relational
learning and probabilistic relational models [Getoor and
Taskar, 2007] are promising candidates [Raedt et al., 2016].
The logical notions capture objects, properties and relations,
whereas the underlying probability theory addresses un-
certainty and noisy knowledge acquisition. Unfortunately,

although probabilistic inference is already known to be
computationally intractable [Valiant, 1979, Bacchus et al.,
2009], the enabling of logical representations makes the
construction of general-purpose algorithms harder, espe-
cially in the presence of relational and other determinis-
tic constraints. In that regard, weighted model counting
(WMC) has emerged as an effective and general approach
in a variety of formalisms, including Bayesian networks
[Chavira and Darwiche, 2008], their relational extensions
[Chavira et al., 2006], factor graphs [Choi et al., 2013], prob-
abilistic programs [Fierens et al., 2013], and probabilistic
databases [Suciu et al., 2011]. They rely on SAT technology
— WMC is simply the weighted version of model counting
or #SAT [Bacchus et al., 2009] — which makes inference
possible in the presence of logical constraints. Exact WMC
solvers are based on knowledge compilation or exhaustive
DPLL search [Sang et al., 2005]. Knowledge compilation
is a paradigm which aims to construct a circuit [Darwiche
and Marquis, 2002, Muise et al., 2012], and is particularly
attractive in the presence of repeated query computations
[Van den Broeck et al., 2010]. Approximate WMC algo-
rithms use local search [Wei and Selman, 2005] or sampling
[Chakraborty et al., 2014].

However, WMC has major limitations, the first is that it
is only capable of reasoning with a propositonal language.
In the presence of first-order logic (FOL), which allows
relational representations, several approaches have been
introduced [de Salvo Braz et al., 2005, Van den Broeck et al.,
2011, Gogate and Domingos, 2011]. The benefit of using
relational representations is that symmetry properties over
indistinguishable groups of objects can be exploited, thereby
avoiding the need to perform inference on the ground theory,
which in the worst case is exponential in size. This technique
is known as lifted reasoning.

The second limitation of WMC, which also applies to the
lifted reasoning approaches named above, is that they all
assume a discrete domain. Generalizing the assembly lan-
guage for those representations to continuous and mixed-
discrete domains was not well-understood, until recently
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 [Belle et al., 2015]. The notion of weighted model integra-
tion (WMI) has been shown to upgrade WMC to such hy-
brid settings. Logically speaking, WMC and lifted WMC
focus on propositional and function-free relational logic,
whereas WMI allows us to additionally handle nullary func-
tion symbols (i.e., nullary terms) over continuous domains,
and practically resorts to satisfiability modulo theory (SMT)
technology [Barrett et al., 2009, Sebastiani and Tomasi,
2012]. However, WMI remains limited to atomic variables,
as it focuses on nullary function symbols, and it does not
handle relational atoms. In this work, we take steps towards
lifting the paradigm of WMI and present four results.

Results First, we propose a definition of weighted first-
order model integration (WFOMI). Then, we discuss how
we can handle k-ary function symbols, with finitely many
arguments, but continuous ranges and present as the sec-
ond result an algorithm to efficiently compute the WFOMI.
We will need to consider how to generalize algorithmic
ideas known in the circuit construction for function-free
lifted inference to function symbols with a continuous range.
Thirdly, we identify settings in which WFOMI can be re-
duced to WFOMC. Finally, we highlight the efficiency of
our algorithm with empirical results.

In terms of organisation, first in section 2 we introduce some
preliminaries. Then, in section 3, using a simple relational
mixed discrete-continuous example, we study the issues
therein in more detail. Next, we show, in section 4, how
a hybrid (in the sense of discrete-continuous) FOL circuit
can be obtained and the problems posed by integration in
the presence of non-trivial but realistic weight functions.
Then, in section 5, we discuss settings where WFOMI can
be reduced to WFOMC. In section 6, we run comparisons
of our algorithms to state-of-the-art hybrid solvers. At the
end, in section 7, we discuss related work, and conclude the
work in section 8.

2 PRELIMINARIES

In propositional logic a formula φ is defined over atoms
and logical connectives (∧,∨, =⇒ ,¬). An atom in propo-
sitional logic is a Boolean variable. A literal is either an
atom or its negation. A clause is the disjunction of literals. A
formula in conjunctive normal form (CNF) is a conjunction
of clauses. A model M assigns atoms to {true, false}, and
the notion of satisfaction is defined inductively as usual for
formulae. Given a propositional formula φ over a set B of
Boolean variables and logical connectives, model counting
(#SAT) is the problem of counting the possible assignments
to the variables in B, such that the formula is satisfied.

In (finite-domain) first-order logic (FOL), terms are either
logical variables or constants from a finite set – the domain.
Atoms are made of predicates with arity n and terms. An
atom is ground if it does not contain variables. A substi-

tution θ = [X1/t1, . . . , Xn/tn] is a mapping from logical
variables to logical terms. Applying the substitution θ to a
formula φ is then denoted by φθ. In addition, in FOL, we
add universal and existential quantifiers (∀,∃). A constraint
set, denoted cs, is a conjunction of constraints applied to the
domain. The set of substitutions to a set of logical variables
X for which cs is satisfied is denoted by solutions(cs,X).

Satisfiability modulo theory (SMT), is an extension of SAT,
where we consider real variables, in addition to Boolean
variables. An SMT atom over n real variables x is of the
form f(x) ./ c, where c ∈ R, f is a real arithmetic function,
and ./∈ {=, 6=, <,>,≤,≥}. An SMT formula is made
from SMT and Boolean atom and composed over logical
connectives such as {∧,∨,¬, =⇒ }. The definition of
literals and clauses is as before. The semantics are defined
inductively as usual, see Barrett et al. [2009].

2.1 WEIGHTED MODEL COUNTING

Weighted model counting (WMC) is an extension to #SAT,
where we introduce a function w : L → R≥0, which maps
literals to non-negative weights. These can be seen as an
unnormalized likelihood. The notation l ∈ M and M �
4 means that the literal l is true in the model M and M
satisfies a theory 4, respectively. We can now give the
definition of WMC.

Definition 1 (WMC). Let 4 be a propositional formula,
and w : L → R≥0 a non-negative function over the literals
in the formula. Then we define

WMC(4, w) =
∑
M�4

∏
l∈M

w(l)

Example 1 (WMC). Let us assume the simple propositional
formula p ∨ q, with weights w(p) = 0.1, w(¬p) = 0.9,
w(q) = 1, w(¬q) = 2. It has three models M1 =
{p,¬q},M2 = {¬p, q},M3 = {p, q}, and the weighted
model count is

WMC(4, w) = 0.1 · 2 + 0.9 · 1 + 0.1 · 1 = 1.2

We can then compute the probability of p using

Pr(p) =
WMC(p ∧4, w)

WMC(4, w)
=

0.1 · 2 + 0.1 · 1
1.2

= 0.25

2.2 WEIGHTED FIRST-ORDER MODEL
COUNTING

The first limitation of WMC is that it does not exploit rela-
tional structures and only works on the propositional level.
Weighted first-order model counting (WFOMC), in contrast,
exploits symmetries using (function-free) FOL. For FOL,
the weight function is simplified to be applicable directly to
predicates.



 Definition 2 (WFOMC). Let4 be a FOL formula. Let w :
P → R≥0 be a non-negative function over the predicates
in the formula. For a literal l let p(l) denote the predicate of
the literal. Then we define:

WFOMC(4, w) =
∑
M�4

∏
l∈M

w(p(l)) .

Universal (∀) and existential (∃) quantifiers allow to rea-
son over sets of symmetric objects. The process of ab-
straction is called lifted reasoning. Lifted reasoning re-
duces the computational cost significantly. For example,
consider the formula p ∨ q which has 3 models, whereas
the formula ∀x(P (x) ∨ Q(x)) has 3n models (out of the
4n possible assignments for a domain of size n leading
to 2n propositions in the ground theory). Lifted reasoning
checks, whether such a quantity could be obtained alge-
braically by a syntactic procedure, without having to apply
a standard propositional model counter to the ground theory
(P (1) ∨Q(1)) ∧ · · · ∧ (P (n) ∨Q(n)).

2.3 WEIGHTED MODEL INTEGRATION

The second limitation of WMC, is that it assumes a dis-
crete domain, in the sense that the underlying variables are
typically Boolean, or at best range over a finite set. This lim-
itation extends to WFOMC. Weighted Model Integration
(WMI) [Belle et al., 2015] extends WMC to hybrid domains
by allowing SMT formulae instead of pure propositional
logic.

For our purposes, we consider propositional interpretations
that map SMT literals to {true, false}[Belle et al., 2015].
The notations for propositional interpretation are understood
as before. Let l+ ∈ M be the domain of the continuous
variables determined by the constraints specified by the
propositional interpretation M .

Definition 3 (Weighted Model Integration [Belle et al.,
2015, Morettin et al., 2017]). Let 4 be an SMT formula
over a set of Boolean variables B and SMT atoms over a set
of real variables X ∈ R. Let w : L 7→ f(X) be a function
mapping the literals in the formula (Boolean and SMT) to
functions over the continuous variables in4. The weighted
model integral is defined as

WMI(4, w) =
∑
M�4

∫
l+∈M

∏
l∈M

w(l).

A hybrid example of WMI, following Example 1, is pro-
vided in the appendix. Table 1 summarizes the different
existing approaches and WFOMI, which we introduce be-
low.

Table 1: Comparison of WMC, WFOMC, WMI, and
WFOMI

Logic weight functions
WMC Propositional w : L 7→ R≥0

WFOMC function-free FOL w : P 7→ R≥0
WMI SMT w : L 7→ f(X)

WFOMI SMT FOL w : P 7→ f(F)

3 MOTIVATING EXAMPLE

WFOMC, as discussed before, does not allow to reason
about continuous variables. WMI, on the other hand, al-
lows continuous variables but is limited to non-relational
atoms. To motivate the need for relations in mixed discrete-
continuous domains we consider an example from medical
data [Lee et al., 2008, Yoon et al., 2006]. (The example is
simplified for presentation purposes.)

Let us consider a set People and two properties, s.t.
∀x ∈ People : BMI(x) ∼ N (µ = 27, σ2 = 36), and
diabetes(x) ∈ {true, false}. (For simplicity, the range of
the BMI is truncated to BMI(x) ∈ [10; 45].) For the re-
mainder of the paper we will use b(x) and d(x) for BMI(x)
and diabetes(x) in equations, respectively, for presentation
purposes.

Further, a person’s body mass index (BMI) strongly in-
creases the likelihood to develop type 2 diabetes [Lee et al.,
2008]. Let us for simplicity consider a linear dependency:

w(d(x)) =
b(x)

10
− 1 and w(¬d(x)) = 8− b(x)

10
(1)

However, as long as the person is underweight or normal
weight, that is BMI(x) ≤ 35, the influence of its BMI on
the likelihood of having diabetes will be less significant.
This can be encoded into the model by adding the following
relation to the knowledge base (KB)

a1(x) ≡ [d(x) =⇒ b(x) ≥ 35] , (2)

where a1 is an auxiliary predicate abstracting the for-
mula. For the auxiliary predicate, we assume w(a1(x)) =
10, w(¬a1(x)) = 1, that is, a model that satisfies the rela-
tion is ten times more likely then a model which does not, i.e.
¬(BMI(x)≥ 35) ∧ diabetes(x). This KB has four models,
which are summarized in Table 2.

Table 2: The four models of the KB of the diabetes diagnos-
tic example

M1 M2 M3 M4

BMI(x)≥ 35 true true false false
diabetes(x) true false true false

a1(x) true true false true

Dependencies, as in Eq. 1, where weights are functions of
atoms cannot be captured by function free relational models



 [Van den Broeck, 2013], which assume constant weights
for each polarity of an atom. Thus, in this paper we will
attempt to solve two generalizations from WFOMC; first,
we allow SMT atoms, secondly, similarly to WMI [Zuidberg
Dos Martires et al., 2019, Morettin et al., 2019], we allow
weight functions of the function symbols appearing in the
theory, e.g. BMI(x), in contrast to constant weights.

The important assumption here, like in WFOMC is that
the distributions, and thus the weight functions, of all the
properties and relations are the same for all instances of a
given type. This is precisely the assumption that implies
symmetries between the objects of the set, which allows
one to perform lifted inference. If we would use standard
WMI to solve this problem we would have to reason about
4n different models, where n is the number of objects in
the People set. Using the lifted approach we only have to
compute the weight of four models, as we show below.

4 LIFTED WMI

To solve problems as described in the previous section, but
without an exponential grounding, we need to upgrade the
grammar of the language and the model count algorithm
proposed in Van den Broeck [2013].

The main goal of this paper is to allow relational formu-
lae over expressions with continuous ranges. This is why
we need in addition to the standard k-ary predicates, such
as family(x, y), SMT atoms and predicates defined over
k-ary function symbols over the standard first-order con-
nectives. Function symbols map terms to continuous ranges
f : {t1, . . . , tk} → R. We denote by F the set of all func-
tion symbols appearing in a theory. We define the syntax and
semantics inductively, as usual; for example, see Barrett et al.
[2009]. However, note that in our setting, the only predicates
are binary inequality operators, i.e. ./∈ {=, 6=,≥,≤, <,>}
and atoms are assumed to be of the form f(t1, . . . , tk) ./ c,
where c is a numeric constant. For example, BMI(Alice) =
36, and BMI(x) ≥ 35 are atoms, the former a ground atom.
Expressions over atoms with arithmetic expressions, e.g.
f(x) + g(x) ≤ c, which WMI solvers can solve, are left for
future research. In addition to SMT atoms, we are interested
in weight functions that are not constant, such as those men-
tioned in the motivational example, e.g. Eq. 1. These weight
functions can also be defined for relational atoms. For ex-
ample, in Eq. 1 w(d(x)) is a function of BMI(x). We are
now prepared to provide a definition of a first-order WMI,
closely following the definition of WFOMC.

Definition 4 (WFOMI). The weighted first-order model
integral for a theory4 is defined as

WFOMI(4, w) =
∑
M�4

∫
l+∈M

∏
l∈M

w(p(l)) , (3)

where l are the literals in the model M , p(l) returns the

predicate that the literal is an instance of, l+ are the bound-
aries defined by the SMT atoms in M , and w : P 7→ f(F)
is a function mapping the predicates to functions over the
set of function symbols F in M .

In order to perform inference efficiently, we follow the two
step approach used in Van den Broeck [2013] for WFOMC.
First, we compile the KB into a circuit, which we discuss
next. Second, we perform the weight computation on the
circuit, which is discussed in the second section, where we
will study settings for which we still can achieve polytime
inference.

4.1 KNOWLEDGE COMPILATION

Knowledge compilation yields a circuit that allows efficient
repeated query computations [Van den Broeck et al., 2010,
Kolb et al., 2019]. A FOL theory is complied into sda-
DNNF (smooth, automorphic, deterministic, decomposable
negation normal form) circuits [Van den Broeck, 2013].
These circuits are composed of leaf nodes, labelled with
literals of the formula, and internal nodes labelled with
logical operators. For formulae φ and ψ, the internal node
operators are decomposable conjunction: φ ∧©ψ with φ ⊥⊥ ψ,
meaning φ and ψ are independent (i.e. atoms(gr(φ)) ∩
atoms(gr(ψ)) = ∅), deterministic disjunction: φ ∨©ψ with
φ ∧ ψ � ⊥, meaning φ and ψ are contradictory, and smooth
intensional disjunction: ∃D, cs : φwhich is smooth iff φθ1∨
· · ·∨φθn is smooth, where {θ1 . . . θn} = solutions(cs,D),
cs is a set of constraints and D is a subset of the domain.
φθ1 ∨ · · · ∨ φθn is smooth iff for all i and j the groundings
gr(φθi) and gr(φθj) contain the same atoms. These circuits
allow polynomial time query computations in the size of
the circuit. In the two-variable fragment setting, which is
the FOL fragment with formulae containing at most two
variables, the algorithm is guaranteed to produce a circuit
in polynomial time [Van den Broeck et al., 2014]. Details
on the compilation process and derivation of internal nodes
operations are provided in the appendix.

We follow the knowledge compilation process in Van den
Broeck [2013] closely. The compilation process involves
auxiliary operations with preconditions and post conditions,
such as SPLIT, each helping to achieve one of the features
(smooth, automorphic, deterministic, decomposable) of the
circuit. For example, the goal of SPLITTING a clause γ w.r.t
a constrained atom a (e.g. ∀x, x ∈ Birds : flies(x)) is
to divide a clause into an equivalent set of clauses s.t. for
each atom aγ in γ, either the atom is independent from
a or it is subsumed by it. This independence leads to the
decomposability of the circuit. Details on SPLIT and an
example are described in the appendix.

The simple case in WFOMI is when the SMT atoms in
the KB are disjunct, e.g. in our example we only consider
BMI(x) ≥ 35 and BMI(x) < 35. In this case, as the do-



 mains can be decomposed into disjoint sets, the steps to
compile the circuit with the auxiliary operations discussed
in Van den Broeck [2013] can be applied directly to the
hybrid setting and the proofs remain the same.

However, we can run into problems, when we have "over-
lapping" SMT atoms. In the discrete setting, predicates are
either identical or distinct, which is key to prove the cor-
rectness of the compilation process. With SMT, there is
more nuance. Consider the example of two SMT atoms, (1)
18 ≤ age(X) < 99 and (2) 65 ≤ age(X) < 99. Clearly if
(1) is false then (2) cannot be true, since the allowed values
of (2) are a subset of those of (1).

We can solve this problem by preprocessing our formulae,
restoring this identical-distinct separation. Given a func-
tional symbol f(X), as defined above, and two SMT atoms
of the form l1 ≤ f(X) ≤ u1 and l2 ≤ f(X) ≤ u2 with
l1, u1, l2, u2 ∈ R, there are three cases to consider:

1. [l1, u1] ∩ [l2, u2] = ∅. Then we can keep the SMT
atoms unchanged as they are independent.

2. l1 ≤ l2 ≤ u1 ≤ u2. Then we introduce new SMT
atoms l1 ≤ f(X) ≤ l2, l2 < f(X) ≤ u1, u1 <
f(X) ≤ u2 and we can rewrite
l1 ≤ f(X) ≤ u1 ≡ l1 ≤ f(X) ≤ l2 Y l2 < f(X) ≤
u1, and l2 ≤ f(X) ≤ u2 ≡ l2 < f(X) ≤ u1 Y u1 <
f(X) ≤ u2.

3. l1 ≤ l2 ≤ u2 ≤ u1. Then we introduce new SMT
atoms l1 ≤ f(X) ≤ l2, u2 < f(X) ≤ u1 and we can
rewrite l1 ≤ f(X) ≤ u1 ≡ l1 ≤ f(X) ≤ l2 Y l2 ≤
f(X) ≤ u2 Y u2 < f(X) ≤ u1,

where Y is the exclusive or: it is true if one or the other
operand is true, but not both. After this preprocessing, any
standard logical sentence solver can transform the new sen-
tence into a CNF and the normal compilation rules apply.

Theorem 1. A hybrid KB with non-overlapping SMT atoms
can be compiled into an sda-DNNF circuit using the auxil-
iary operations presented in Van den Broeck [2013].

The proofs of correctness remain the same as in Van den
Broeck [2013].

An important consequence of Theorem 1 is that the overall
skeleton of the final circuit is analogous to the discrete set-
ting, and that we can guarantee the compilation of a hybrid
theory into a circuit for the two variable fragment. For the
motivational example Forclift [Van den Broeck et al., 2011]
yields the sda-DNNF circuit shown in Fig. 1. However, the
nature of the weight functions in WFOMI means that we
cannot compute the result immediately from such a circuit
with the same operations as for WFOMC, and Theorem
1 alone does not guarantee polytime inference. In the next
section, we discuss the different internal nodes separately
and how the WFOMI can be computed from an sda-DNNF.

Figure 1: sda-DNNF circuit of the motivational example

4.2 COMPUTATION OF WFOMI

To compute the WFOMI, we traverse the circuit bottom-up
and we apply an algebraic operation at each node depending
on the logical operator. We will closely follow the definitions
for WFOMC from Van den Broeck [2013].

Lemma 1. For an extensional operator ∧© or ∨© in an sda-
DNNF circuit with children φ and ψ, the following holds:

WFOMI(φ ∧© ψ,w) = WFOMI(φ,w)×WFOMI(ψ,w)
(4)

WFOMI(φ ∨© ψ,w) = WFOMI(φ,w) + WFOMC(ψ,w)
(5)

Lemma 2. For an intensional operator of the form ∃D, cs,
where D is a subset of the domain, the following holds:

WFOMI(∃D, cs : φ,w) =

n∑
i=1

|Θi|WFOMI(φθi, w) (6)

where φ is the child of the operator, Θi is the set of all
substitutions for D that satisfy the constraints in cs, such
that i = |D| and θi ∈ Θi, and n is the full domain size.

Lemma 3. For an intensional operator of the form ∀X ∈ X
with child node φ, where for each literal l ∈ φ all function
symbols occurring in w(p(l)) share exactly the same vari-
ables, the following holds:

WFOMI(∀X ∈ X : φ) = WFOMI(φθ)|X| (7)

The restrictions for the weight functions are important, as
otherwise, applying these operations can lead to incorrect
results, as we show in the example below. All proofs in this
paper can be found in the appendix.

Remark 1. WFOMI(∀X ∈ X,∀Y ∈ Y : φ) can
have exponentially many integration computations, with-
out an obvious way to simplify it, if ∃l ∈ φ s.t. w(l) =
f(f1(X), f2(Y )), where l is a literal in the theory φ, w(l)
is its weight function and f1 and f2 are function symbols
which take as inputs different terms.



 This can be seen in the following example:

Example 2. Consider a predicate p(x, y), with
w(p(x, y)) = f(a(x), b(y)), where a(x), b(y) are
function symbols over two logical variables x and y, with
a(x) ∈ [0, 1], b(y) ∈ [0, 1] , i.e. similar to BMI(x). Let
φ ≡ [∀x, y s.t. x ∈ {d1, d2}, y ∈ {d3, d4} : p(x, y)]. Let
us simplify the notation, s.t. a(di) ≡ ai and b(dj) ≡ bj ,
and thus f(a(di), b(dj)) ≡ f(ai, bj) then

WFOMI(φ) =

w(p(d1, d3))× w(p(d1, d4))× w(p(d2, d3))× w(p(d2, d4)) =∫ 1

0

· · ·
∫ 1

0

f(a1, b3)f(a1, b4)f(a2, b3)f(a2, b4) da1da2db3db4.

Even though half of the terms, in this example, can be fac-
tored out, the number of terms in this integral will still grow
exponentially with growing set sizes. Thus, the computation
of the WFOMI can become intractable in this case.

Consider also that applying the operations used for
WFOMC on sda-DNNF circuits would instead yield(∫ 1

0

∫ 1

0
f(a1, b3)da1db3

)2×2
which is not the same as the

integral above.

Though this looks like a direct extension of WFOMC, Re-
mark 1 shows that the result is more subtle than one would
expect. However, the expressiveness of WFOMI is only
slightly affected (see Lemma 3). For two variable predi-
cates, we can still allow weight functions over functional
symbols in F mapping two logical variable to a continuous
range, e.g. w(p(x, y)) = f1(x, y) · f2(x, y).

Lastly, in order to be able to guarantee the same polytime
inference as in WFOMC, we need to consider the problem
of integration. Note that integration in general is a #P-
complete operation[Kawamura, 2011]. Thus, the numeri-
cal computation of the WFOMI is not guaranteed to have
polytime complexity. However, based on Gerhard [2004]
Theorem 7.32, we can state the following:

Theorem 2. If all weight functions of a given sda-DNNF
are rational functions f/g, where f, g ∈ Z \ {0} are poly-
nomials of degree at most n ∈ N with integer coefficients
bounded, as defined in Gerhard [2004], and the constraints
in Lemma 3 are satisfied, then WFOMI queries can be
solved in polytime.

Kolb et al. [2019] have considered the ideal stage for inte-
gration in the WMI setting, and they have discussed how
to exploit factorizability to speed up the WMI computation.
We need to consider the same problem for WFOMI, where
the circuits are more complex. Due to the decomposability
of the circuits all predicates dependent on the same logical
variable are grouped under the respective ∀-nodes. The only
predicates which are not grouped under the ∀-nodes are
those that define the set over which the quantifier applies.
For example ∃x ∈ People : BMI(x) ≥ 35, splits the set

into two subsets, s.t. one set People> contains all the peo-
ple with BMI ≥ 35, and another subset People⊥ with all
other people, see Fig. 2 left. However, we can push those
nodes below the ∀-nodes during parsing, see Fig. 2 right.
This procedure allows to safely push the integration inwards
down to the ∀-node.

Figure 2: Left: Part of an sda-DNNF circuit, where predi-
cates over logical variables are outside the ∀-node. Right:
Modified circuit with all predicates over same logical vari-
ables under one ∀-node

4.3 ALGORITHM FOR WFOMI

In this section, we discuss how to implement the compu-
tation on the circuit as discussed above. In Algorithm 1,
representing the main algorithm, we traverse the circuit top-
down, and recursively call the WFOMI() function. Instead
of passing weights through the circuit, we pass the weight
functions of the literals symbolically, along with the bound-
aries given by inequalities of the literals, and we apply the
four operations discussed above. If none of the node types
fit, it means that the node is a leaf node, and the algorithm
just returns its weight function and boundaries.

Algorithm 1: WFOMI(node, sets = (set, set>, set⊥))

(child0, child1) = (node.child[0], node.child[1]);
if node.type = ∃ then

return ComputeExistsNode(child0, sets);
else if node.type = ∀ then

return ComputeForAllNode(child0, sets);
else if node.type = ∧ then

return ComputeAndNode(child0, child1, sets);
else if node.type = ∨ then

return ComputeOrNode(child0, child1, sets);
else

return (node.wfs, node.bounds);

At ∃-nodes, Algorithm 2, the set is first split into two subsets,
denoted > and ⊥, as explained above. Then, as we reason
about indistinguishable objects, and we do not care about
which person specifically is in each set, but only how large
the two subsets are we compute the WFOMI of the child
node depending on the set size. However, we account for
each possible variation of the set by multiplying the result
with the binomial coefficient. Finally, we sum all the results
for the variations of the set sizes.



 Algorithm 2: ComputeExistsNode(child, sets)

wfs = 0 ;
forall d ∈ range(set) do

(wf, bounds) = WFOMI(child, (set, d, set-d));
wfs +=

(|set|
d

)
wf;

return (wfs, bounds = [{}]);

At ∀-nodes, Algorithm 3, we integrate each term of the
weight function array of the child node, with their respective
boundaries, and sum the result. As explained above, the
∃-nodes split the sets into two subsets. Depending on which
set the ∀-node is over, e.g. ∀x ∈ People>, we take the
power of that set size to account for each individual in that
set.

Algorithm 3: ComputeForAllNode(child, sets)

terms = [];
forall wf, boundaries ∈WFOMI(child, sets) do

terms.append(integrate(wf, boundaries));

wfs = (sum(terms))|node.set_type(sets)|;
return (wfs, bounds = [{}]);

At ∨-nodes, Algorithm 4, the terms of the child nodes are
not directly summed up, but instead concatenated to an array.
This helps the solver during integration steps, to determine
over which boundaries to integrate each term.

Algorithm 4: ComputeOrNode(child0, child1, sets)

(wfs0, bounds0) = WFOMI(child0, sets);
(wfs1, bounds1) = WFOMI(child1, sets);
wfs = concat(wfs0, wfs1);
bounds = concat(bounds0, bounds1);
return (wfs, bounds);

At ∧-nodes, Algorithm 5, we multiply the weight functions
and find the intersection of the boundaries, if both terms
of the child nodes have boundaries over the same variable.
Otherwise, we keep the original boundaries. An example of
Alg. 5 is provided in the appendix.

4.4 REDUCING THE INTEGRATION PROBLEM
FURTHER

As explained previously, the integration becomes the bottle-
neck of WFOMI. We propose to adapt the algorithm to sig-
nificantly reduce the number of integrals needed to be solved.
To see how this works, consider the weighted model integral
of the motivational example WFOMI(4, w) =

∫ 45

35
10 ×

w(b(x)) ×
(

( b(x)10 − 1) + (8− b(x)
10 )

)
db(x) +

∫ 35

10
10 ×

w(b(x))×(8− b(x)
10 )db(x)+

∫ 35

10
w(b(x))×( b(x)10 −1)db(x) .

Algorithm 5: ComputeAndNode(child0, child1, sets)

(wfs0, bounds0) = WFOMI(child0, sets);
(wfs1, bounds1) = WFOMI(child1, sets);
wfs = flatten(wfs>0 · wfs1);
bounds = [];
forall boundsi ∈ bounds0 do

forall boundsj ∈ bounds1 do
new_bounds = boundsi ;
forall p ∈ pred(boundi) ∩ pred(boundj) do

new_bounds[p] = boundsi[p] ∩ boundsj[p];

forall p ∈ pred(boundsj) \ pred(boundsj) do
new_bounds[p] = boundsj[p];

bounds.append(new_bounds);

return (wfs, bounds);

The first integral can be simplified, but leaving three in-
tegrals to solve. A better approach is to apply the dis-
tributive property and to realise that apart from the bound-
aries and constants, we only have two different integrals:∫
w(b(x))·( b(x)10 −1) db(x) and

∫
w(b(x))·(8− b(x)

10 ) db(x).
The question then is how to avoid redundant computations
of these integrals differing only in their range and constants.

We propose to keep the information related to the weight
functions separated into a three parts data structure: a con-
stant array, an array of boundaries, and a weight functions
array. Each of those layers is treated separately at the differ-
ent nodes. Through the use of a hashing algorithm, the array
structure can be efficiently checked for duplicates before
computing the numerical integrals, and redundant compu-
tations can be avoided. The new Algorithm 6 is shown in
detail in the appendix.

Theorem 3. By keeping the constants separately, and check-
ing for duplicate terms, the number of integrals needed to be
solved can be reduced by 1

2(m+n) , where m is the number of
atoms that have only one weight function for both positive
and negative instances, and n is the number of atoms with
constant weights.

In the example above, the same weight function for both
BMI(x) ≥ 35 and ¬(BMI(x) ≥ 35) are given by the same
expression but differing in range. Thus, the number of inte-
grals to be solved is halved.

5 WHEN IS A REDUCTION TO WFOMC
POSSIBLE?

Our next result is to show that by means of relational ab-
straction, it is possible in some very limited cases to reduce
WFOMI to WFOMC. We identify two cases based on
syntactic form.



 Theorem 4. WFOMI can be reduced to WFOMC when
only SMT literals have weight functions, and the weight
functions are only functions of the function symbols in the
predicates they represent.

The first part of the theorem states that non-SMT atoms,
in our example diabetes(x), have constant weights. An ex-
ample of a weight function of an SMT atom which only
depends on the function symbol of its predicate would be
the weight function of (BMI(x) ≥ 35).

Integrating over the leaf nodes, would lead to
WFOMI(4, w) =

∑
M�4

∏
l∈M

∫
·· ·
∫
l+∈M w(p(l)),

which is different from Definition 4. The new for-
mula computes the model weight for the example
case as

∫ 45

35
w(d(x)) ·

∫ 45

35
w(b(x) ≥ 35) instead of∫ 45

35
w(d(x)) · w(b(x) ≥ 35). However, under the above

mentioned assumptions, Theorem 4 states that the result
will be equivalent, which can be easily checked. This
implies that if no dependency between weight functions
exists, we can integrate at the leaf node and use discrete
solvers such as WFOMC.

The second case is more complicated. Consider, for argu-
ment sake, a new distribution for BMI(x), a step function,
which amounts to assigning constant weights w(BMI(x) ≥
35) = 0.2 and w(¬(BMI(x) ≥ 35)) = 0.8. Notice that
w(diabetes(x)) and w(¬ diabetes(x)), are now again weight
functions dependent on BMI(x).

The naive way would be to set the weights w(d(x)) =
w(¬d(x)) = 1 and to add auxiliary predicates simi-
lar to a1(x) for each pair of diabetes(x), ¬ diabetes(x),
(BMI(x) ≥ 35) and ¬(BMI(x) ≥ 35). The new auxiliary
predicates in addition to a1, and their respective weights are

• w(a2(x) ≡ [d(x)∧b(x) ≥ 35]) =
∫ 45

35
( b(x)10 −1)db(x)

• w(a3(x) ≡ [¬d(x) ∧ b(x) ≥ 35]) =
∫ 45

35
(8 −

b(x)
10 )db(x)

• w(a4(x) ≡ [d(x)∧b(x) < 35]) =
∫ 35

10
( b(x)10 −1)db(x)

• w(a5(x) ≡ [¬d(x) ∧ b(x) < 35]) =
∫ 35

10
(8 −

b(x)
10 )db(x)

• w(¬ai(x)) = 1, with i ∈ {2, . . . , 5}

The new sda-DNNF is inherently larger. Due to its size
and for readability purposes, the new circuit is in the ap-
pendix. The resulting WFOMI computation would also
be WFOMI(4, w) =

∑
M�4

∏
l∈M

∫
·· ·
∫
l+∈M w(p(l)).

However, again under the assumptions made above, the re-
sults would be the same, as the integrals over SMT atoms
would reduce to constants, and constants can be factored
out leading to the equivalent result as the WFOMI from
Definition 4.

Theorem 5. WFOMI can be reduced to WFOMC if the
weight functions only depend on other atoms with a step

distribution, where the steps occur at the boundaries given
by the atoms, or when predicates have constant weights.

6 EMPIRICAL RESULTS

To the best of our knowledge, this is the first exact lifted
solver for mixed discrete-continuous domains, so the most
natural comparison is against state-of-the-art WMI solvers.
The results reported below are the average of 100 runs on a
Dell XPS13, Ubuntu, 16GB RAM with i7-10510U CPUs.
The code can be found in the supplementary material.

Simple Diabetes Example We ran the motivational exam-
ple, where we computed the probability of a specific person
having diabetes, and compared our different algorithms to
a state-of-the art exact (XADD) solver and an approximate
(rejection) solver [Kolb et al., 2018]. The only difference to
the example introduced above is that we used a crude poly-
nomial approximation for BMI(x), as otherwise the XADD
solver was not able to solve the problem.

Figure 3: Comparison of query computation for different
solvers on the simple diabetes example with different sizes
of the People set.

Figure 3 shows that both WFOMI solvers’ computation
times stay constant, until a set size of 100,000 is reached.
Still, even for such a large set size the results are computed
correctly and the computation time is only 0.105s and 0.086
s for Algorithm 1 and Algorithm 6, respectively. The in-
crease of computation time is due to the extremely large
model weight ( 1.5e+61246). The exact XADD solver com-
putation time increases, as expected exponentially, such that
computations for a set size greater than four was not even
possible. The approximate solver computation time only
increases very slowly, as the majority of the computation
time stems from integration step, which depends on the
sample size, which was fixed as 1,000,000. However Fig-
ure 4 shows that the inaccuracy of the approximate solver
increases exponentially, s.t. for larger set sizes we might get
query results of over 100%.

Family Diabetes Example In the second experiment,
we extend the KB with the predicate family(x, y) ∈
{true, false}. We further introduce an auxiliary predicate

a2(x, y) ≡ [(b(x) ≥ 35) ∧ family(x, y) =⇒ (b(y) ≥ 35)],



 

Figure 4: Boxplots showing the distribution of the results for
the same query on the simple diabetes example on different
set sizes.

which means that a family member of an obese person is
more likely to be obese. The sda-DNNF is shown in the last
section of the appendix in Fig.8. The rest of the assumptions
and parameters remains the same as above.

Figure 5: Comparison of query computation for different
solvers on the family diabetes example with different sizes
of the People set.

Figure 6: Boxplots showing the distribution of the results
of the approximate solver for the same query on the family
diabetes example on different set sizes.

Fig. 5 show that in contrast to the motivational example,
the computation time does increase, however, only linearly.
This result is expected, as the WFOMC computations on
the friend-smokers example [Richardson and Domingos,
2006] also increased linearly. (These two examples have an
analogue knowledge base.)

This is still far better than the exponential computation time
increase of the current state-of-the-art solver. We were only
able to run the example for a set size of 3-4, as with more
objects in the set, both - the XADD solver and the approx-
imate solver did not return any value. However, even for
these few cases, we were able to show the significant impact
of the new algorithms. The new solver had no difficulties
running the example with 104 objects, as can be seen in Fig.
5 on the right. Fig. 6 shows the exponential inaccuracy of
the approximate rejection solver, which we have already
shown in the simpler example.

These results show the significance of the WFOMI solver
on two simple example, as computation time remains very
low and the solver returns an exact result. The results also
show empirically the benefit of the improved Algorithm 6.

7 RELATED WORK

Since the formulation of WMI [Belle et al., 2015], numer-
ous advances have been made [Belle et al., 2016, Morettin
et al., 2017, Zeng and Van den Broeck, 2019]. Moreover,
Kolb et al. [2018, 2019], Zuidberg Dos Martires et al. [2019]
have even argued for a compilation target in service of re-
peated query computations. However, they remain limited
to non-relational atoms. In similar spirit, de Salvo Braz et al.
[2016] exploited properties over inequalities to make sum-
mation more effective but is still limited to nullary functions.
Building on de Salvo Braz et al. [2016], de Salvo Braz and
O’Reilly [2017] considers how inequalities can be exploited
in relational models. A so-called inversion operator is in-
vestigated, which takes its name from the property that in
some cases a summation of products can become a cheaper
product of sums (

∑∏
→
∏∑

). In contrast, as we discuss
above, our goal was somewhat broader: we wanted to state
precisely which first-order fragment over hybrid domains
is liftable in service of constructing a first-order circuit and
analyze the nuances in weight functions that affect this in-
quiry.

8 CONCLUSION

In this paper we presented an analysis on how to solve WMI
with hybrid relational formulae and symbolic real-valued
weight functions. We showed how a hybrid sda-DNNF cir-
cuit can be built and how the WMI can be computed effi-
ciently. Many interesting directions remain for the future.
One direction is, the learning of circuits, as this is very pop-
ular in discrete (propositional and relational) settings [Lowd
and Domingos, 2007, 2008, Van den Broeck et al., 2012,
Van den Broeck et al., 2013]. Learning the structure and
parameters of the rules from data, would enable WFOMI
to be tested and used on real world datasets allowing to
assess the benefit of lifted reasoning in hybrid domains.
Another interesting direction is to consider hybrid atoms
involving arithmetic expressions over function symbols e.g.
income(x) + income(y) ≤ 100, 000.
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