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Abstract

We study a version of the classical zero-sum ma-
trix game with unknown payoff matrix and bandit
feedback, where the players only observe each oth-
ers actions and a noisy payoff. This generalizes
the usual matrix game, where the payoff matrix
is known to the players. Despite numerous appli-
cations, this problem has received relatively little
attention. Although adversarial bandit algorithms
achieve low regret, they do not exploit the ma-
trix structure and perform poorly relative to the
new algorithms. The main contributions are regret
analyses of variants of UCB and K-learning that
hold for any opponent, e.g., even when the oppo-
nent adversarially plays the best-response to the
learner’s mixed strategy. Along the way, we show
that Thompson fails catastrophically in this set-
ting and provide empirical comparison to existing
algorithms.

1 TWO-PLAYER ZERO-SUM GAMES

Any two-player zero-sum game can be described by a pay-
off matrix A ∈ Rm×k [Von Neumann, 1928, Von Neumann
and Morgenstern, 1944]. The row player selects i ∈ {1..m}
and column player selects j ∈ {1..k}. These choices are re-
vealed simultaneously and the row player makes a payment
of Aij to the column player. In general, the optimal strategy
for each player is mixed, i.e. determined by a probability
distribution across actions. We can therefore determine the
optimal strategy for each player to maximize their reward:

(row) argminy∈∆m
maxi(A

T y)i (1)
(column) argmaxx∈∆k

minj(Ax)j , (2)

where ∆p is the probability simplex of dimension p− 1.

The linear programs (LPs) (1) and (2) are dual, and strong

duality for LPs means that the optimal values for each prob-
lem are identical [Boyd and Vandenberghe, 2004]. We refer
to this shared optimal quantity as the value of the game,
denoted V ?A .

V ?A := min
y∈∆m

max
x∈∆k

yTAx = max
x∈∆k

min
y∈∆m

yTAx. (3)

Any primal-dual strategies (x?, y?) that solve the saddle-
point problem (3) are a Nash equilibrium [Nash et al., 1950],
though they may not be unique. Playing a Nash equilibrium
x? is minimax optimal, you cannot improve on it for all
opponent strategies y. Equation (3) also yields the surprising
result that there is no advantage to knowing your opponent’s
strategy in advance if their strategy is optimal.

1.1 LEARNING IN REPEATED MATRIX GAMES

Matrix games have a myriad of real-world applications,
including economics, diplomacy, finance, optimization, auc-
tions, and voting systems. This paper extends the analysis to
the case where the players are also uncertain of the payoff
matrix A, but can learn about it through their experience. In
each round t ∈ N the row player chooses it ∈ {1..m} and
the column player chooses jt ∈ {1..k}. The payment from
row player to column player is given by,

rt = Aitjt + ηt (4)

where ηt is zero-mean noise, independent and identically
distributed from a known distribution across time. Both
players observe the actions of their opponents and the
resulting reward rt, which is referred to as bandit feed-
back Lattimore and Szepesvári [2020]. We define Ft =
(i1, j1, r1, . . . , it−1, jt−1, rt−1) to be the sequence of ob-
servations available to each player prior to round t, and as
shorthand we shall use the notation Et(·) = E( · | Ft).
Two aspects of this problem distinguish it from other setups
considered in the literature [Cesa-Bianchi and Lugosi, 2006,
Blum and Mansour, 2007, Rakhlin and Sridharan, 2013].
Firstly, the players receive the actions of their opponents as
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 observations, and secondly, the players receive noisy bandit
feedback of the payoff.

We will perform our analysis from the perspective of a single
player who does not control the actions of the opponent.
Without loss of generality, we assume control of the column
player and define a learning algorithm alg as a measurable
mapping from histories Ft to a distribution over actions
x ∈ ∆k. In order to assess the quality of an algorithm alg
we consider the regret, or shortfall in cumulative rewards,
relative to the Nash equilibrium value,

R(A, alg, T ) = Eη,alg

[
T∑
t=1

V ?A − rt

]
. (5)

This quantity (5) depends on the unknown matrix A, which
is fixed at the start of play and kept the same throughout.
Expectations are taken with respect to the noise added in
the payoffs η and the learning algorithm alg. To assess the
quality of learning algorithms designed to work across some
family of games A ∈ A we define:

BayesRegret(φ, alg, T ) = EA∼φR(A, alg, T ), (6)
WorstCaseRegret(A, alg, T ) = max

A∈A
R(A, alg, T ). (7)

The two objectives are sometimes called Bayesian (average-
case) (6) and frequentist (worst-case) (7). Here, φ is a prior
probability measure over A ∈ A that assigns relative impor-
tance to each problem instance.

1.2 MAIN RESULTS

The main contribution of this paper is to show that
agents employing the ‘optimism in the face of uncertainty’
(OFU) principle enjoy strong bounds Õ(

√
mkT ) on both

Bayesian and frequentist regret. Perhaps surprisingly, these
bounds apply to clear and simple applications of K-learning
[O’Donoghue, 2018] and Upper confidence bound (UCB)
algorithms [Auer et al., 2002a] and without restriction on the
opponent’s strategy. Additionally we show that the stochas-
tically optimistic algorithm Thompson sampling cannot
generally enjoy sublinear regret in the presence of an in-
formed opponent [Russo et al., 2018]. This result clarifies
an important distinction between the applications of the
OFU-principle that separates multi-player games from the
single-player setting. Although we present bounds for the
bandit feedback case, it is straightforward to generalize the
results to the case where the agent receives full information,
or information about all the entries in the column and/or
row selected.

We supplement our analytical results with a series of didac-
tic experiments designed to unpick the empirical scaling
of these algorithms, and highlight the regimes where one
approach may outperform the other. In short, we find that for
random matrix games, optimistic approaches that leverage

knowledge of the matrix structure perform better than the
adversarial Exp3 algorithm. This computational work is far
from definitive, but may help to guide future work in this
nascent area of research.

2 APPLICATIONS

Uncertain games. Any two-player zero-sum game where
the agent has uncertainty over the outcomes of the actions
and receives partial feedback is amenable to our frame-
work. Such examples exists in economics, sociology, pol-
itics, psychology and others [Myerson, 2013]. Stochastic
multi-armed bandits are regularly used in advertising, but
if fraudulent clicks from bots are present then this can be
modeled as a game between the agent and the fraudsters
[Wilbur and Zhu, 2009]. Another example is intrusion de-
tection wherein an attacker attempts to penetrate a system
while a defender attempts to prevent the attack, and initially
the players do not know the probability of detection for
each pair of actions [Bace, 2000]. Similarly two political
parties competing in a series of election can be modeled
in this fashion, where the actions correspond to targeting
messages at different groups of voters and the parties start
with uncertainty about how each action will help or hurt
their chances of winning an election [Ordeshook, 1986].

Robust bandits. In the robust multi-armed bandit prob-
lem the reward of each arm is determined partially by
some other outcome which is selected by ‘nature’ [Caro
and Gupta, 2013, Kim and Lim, 2016]. The outcomes se-
lected by nature are not necessarily independent across time-
periods nor can we assume that the process selecting the
actions is stationary. It is because of these issues that stan-
dard stochastic multi-armed bandit algorithms fail on this
problem. To combat this, the agent may desire a policy that
is robust, in the minimax sense, to all possible selections by
nature, which is naturally formulated as a game. Examples
of this problem include clinical trials where one or more
characteristics of the patients are not observed until after
the treatment has been administered [Villar et al., 2015].
Another is resource placement, where an agent must place a
resource, e.g., a server, in a location and respond to requests
as they come in. The agent wants to minimize the worst-case
response latency, but does not know in advance the average
latency between all pairs of nodes [Ghosh and Boyd, 2003].
A further example is route planning, wherein an agent must
decide which route to take to reach some goal but does not
know in advance the average times required to traverse each
leg and some exogenous variable influences the travel times,
such as road conditions or traffic [Oliveira, 2017]. Similar
problems exist in A/B testing, advertising, recommender
systems, scheduling, and queueing.

Bandits with budget constraints. Consider a multi-
armed bandit problem where pulling an arm consumes some



 amount ci of each of i = 1, . . . ,m available resources. Each
resource has a total amount available and the total amount
consumed before T time-periods must be less than this total
[Badanidiyuru et al., 2013]. This situation is common in
practice and arises, for example, in clinical trials when the
inputs to each of the treatments is not identical and each
input has a limited amount available, or in online advertising
where the campaigns have total spend limits. It turns out
this problem can be embedded into a repeated zero-sum
two-player matrix game [Immorlica et al., 2019, §4]. In
this case the average reward of each action and the aver-
age amount of resource consumed by each action may be
initially unknown.

3 OPTIMISTIC EXPLORATION IN
REPEATED GAMES

In the literature on efficient exploration, the principle of
‘optimism in the face of uncertainty’ (OFU) has driven the
majority of studied algorithms. This approach assigns a
bonus to poorly-understood actions to account for the value
of exploration. The remainder of this section outlines several
approaches to exploration driven by OFU, and examines the
conditions in which each might be effective. For the most
part, our results mirror those of the bandit literature but, in
some cases, the presence of an opponent raise interesting
challenges.

3.1 UPPER CONFIDENCE BOUND

Upper confidence bound (UCB) algorithms construct high-
probability upper bounds on the value of each possible
action, then (generally) act greedily with respect to those
bounds [Lai, 1987, Auer et al., 2002a]. Carefully control-
ling how the bounds change over time yield algorithms that
achieve low regret [Bubeck and Cesa-Bianchi, 2012, Latti-
more and Szepesvári, 2020]. This is a form of deterministic
optimism, and it will turn out that in matrix games this de-
terminism is crucial to prevent exploitation by the opponent.
Before we develop the algorithm, we require the following
assumption 1.

Assumption 1. The noise process ηt, t ∈ N is 1-sub-
Gaussian and the payoff matrix satisfies A ∈ [0, 1]m×k.

Under this assumption we can use the Chernoff inequality
to provide an upper bound on each Aij for all t that holds
with probability at least 1− δ:

Aij ≤ Ātij +
√

2 log(1/δ)/(1 ∨ ntij), (8)

where Ātij is the empirical mean of the samples from Aij ,
ntij is the number of times that row i and column j has been
chosen by the players up to (but not including) round t, and
we have used the notation (1 ∨ ·) = max(1, ·). Since we

Algorithm 1 UCB for matrix games

for round t = 1, 2, . . . , T do
compute Ãtij = Ātij +

√
2 log(2T 2mk)/(1 ∨ ntij)

use policy x ∈ argmax
x∈∆k

min
y∈∆m

yT Ãtx.

end for

do not control the opponent we cannot try every possible
action once, so we define the empirical mean Āij to be
zero whenever ntij = 0 and we shall choose δ such that√

2 log(1/δ) ≥ 1, which provides an upper bound on Aij
whenever ntij = 0 by assumption that A ∈ [0, 1]m×k. This
motivates the UCB algorithm presented in algorithm 1. The
following theorem yields a worst-case regret bound.

Theorem 1. Let assumption 1 hold with T ≥ mk ≥ 2
and δ = 1/(2T 2mk). Then, the regret of Algorithm 1 is
bounded

WorstCaseRegret(A,UCB, T )

≤ 1 + 2
√
mkT log (2mkT 2)

= Õ(
√
mkT ).

Proof. Let Et be the event that there exists a pair i, j such
that (Ãt)ij < Aij . By definition, Et ∈ Ft. Consider for a
moment that Et does not hold and let

ỹt = argmin
y∈∆m

y>Ãtxt

be the best-response to the player’s in round t. Since Et
does not hold, the upper confidence matrix over-estimates
the true matrix and hence V ?

Ãt
≥ V ?. Then the per-round

regret satisfies

V ?A − Et[y>t Axt] ≤ Et
[
V ?
Ãt
− y>t Axt

]
= Et

[
ỹ>t Ãtxt − y>t Axt

]
≤ Et

[
y>t (Ãt −A)xt

]
= Et

√
2

1 ∨ ntitjt
log

(
1

δ

)
,

where the first inequality follows from optimism and the
second since ỹt is the best-response to xt for matrix Ãt.
Next, by the definition of the regret,

R(T ) = E

[
T∑
t=1

V ?A − Et
[
y>t Axt

]]

≤ E

[
T∑
t=1

√
2

1 ∨ ntitjt
log

(
1

δ

)]
︸ ︷︷ ︸

(A)

+TP
(
∪Tt=1Et

)︸ ︷︷ ︸
(B)

.



 Algorithm 2 Thompson sampling for matrix games

for round t = 1, 2, . . . , do
sample Ãt ∼ φ | Ft
use policy x ∈ argmax

x∈∆k

min
y∈∆m

yT Ãtx,

end for

The second term is bounded naively by (B) ≤ 2T 2mkδ ≤ 1.
The first term is bounded by

(A) ≤
∑
i,j

E
T∑

t=1:it=i,jt=j

√
2

1 ∨ ntij
log

(
1

δ

)

≤
∑
i,j

E

√
4nTij log

(
1

δ

)

≤

√
4mkT log

(
1

δ

)
,

where the final inequality follows from Cauchy–Schwarz.
Note that the inner sum on the first line is from t = 1 to
T where it = i and jt = j, i.e., summing up all the times
where action i, j was selected, and the outer sum is over
indices i, j.

3.2 THOMPSON SAMPLING

Thompson sampling (TS) is a well-known Bayesian explo-
ration strategy that at each time period samples an environ-
ment according to the posterior probability over possible
environments, then acts greedily with respect to that sample
[Thompson, 1933, Russo et al., 2018, O’Donoghue et al.,
2017b]. For matrix games the Thompson sampling algo-
rithm is described in algorithm 2. The performance of UCB
algorithms depend strongly on the confidence sets used to se-
lect the action. By contrast it can be shown in single-player
settings that any sequence of confidence sets can be used to
bound the Bayesian regret of Thompson sampling [Russo
and Van Roy, 2014]. In this way TS benefits from the best
choice of confidence bounds, without explicitly having to
know the best sequence of bounds in advance. With this in
mind, one might expect a Bayesian regret bound for TS of
a similar order to the bound we just derived for UCB. In
this section we show that, in contrast to UCB, we can con-
struct games and opponents that force Thompson sampling
to suffer linear regret.

Take the following 2× 2 game[
r 0
0 −1

]
, r =

{
1 w.p. 1/2
−1 w.p. 1/2.

(9)

Consider the case where the true value of r = 1, and the TS
agent is competing against an agent that knows the value
of r and is simply playing the Nash equilibrium of (0, 1).

The TS agent using algorithm 2 will sample its actions
from policy x = (1, 0) with probability 1/2 and policy
x = (1/2, 1/2) with probability 1/2. However, since the
other agent is playing the Nash, the uncertainty about the
value of r will never be resolved, and so the TS agent will
have the same behaviour forever. Every time it selects the
second column it incurs a regret of 1, which happens with
probability 1/4 every time period, thereby yielding linear
regret. This counter-example shows that Thompson sam-
pling cannot enjoy sub-linear regret against all opponents,
however it does not rule out such bounds in more benign
cases, such as self-play with identical information.

The crucial distinction between Thompson sampling and
UCB is the use of stochastic, rather than deterministic, opti-
mism. This stochasticity means that sometimes the TS agent
is actually pessimistic about the true state of the world, and
in those rounds the agent can be exploited by an informed
opponent. In the single-player case it can be shown that
Thompson sampling can only suffer high regret in any given
round if it is also gaining information about the optimal ac-
tion [Russo and Van Roy, 2016]. However, in the case with
an opponent it is clear that Thompson sampling can suffer
high regret without gaining new information. It is in these
cases that TS suffers linear regret, which we shall confirm
empirically in the numerical experiments.

3.3 OPTIMISTIC POSTERIOR ESTIMATES VIA
K-LEARNING

K-learning is a Bayesian exploration algorithm originally de-
veloped for Markov Decisions processes in which the agent
computes the value of states and actions using a risk-seeking
exponential utility function [O’Donoghue, 2018]. Since the
resulting ‘K-values’ (Knowledge values) are optimistic for
the expected values under the posterior, K-learning can be
viewed as employing the OFU principle. However, it also
can be interpreted as a variational approximation to Thomp-
son sampling [O’Donoghue et al., 2020] which incorporates
deterministic optimism while maintaining many of the ben-
efits of Thompson sampling over UCB style approaches
[Osband and Van Roy, 2017, Kaufmann et al., 2012]. Like
UCB, the deterministic optimism is central in the develop-
ment of a regret bound. First, let aj denote the jth column
of A, which is a random variable with conditional cumulant
generating function Kt

aj : Rm → R, defined as

Kt
aj (y) = logEt exp(a>j y), (10)

and note that this is the cumulant generating function of aj
under the posterior, conditioned on all the history of obser-
vations so far inFt. With this in place we present K-learning
as algorithm 3. The optimization problem in algorithm 3 is
convex and can be expressed as an exponential cone pro-
gram, for which efficient algorithms exist [O’Donoghue
et al., 2016, Serrano, 2015, Domahidi et al., 2013]. We have



 Algorithm 3 K-learning for matrix games

for round t = 1, 2, . . . , do

(y?t , τ
?
t ) ∈ argmin

y∈∆m,τ≥0
τ log

k∑
j=1

expKt
aj (y/τ)

use policy x?t ∝ expKt
aj (y?t /τ

?
t )

end for

the following Bayesian regret bound for K-learning.

Theorem 2. Under assumption 1 the K-learning algo-
rithm 3 satisfies the following Bayesian regret bound

BayesRegret(φ,Klearn, T ) ≤ 2
√
mkT log k(1 + log T )

= Õ(
√
mkT ).

Proof. Using the tower property of expectation we can
bound the Bayes regret as

BayesRegret(φ,Klearn, T )

= E
T∑
t=1

Et(V ?A − rt)

= E
T∑
t=1

Et( min
y∈∆m

max
x∈∆k

yTAx)− Et(rt)

≤ E
T∑
t=1

min
y∈∆m

Et max
x∈∆k

yTAx− yTt (EtA)xt,

(11)

via Jensen’s inequality, and the fact that the policies xt and
yt are adapted to the filtration (σ(Ft), t ∈ N). Now we shall
develop an upper bound for the expected value of the max.
For any τ > 0,

Et max
x∈∆k

yTAx = Et max
j
a>j y

≤ τ logEt exp max
j
a>j y/τ

= τ logEt max
j

exp a>j y/τ

≤ τ log

k∑
j=1

expKt
aj (y/τ),

where we used Jensen’s inequality and the fact that the
sum of positive numbers is greater than the max, and Kt

aj
is the cumulant generating function (10). We denote by
Lt : Rk × Rm × R+ → R, t = 1, . . . , T , the Lagrangian

Lt(x, y, τ) =

k∑
j=1

xjτK
t
aj (y/τ) + τH(x), (12)

where H(x) = −
∑k
j=1 xj log(xj) is the entropy of the

agent policy, and it is straightforward to show that

τ log

k∑
j=1

expKt
aj (y/τ) = max

x∈∆k

Lt(x, y, τ).

and the x that achieves the maximum is given by

x? ∝ expKt
aj (y/τ).

We can bound the first term in the last line of (11) using

min
y∈∆m

Et max
x∈∆k

yTAx ≤ min
y∈∆m,τ≥0

max
x∈∆k

Lt(x, y, τ)

= Lt(x?t , y?t , τ?t ).

For fixed x ∈ Rk the Lagrangian is jointly convex in
y ∈ Rm and τ > 0, since cumulant generating functions
are always convex and τKt

aj (y/τ) is the perspective of
Kt
aj , which preserves convexity. On the other hand, for

fixed y and τ ≥ 0 the Lagrangian is concave in x, since
entropy is concave [O’Donoghue et al., 2017a]. Therefore
the Lagrangian is convex-concave jointly in (y, τ), x, which
implies that Lt(x?t , y?t , τ?t ) ≤ Lt(x?t , y, τ) for any feasible
y ∈ ∆m, τ ≥ 0, due to the saddle point property.

From this we can bound the Bayes regret incurred in round
t from (11)

Et(V ?A − rt) ≤ Lt(x?t , y?t , τ?t )− yTt Et(A)xt

≤ Lt(x?t , yt, τt)− yTt Et(A)xt,
(13)

where yt is the strategy played by the opponent, and τt ≥ 0
is a free parameter. Assumption 1 implies that the posterior
of aj , j = 1, . . . , k, is 1-sub-Gaussian and concentrates as

τKt
aj (y/τ) ≤ (Etaj)T y +

m∑
i=1

y2
i

2τ(1 ∨ ntij)
. (14)

Now all that remains is to bound the sum over time using
equation (13) and equation (14)

BayesRegret(φ,Klearn, T )

≤ E
T∑
t=1

∑
i,j

x?tjy
2
ti

2τt(1 ∨ ntij)
+ τtH(x?t )


≤ E

T∑
t=1

∑
i,j

x?tjyti

2τt(1 ∨ ntij)
+ τtH(x?t )


≤ mk(1 + log T )/2τT + log k

T∑
t=1

τt

≤ 2
√
mkT log k(1 + log T ).

where the third inequality follows from a pigeon-
hole argument which we present as lemma 1 be-
low, and the last inequality sets free parameter τt =√
mk(1 + log T )/(4t log k).

Lemma 1. Consider a process that at each time t selects
a single index at from {1, . . . , q} with probability ptat . Let
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Figure 1: Regret for game matrix Eq. (9).

nti denote the count of the number of times index i has been
selected before time t, and assume that T ≥ 1. Then

T∑
t=1

q∑
i=1

pti/(1 ∨ nti) ≤ q(1 + log T ).

Proof. This follows from a straightforward application of
the pigeonhole principle,

T∑
t=1

q∑
i=1

pti/(1 ∨ nti) =

T∑
t=1

Eat∼pt(1 ∨ ntat)
−1

= Ea0∼p0,...,aT∼pt
T∑
t=1

(1 ∨ ntat)
−1

= Ea0∼p0,...,aT∼pt
q∑
i=1

1∨nT
i∑

t=1

1/t

≤
q∑
i=1

T∑
t=1

1/t

≤ q(1 + log T ),

since nti is the count before time t we have 1 ∨ nTi ≤ T
for each i and where the last inequality follows since∑T
t=1 1/t ≤ 1 +

∫ T
t=1

1/t = 1 + log T .

Now we return to the simple 2 × 2 problem with payoff
matrix in equation (9). Recall that Thompson sampling will
incur linear regret in this setting since it will select the
second column with probability 1/4 each round. By contrast,
a quick calculation tells us that K-learning in this situation
will always play the strategy (1, 0), thereby incurring zero
regret, and will play this forever even though the uncertainty
about the value of r is never resolved. This is demonstrated
in Figure 1.

4 ADVERSARIAL BANDIT
ALGORITHMS

In the adversarial bandit framework, an adversary and
learner interact sequentially over T rounds. In each round

t, the learner chooses a distribution xt ∈ ∆k and the adver-
sary simultaneously chooses a loss vector `t ∈ [0, 1]k. Any
algorithm designed for adversarial bandits can be used in
our setting by choosing `ti = −Ajti. The usual definition
of the regret in this notation is

E

[
max
i

T∑
t=1

Ajti −
T∑
t=1

rt

]
︸ ︷︷ ︸

adversarial regret

≥ R(A, alg, T ) .

Hence, an algorithm with small adversarial regret automati-
cally enjoys small regret relative to the Nash strategy [Han-
nan, 1957]. There are now many algorithms for adversar-
ial bandits, the most well-known being Exp3 [Auer et al.,
1995]. The basic algorithm uses importance-weighting to
estimate the rewards for each action and samples from a
carefully tuned exponential weights distribution. Let r̂ti be
the importance-weighted estimate of the reward of action i
in round t:

r̂ti =
rt1(it = i)

xti
,

where the distribution of the player xt is given by

xti =
γt
k

+ (1− γt)
exp

(
ρt
∑t−1
s=1 r̂si

)
∑k
j=1 exp

(
ρt
∑t−1
s=1 r̂sj

) .
When ρt and γt are tuned appropriately, then the regret of
Exp3 relative to the best action in hindsight is

E

[
max
i

T∑
t=1

Ajti −
T∑
t=1

rt

]
= O

(√
kT log k

)
. (15)

The reader will notice that this bound is independent of the
number of actions of the opponent, which was not true for
UCB or K-learning. Another strength of Exp3 and similar
algorithms is that the alternative notion of regret means they
can exploit weak opponents. On the other hand, Exp3 is em-
pirically much worse than K-learning and UCB. The reason
is that Exp3 does not use the structure of the game and can-
not quickly eliminate actions that do not play a strong role in
any plausible Nash equilibrium. Furthermore, in many cases
the goal is to learn the Nash equilibrium (if possible), i.e., to
have ‘solved’ the game, not just to exploit the opponent. For
example, since Exp3 does not converge to the minimax so-
lution in general, it does not solve the robust bandit problem
and suffers from high variance of Ω(T 2) [Lattimore and
Szepesvári, 2020, Ex. 11.6]. Concretely, consider playing
rock-paper-scissors against an opponent with fixed strategy
(0.2, 0.2, 0.6). Exp3 against this opponent will converge
towards playing (1, 0, 0). However, a UCB or K-learning
agent will learn to play the Nash strategy (1/3, 1/3, 1/3),
and will not be exploitable by any opponent (i.e., they will
be robust), even though they only played against a weak



 player. If suddenly the opponent changes then Exp3 will
suffer significantly larger losses than the robust algorithms
even though the final regret may not be worse. We shall
demonstrate this phenomenon in the numerical experiments.

There are many adaptations of Exp3. The main threads are
(a) using the online convex optimisation view and modifying
the regularizer [Audibert and Bubeck, 2009, Bubeck et al.,
2018, Wei and Luo, 2018], for example, and (b) modifying
the loss estimates to obtain high probability regret or adap-
tive bounds [Auer et al., 2002b, Kocák et al., 2014, Neu,
2015, Abernethy et al., 2008]. None of these algorithms are
able to handle the additional knowledge of the opponent’s
action and we do not believe any will improve on Exp3
by a significant margin empirically. The partial monitoring
framework can incorporate knowledge of the opponent’s
action [Rustichini, 1999]. Partial monitoring is now rea-
sonably well understood theoretically [Bartók et al., 2014]
and sensible algorithms exist [Lattimore and Szepesvári,
2019]. Regrettably, however, even with Bernoulli rewards,
the matrix games studied here can only be modelled by
exponentially large partial monitoring games for which ex-
isting algorithms are not practical. The case of two-player
matrix games where the matrix A is selected adversarially
at each timestep was considered in [Cardoso et al., 2019],
however, that work assumed control of both players, so is
not applicable here.

5 NUMERICAL EXPERIMENTS

In this section we present numerical results comparing the
performance of the algorithms we have discussed so far. In
most cases we are interested in measuring the empirical
regret on a particular problem. Since this depends on the
opponent we shall report cumulative absolute regret, i.e.,

T∑
t=1

|V ?A − yTt Axt|,

for fixed A. This is meaningful because we primarily focus
on two cases: self-play and against a best-response oppo-
nent. In self-play the algorithm is competing against another
player using the same algorithm with the same information
and so the cumulative absolute regret is a loosely measure
of how far the players are from the Nash equilibrium. The
best-response opponent knows the exact value of A and
the agent’s strategy at every round, and so can compute the
action that minimizes the expected payoff. In this case the
regret the agent suffers is always positive, so the absolute
regret is the same as the usual notion of regret.

When running Exp3 we used the following parameters

γt = min(
√
k log k/t, 1), ρt =

√
2 log k/tk.

5.1 ROCK-PAPER-SCISSORS

In the classic children’s game rock-paper-scissors, the pay-
off matrix is given by

R P S
R 0 1 -1
P -1 0 1
S 1 -1 0,

which defines a symmetric game with Nash equilibrium
(1/3, 1/3, 1/3) for both players. When comparing the tech-
niques on this problem we add noise ηt ∼ N (0, 1) to the
payoff, and use prior N (0, 1) for each entry in the matrix
for the Bayesian algorithms. We ran each experiment for
1000 rounds and averaged the results over 100 seeds.

In Figure 2 we present the self-play results and in Figure 3
we show the results against a best-response opponent. In
both cases we plot the absolute regret of each algorithm and
the KL-divergence of the policy produced by each algorithm
to the Nash equilibrium policy. In self-play K-learning and
UCB perform well with low regret and relatively quick con-
vergence towards the Nash. Although Thompson sampling
doesn’t enjoy a regret bound against all opponents, it still ap-
pears to perform well in self-play. Exp3, which does not use
the matrix structure of the problem, does not converge to the
Nash equilibrium in self-play in this case. This is shown by
the linear absolute regret and the KL-divergence to the Nash
saturating at a constant. Although Exp3 has a regret bound,
the two competing instantiations oscillate around the Nash
together, sometimes winning and sometimes losing (on av-
erage) against their opponent. It is clear from this result that
Exp3 is not guaranteed to solve the game and converge to
the Nash equilibrium, and so cannot solve the robust bandit
problem in general without further assumptions. Against the
best-response opponent the major difference is the dramatic
decline in performance for Thompson sampling. It is clear
that even in this simple case TS is easily exploited by an
informed opponent and suffers significant losses. In con-
trast to self-play, against the best-response opponent Exp3
will converge to the Nash equilibrium, since it satisfies a
regret bound and the Nash is the only strategy that is not
exploitable. This is shown by the (slow) convergence in KL-
divergence between the Exp3 policy and the Nash towards
zero.

In Figure 4 we compare the performance of the algorithms
with regret bounds competing against each other with iden-
tical information. The legend displays ‘alg1 vs alg2’ for
different choices of alg1 and alg2, and indicates that alg1
is playing as the maximizer and alg2 is the minimizer. We
are plotting the regret (not absolute regret) from the point
of view of the maximizer (alg1). If the regret is positive,
it means that the minimizer (alg2) is winning on average.
Since rock-paper-scissors is symmetric there is no advantage
to being one player or the other so this is a fair head-to-head
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Figure 2: Rock-paper-scissors self-play.
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Figure 3: Rock-paper-scissors vs. best-response.

comparison. From the figure it is immediately obvious that
the algorithms that leverage the matrix structure, K-learning
and UCB, are easily beating Exp3 on average. Although
Exp3 has a regret bound, it requires a long time to learn and
in the meantime it suffers large losses against the optimistic
approaches. When K-learning competes against UCB the
algorithms are roughly evenly matched, however it appears
that UCB has a slight advantage in this case.

5.2 ROBUST BANDITS

In the robust bandit problem the rewards the agent receives
are partially determined by outcomes selected by nature,
and the agent wants a policy that is robust to all possible
outcomes. This problem can be formulated as a game to
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Figure 4: Rock-paper-scissors head-to-head regret.

% returns < 0 mean return
TS 2.3% 0.787

UCB 3.4% 0.995
K-learn 0.7% 0.935
Exp3 9.0% 1.092

Naive TS 15.9% 1.159
Naive UCB 14.1% 1.269

Table 1: Robust bandit problem vs Nature.

which we can apply the algorithms we have developed. To
test their performance we generated a random game with
k = 10 agent actions and m = 5 possible outcomes for
each action, where each entry of A was sampled IID from
N (0.5, 2.0). Nature sampled actions from a fixed policy that
changed randomly every 50 time-steps. We compare the al-
gorithms presented in this manuscript against naive UCB
and naive Thompson sampling, which treated the problem
as though it was a standard stochastic multi-armed bandit
problem. We ran each algorithm for 1000 time-steps av-
eraged over 100 random seeds and we plot the histogram
of the per time-period rewards in Figure 5. In Table 1 we
show what proportion of the time each algorithm suffered
a negative reward, as well as the average reward of each
approach. It is clear that the naive approaches suffer from
negative rewards more frequently, i.e., they are not robust to
the changing conditions of nature. For example, K-learning
suffers negative rewards almost 16× less frequently than
the naive approaches, which both suffered negative rewards
about 15% of the time, at the expense of slightly lower
average reward. We can also see that Exp3 is not robust
since it too suffers significantly more negative rewards than
K-learning and UCB. Since Exp3 attempts to exploit the
nature player, it can suffer large negative rewards for several
periods when nature switches distribution. For completeness
we include the results of the same problem against a best-
response opponent, summarized in Table 2. Unsurprisingly
the naive approaches are trivially exploitable by the BR op-
ponent and suffer large negative rewards at every time-step.
Again, Exp3 suffers significantly more negative reward than
the robust approaches in this case. K-learning has both the
largest average reward and the least percentage of negative
rewards overall, followed by UCB.
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Figure 5: Reward histograms on robust bandit problem.

% returns < 0 mean return
TS 37.4% 0.027

UCB 18.8% 0.299
K-learn 5.1% 0.421
Exp3 19.5% 0.180

Naive TS 100.0% -1.703
Naive UCB 100.0% -1.710

Table 2: Robust bandit problem vs best-response.

6 CONCLUSION

The usual analysis of matrix games assumes that both play-
ers have perfect knowledge of the payoffs. We extended
this to the case where the matrix that specifies the game is
initially unknown to the players and must be learned about
from experience, specifically from noisy bandit feedback.
We showed that two previously published algorithms, UCB
and K-learning, can be extended to this case and enjoy a
sublinear regret bound, even against informed opponents
that can compute a best-response to their strategies. We also
showed a counter-example that rules out a sublinear regret
bound for Thompson sampling under the same conditions.
This difference between deterministically optimistic and
stochastically optimistic algorithms is a significant depar-
ture from the single-player case. We supported our findings
with numerical experiments that showed a significant advan-
tage of these approaches when compared to both Thompson
sampling and Exp3.

We conclude with a brief discussion about lower bounds.
The two optimistic algorithms we developed in this
manuscript have O(

√
T ) regret upper bounds. One might

speculate about the existence of matching lower bounds.
Since the matrix game generalizes the stochastic multi-
armed bandit problem we know we cannot improve upon

this bound in the worst-case. However, this does not pre-
clude the existence of an instance-dependent logarithmic
regret bound. We conjecture that such a bound is not pos-
sible in general against all opponents, though it may be
possible in more benign cases such as self-play with identi-
cal information. We leave exploring this to future work.
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