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Abstract

Multi-source domain adaptation (DA) is more chal-
lenging than conventional DA because the knowl-
edge is transferred from several source domains to
a target domain. To this end, we propose in this
paper a novel model for multi-source DA using
the theory of optimal transport and imitation learn-
ing. More specifically, our approach consists of
two cooperative agents: a teacher classifier and a
student classifier. The teacher classifier is a com-
bined expert that leverages knowledge of domain
experts that can be theoretically guaranteed to han-
dle perfectly source examples, while the student
classifier acting on the target domain tries to imi-
tate the teacher classifier acting on the source do-
mains. Our rigorous theory developed based on
optimal transport makes this cross-domain imita-
tion possible and also helps to mitigate not only
the data shift but also the label shift, which are in-
herently thorny issues in DA research. We conduct
comprehensive experiments on real-world datasets
to demonstrate the merit of our approach and its
optimal transport based imitation learning view-
point. Experimental results show that our proposed
method achieves state-of-the-art performance on
benchmark datasets for multi-source domain adap-
tation including Digits-five, Office-Caltech10, and
Office-31 to the best of our knowledge.

1 INTRODUCTION

Recent advances in deep learning have succeeded in un-
dertaking visual learning tasks under the support of mas-
sive annotated data [Krizhevsky et al., 2012, Ren et al.,
2015, Shelhamer et al., 2017]. However, directly transfer-
ring knowledge of such a learned model to a novel domain
can undesirably degrade its performance due to the exis-

tence of domain shift [Quionero-Candela et al., 2009]. To
address this issue, a diverse range of approaches in domain
adaptation (DA) has been proposed from shallow domain
adaptation [Gong et al., 2013, Courty et al., 2017a,b] to deep
domain adaptation [Ganin and Lempitsky, 2015, Long et al.,
2015, Shu et al., 2018, Damodaran et al., 2018, Nguyen
et al., 2019, 2020]. While the conventional DA aims to trans-
fer knowledge from a labeled source domain to an unlabeled
target domain, in many real-world contexts, labeled data are
collected from multiple domains, for example, images taken
under different conditions (e.g., weather, poses, lighting con-
ditions, distinct backgrounds, and etc) [Zhao et al., 2018].
In this paper, we address a challenging but more practical
transfer learning problem named multi-source domain adap-
tation (MSDA) in which we need to transfer knowledge
from multiple distinct domains to a single unlabeled target
domain.

Imitation learning method has been known as learning
from demonstration. Specifically, there are two fundamental
agents: an expert teacher and a student. The former agent
knows how to do its job perfectly, whilst the latter learns
a policy to mimic the teacher’s behavior. This learning
paradigm has been applied in reinforcement learning and
sequence prediction [Abbeel and Ng, 2004, Ho and Ermon,
2016].

Inspired by the principle of imitation learning, we propose
in this paper a novel model for MSDA, named Multi-Source
Domain Adaptation via Optimal Transport for Student-
Teacher Learning (MOST). When applying the teacher-
student mechanism in the context of MSDA, we seek solu-
tions for two naturally raised questions: i) how is the teacher
determined? and ii) what are the principle and mechanisms
to enable the student to mimic its teacher? We address these
two questions by developing a rigorous and intuitive theory
based on the literature of optimal transport (OT) [Villani,
2008, Santambrogio, 2015, Peyré et al., 2019]. Our approach
(see Sections 4 and 5) postulates that the teacher is a combi-
nation of domain experts learned perfectly under the support
of labeled source samples, and the student aims to predict
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 unlabeled target samples via imitating the prediction of the
teacher. We summarize our contributions in this work as
follows:

• We propose a rigorous OT-based theory to leverage
imitation learning into domain adaptation. Our general
paradigm can further apply to many learning problems
including reinforcement learning.

• Under imitation learning’s perspective, we propose a
novel model for MSDA, which utilizes two cooperative
agents: teacher and student. The implementation of
MOST is also available online1.

• Comprehensive experiments are conducted on bench-
mark datasets for multi-source domain adaptation
including Digits-five, Office-Caltech10, and Office-
31. The experimental results show that our MOST
achieves state-of-the-art performance on those bench-
mark datasets to the best of our knowledge.

2 RELATED WORK

2.1 UNSUPERVISED DOMAIN ADAPTATION

A variety of unsupervised domain adaptation (UDA) ap-
proaches have been successfully applied to generalize a
model learned from a labeled source domain to an unla-
beled novel target domain. Several existing methods based
on discrepancy-based alignment to minimize a different dis-
crepancy metric to close the gap between the source and tar-
get domains [Long et al., 2015, Tzeng et al., 2014, Sun and
Saenko, 2016, Yan et al., 2017, Lee et al., 2019]. Another
branch of UDA methods have leveraged adversarial learning
wherein generative adversarial networks [Goodfellow et al.,
2014] were employed to align the source and target domains
on either feature-level [Ganin and Lempitsky, 2015, Tzeng
et al., 2017, Long et al., 2018] or pixel-level [Ghifary et al.,
2016, Bousmalis et al., 2017, Sankaranarayanan et al., 2018,
Xu et al., 2020b]. On the category-level, some approaches
utilized dual classifier [Saito et al., 2018, Lee et al., 2019],
or domain prototype [Xie et al., 2018, Pan et al., 2019, Xu
et al., 2020a] to investigate the category relations across
domains.

2.2 MULTI-SOURCE DOMAIN ADAPTATION

The aforementioned UDA methods mainly consider single-
source domain adaptation, which is less practical than multi-
source domain adaptation. The fundamental study in Cram-
mer et al. [2007], Mansour et al. [2009], Ben-David et al.
[2010] has shed light upon the wide applications of MSDA,
such as in Duan et al. [2012], Xu et al. [2018]. Based on the
above works, Hoffman et al. [2018] gave strong theoretical
guarantees for cross-entropy and other similar losses, which
is a normalized solution for the MSDA problems. Recently,
Zhao et al. [2018] deployed domain adversarial networks to

1https://github.com/tuanrpt/MOST

align the target domain to source domains. Xu et al. [2018]
proposed a new model to deal with the category shift, which
is the case where sources may not completely share their
categories. Peng et al. [2019] introduced a model that aligns
moments of source and target feature distributions in latent
space. Multi-source distilling model was proposed in Zhao
et al. [2020] to fine-tune the generator and classifier sepa-
rately and utilized the domain weight to aggregate target
prediction. Finally, the work in Wang et al. [2020] deployed
a graph convolutional network to conduct domain alignment
on the category-level.

2.3 OPTIMAL TRANSPORT

Optimal Transport (OT) has raised interest in various fields
including domain adaptation. Many works in single-source
domain adaptation have used OT as a tool to mitigate the do-
main gap via minimizing the cost of complex distributions
[Villani, 2008, Courty et al., 2014, Santambrogio, 2015, Yan
et al., 2018, Damodaran et al., 2018, Nguyen et al., 2021,
Le et al., 2021]. Recently, Lee et al. [2019] proposed us-
ing the sliced Wasserstein distance on the category-level,
whereas Xie et al. [2019] proposed SPOT in which the opti-
mal transport plan is approximated by a pushforward of a
reference distribution, and cast the optimal transport prob-
lem into a minimax problem. The OT-based DA work in
Xu et al. [2020c] has leveraged spatial prototypical infor-
mation and intra-domain structures of image data to reduce
the negative transfer caused by target samples near deci-
sion boundaries. Notably, Courty et al. [2017b] developed
a new framework to connect the theory of optimal trans-
port and domain adaptation [Courty et al., 2017a], which
later inspired an OT-based deep DA method (DeepJDOT)
[Damodaran et al., 2018] and a learning from multiple data
sources method (JCPOT) [Redko et al., 2019].

3 BACKGROUND

3.1 OPTIMAL TRANSPORT

Consider two distributions P and Q which operate on the do-
main Ω ⊆ Rd, let d (x,y) be a non-negative and continuous
cost function or metric. In the modern mathematical lan-
guage, the very first notion of optimal transport (i.e., Monge
problem) [Villani, 2008, Santambrogio, 2015] aims to find
the minimum total cost to transport mass from Q to P as

Md (Q,P) := min
T :T#Q=P

Ex∼Q [d (x, T (x))] ,

where T#Q is the push-forward distribution of Q via the
transport map T . A relaxation of the Monge problem (MP),
a.k.a the Kantorovich problem (KP), is defined as

Kd (Q,P) := min
γ∈Γ(Q,P)

E(x,y)∼γ [d (x,y)] , (1)

where γ is a coupling admitting Q,P as marginals.



 Under some mild conditions as stated in Theorems 1.32 and
1.33 in Santambrogio [2015], KP is identical to MP and for
convenience we denote both Md and Kd collectively by
Wd asWd (Q,P) = Kd (Q,P) =Md (Q,P) .

In addition, under some mild conditions as stated in Theo-
rem 5.10 in Villani [2008], we can replace the primal form
by its corresponding dual form

Wd (Q,P) = max
φ∈L1(Ω,P)

{EQ [φc (x)] + EP [φ (y)]} , (2)

where L1 (Ω,P) :=
{
ψ :
∫

Ω
|ψ (y)|dP (y) <∞

}
and φc

is the c-transform of function φ defined as φc (x) :=
miny {d (x,y)− φ (y)} .

Clustering view of optimal transport. This view of op-
timal transport has been utilized to study a rich class of
hierarchical and multilevel clustering problems [Ho et al.,
2019, 2017]. We now present the clustering view of optimal
transport which assists us to interpret our method developed
in the sequel. Let P and Q be two discrete distributions
defined as

P := 1
m

∑m
i=1 δui andQ := 1

n

∑n
j=1 δvj ,

where δx indicates a Dirac measure centered at x. Without
loss of generality, we can assume that n ≤ m and consider
the Wasserstein distance Wd (P,Q) w.r.t. a metric d. The
following theorem characterizes the clustering view of OT.

Theorem 1. Consider the following optimization problem:
minv1:n

Wd (P,Q) . Let v∗1:n and Q∗ := 1
n

∑n
j=1 δv∗j be

its optimal solution and T ∗ be the optimal transport map as

T ∗ = argminT :T#P=Q∗
m∑
i=1

d (ui, T (ui)) .

Furthermore, let c∗1:n and σ∗ denote the optimal solution of
the following clustering problem:

min
c1:n,σ∈Π(m,n)

m∑
i=1

d
(
ui,vσ(i)

)
,

where Π (m,n) is the set of surjective maps from {1, ...,m}
to {1, ..., n}. We then have c∗1:n = v∗1:n and T ∗ (ui) =
v∗σ∗(i).

The above theorem states that if we learn the atoms of Q to
minimizeWd (P,Q) w.r.t. the metric d, the optimal atoms of
Q become the centroids of the clusters formed by the atoms
of P or the atoms of Q are moving to find the groups of
atoms of P with the aim to minimize the distortion w.r.t. the
metric d (see our supplementary material for more details).

3.2 ENTROPIC REGULARIZED DUALITY

To enable the application of optimal transport in machine
learning and deep learning, Genevay et al. developed an

entropic regularized dual form in Genevay et al. [2016].
First, they proposed to add an entropic regularization term
to the primal form in (1)

Wε
d (Q,P) := min

γ∈Γ(Q,P)

{
E(x,y)∼γ [d (x,y)]

+ εDKL (γ‖Q⊗ P)

}
, (3)

where ε is the regularization rate,DKL (·‖·) is the Kullback-
Leibler (KL) divergence, and Q⊗ P represents the specific
coupling in which Q and P are independent. Note that when
ε → 0,Wε

d (Q,P) approachesWd (Q,P) and the optimal
transport plan γ∗ε of (3) also weakly converges to the optimal
transport plan γ∗ of (1). In practice, we set ε to be a small
positive number, hence γ∗ε is very close to γ∗.

Second, using the Fenchel-Rockafellar theorem, they ob-
tained the following dual form w.r.t. the potential φ

Wε
d (Q,P) = max

φ

{∫
φcε (x) dQ (x) +

∫
φ (y) dP (y)

}
= max

φ
{EQ [φcε (x)] + EP [φ (y)]} , (4)

where φcε (x) := −ε log
(
EP

[
exp

{
−d(x,y)+φ(y)

ε

}])
.

4 THEORETICAL DEVELOPMENTS

4.1 PRELIMINARIES

We first examine a general supervised learning setting. Con-
sider a hypothesis h in a hypothesis class H and a label-
ing function f (i.e., f (·) ∈ Y4 and h (·) ∈ Y4 where
Y4 :=

{
π ∈ RM : ‖π‖1 = 1 and π ≥ 0

}
with the num-

ber of classes M ). Let dY be a metric or divergence over
Y4. We further define the general loss of the hypothesis h
w.r.t. the data distribution P and the labeling function f as:

L (h, f,P) :=

∫
dY (h (x) , f (x)) dP (x) .

It is worth noting that by defining the metric or divergence
dY as dY (h (x) , f (x)) :=

∑M
i=1 fi (x)DKL (1i‖h (x)) ,

where 1i is an one-hot vector, we can recover the cross-
entropy loss widely used in deep learning.

Next we consider a domain adaptation setting [Ganin and
Lempitsky, 2015, Courty et al., 2017a] in which we have
a source space XS endowed with a distribution PS and a
target space X T endowed with a distribution PT . Given two
pairs z1 =

(
x1, y

4
1

)
∈ XS × Y4 and z2 =

(
x2, y

4
2

)
∈

X T × Y4, we define the cost (distance) function between
them as:

d (z1, z2) := λdX (x1,x2) + dY

(
y41 , y

4
2

)
, (5)

where dX is a metric over XS ×X T and λ > 0.



 

Figure 1: Imitation view explanation. hB (xb) for xb ∼ PB
tries to imitate hA (xa) with xa = H∗ (xb) ∼ PA.

4.2 OPTIMAL TRANSPORT BASED IMITATION
LEARNING

In what follows, we present the OT based imitation learning
which lays foundation for our proposed MOST. Consider
two data domains XA and XB with two data distributions
PA and PB respectively, and assume that hA : XA → Y4
is a well-qualified labeling function (classifier) that gives
accurate prediction for data instances on XA sampled from
PA. We wish to learn a labeling function (classifier) hB

to predict accurately data instances sampled from PB by
imitating what is done by hA on

(
XA,PA

)
. Based on the

data distribution PA and labeling function hA, we define
a distribution PA,hA over XA × Y4 including sample pair(
x, hA (x)

)
by first sampling x ∼ PA and then computing

hA (x). Similarly, we can define another distribution PB,hB

over XB × Y4 using the data distribution PB and the la-
beling function hB . To allow hB to imitate the behavior of
hA, we propose to inspect the Wasserstein distance (WS)
between PA,hA and PB,hB w.r.t. the cost (metric) function
d defined in (5). The following proposition is crucial for us
to derive the fundamental mechanism of OT-based imitation
learning.

Proposition 2. The WS distance of interest
Wd

(
PA,hA ,PB,hB

)
can be expressed as:

min
L:L#PA=PB

Ex∼PA[
λdX (x, L (x)) + dY

(
hA (x) , hB (L (x))

)]
=

min
H:H#PB=PA

Ex∼PB[
λdX (x, H (x)) + dY

(
hB (x) , hA (H (x))

)]
.

As indicated by Proposition 2, the optimal transport H∗ :
H∗#PB = PA is the optimal mover that moves PB to PA

so as to minimize the difference in the predictions of hB

for x ∼ PB and hA for H∗ (x) ∼ PA. In other words,
given x ∼ PB , the optimal transport H∗ finds its closest
counterpart in the space of XA (i.e., H∗ (x)) so that hB can
conveniently imitate the prediction of hA on H∗ (x)) for
predicting x (see Figure 1).

To further elaborate on the proposed OT-based imita-
tion learning, we assume that fA is the ground-truth la-
beling function for the domain

(
XA,PA

)
and theoreti-

cally prove that if we minimize the Wasserstein distance
Wd

(
PA,hA ,PA,fA

)
, we can obtain the optimal solution

hA∗ = fA and can upper-bound this Wasserstein distance by
the general loss of hA over

(
XA,PA

)
(the statement (iii) in

Theorem 3).

Theorem 3. The following statements hold

i) Given XA = XB = X ,Wd

(
PA,hA ,PB,hB

)
= 0 if only

if PA = PB and hA = hB .

ii) Consider the problem: minhA
Wd

(
PA,hA ,PA,fA

)
, the

optimal solution is hA∗ = fA obtained with the optimal
mover L∗ : L∗#PA = PA to be the identity map.

iii)Wd

(
PA,hA ,PA,fA

)
≤ L

(
hA, fA,PA

)
.

iv)Wd

(
PA,hA ,PB,hB

)
≥ λWdX

(
PA,PB

)
.

5 OUR PROPOSED METHOD

5.1 PROBLEM FORMULATION

In multi-source domain adaptation, we have K multiple
source domains with the collected data and labels, and
single target domain with the collected data only. We
wish to transfer a model learned on the labeled source
domains to the unlabeled target domain. Let us denote
the collected data and labels for the source domains by

DSk =
{(
sxki , y

k
i

)}NS
k

i=1
with k is the index of a source do-

main, label yki ∈ {1, 2, ...,M} and collected data without

labels for the target domain DT = {txi}N
T

i=1.

For the sake of simplification, we denote the common
space for source domains by XS . Note that if source do-
mains have different input spaces, we can resize either
input images or use appropriate transformations to map
them to a common space. We further equip source do-
mains with data distribution PS1:K whose density functions
are pS1:K (x). Let us denote the ground-truth labeling func-
tions for source domains by fS1:K (·) ∈ Y∆, implying that
pSk (y | x) = fSk (x, y) (i.e., fSk (x, y) represents the y-th
value of fSk (x)). Therefore, the joint distribution to gener-
ate data instance x and categorical label y ∈ {1, ...,M} is
pSk (x, y) = pSk (x) fSk (x, y) .

Regarding the target domain, we define its data space as
X T , data distribution and density function as PT and pT (x),
respectively. We further define the ground-truth labeling
function for the target domain by fT which subsequently
implies pT (y | x) = fT (x, y) for a categorical label y ∈
{1, ...,M}.

Given a discrete distribution π over {1, ...,K}, we define
PSπ :=

∑K
k=1 πkPSk which is a mixture of PS1:K . For a

data instance x ∼ PSπ (i.e., we sample a hidden index
t ∼ Cat(π) (i.e., the categorical distribution) and then sam-
ple x ∼ PSt ), we further define fS as a labeling function
such that fS (x) is identical to fSt (x). By this definition,
fS can be viewed as the ground-truth labeling function over
the mixture distribution PSπ . Finally, the mixing proportion



 π can be the uniform distribution [ 1
K , ...,

1
K ] or proportional

to the number of training examples in the source domains
(i.e., NS

1:K). It is worth noting that the mixing proportion
π influences the proportion of samples from the individual
data sources in the mini-batches. We conduct an ablation
study to compare two aforementioned options for π and
observe that they are comparable in terms of the predictive
performances (see the supplementary material).

5.2 MULTI-SOURCE EXPERT TEACHER

Using the labeled source training sets DS1:K , we can train
qualified domain expert classifiers hS1:K (i.e., hSk (x) ∈ Y∆

represents the prediction probability of hSk for a data in-
stance x in the kth source domain) with good generalization
capacity (e.g., L

(
hSk , f

S
k ,PSk

)
≤ ε for some small ε > 0).

The next arising question is how to combine these domain
experts to achieve a a multi-source expert teacher hS that
can work well on PSπ (i.e., L

(
hS , fS ,PSπ

)
≤ ε). To this end,

we leverage the weighted ensembling strategy in Mansour
et al. [2009], Hoffman et al. [2018] to achieve

hS (x, y) =

K∑
k=1

πkp
S
k (x, y)∑K

j=1 πjp
S
j (x, y)

hSk (x, y) , (6)

where y ∈ {1, 2, ...,M}, and hSk (x, y) and hS (x, y) spec-
ify the y-th values of hSk (x) and hS (x) respectively.

The following theorem shows that the multi-source expert
teacher hS can work well on the mixture joint distribution
PSπ . More importantly, it works better than the worst domain
expert on its source domain. Hence, if each domain expert is
an ε-qualified classifier (i.e.,L

(
hSk , f

S
k ,PSk

)
≤ ε), the multi-

source expert teacher hS is also an ε-qualified classifier (i.e.,
L
(
hS , fS ,PSπ

)
≤ ε).

Theorem 4. If dY can be decomposed as dY (α,β) :=∑M
i=1 βi` (αi) where α,β ∈ Y∆ and ` is a convex function,

the following statements hold true:

i) L
(
hS , fS ,PSπ

)
≤ max1≤k≤K L

(
hSk , f

S
k ,PSk

)
.

ii) If each domain expert is an ε-qualified classifier (i.e.,
L
(
hSk , f

S
k ,PSk

)
≤ ε), the multi-source expert teacher hS is

also an ε-qualified classifier (i.e., L
(
hS , fS ,PSπ

)
≤ ε).

In what follows, we present how to train the multi-source
expert teacher hS . Our workaround to train hS comes from
the following theoretical observation. Assume that we have
K distributions R1:K with density functions r1:K (z). We
form a joint distribution D of a data instance z and label
t ∈ {1, ...,K} by sampling an index t ∼ Cat(π), sampling
x ∼ Rt, and collecting (z, t) as a sample from D. With this
setting, we have the following corollary.

Corollary 5. If we train a source domain discriminator
C to classify samples from the joint distribution D using
the cross-entropy loss (i.e., CE (·, ·)), the optimal source

domain discriminator C∗defined as

C∗ = argminCE(z,t)∼D [CE (C (z) , t)]

satisfies C∗ (z) =
[

πiri(z)∑
j πjrj(z)

]K
i=1

.

Corollary 5 suggests us a way to compute the weights of
the domain experts in (6) in which for a given y, the distri-
butions pS1:K (x, y) play roles of r1:K (z) where z = (x, y).
More specifically, for each m ∈ {1, ...,M}, we sample
t ∼ Cat (π), then sample (x, y = m) from pSt (x, y = m),
and train a source domain discriminator Cm (x, y = m) (i.e.,
only consider (x, y) in which x has label y = m) to dis-
tinguish the source domain t of (x, y = m). We finally use
Cm (x, y = m) to estimate the weights of the domain ex-
perts. In addition, to conveniently train the source domain
discriminators Cm, we share their parameters, hence hav-
ing an unique C that receives a pair (x, y) and predicts its
source domain t. Therefore, in practice, we obtain the expert
teacher in (6) as hS (x, y) =

∑K
k=1 C (x, y, k)hSk (x, y) .

5.3 TARGET-DOMAIN IMITATING STUDENT

Inspired by the statement (ii) in Theorem 3, recall that fT is
the ground-truth labeling function and hT is the classifier on
the target domain, we propose to learn hT on this domain
to further minimize with the aim to obtain hT = fT :

min
hT
Wd

(
PT,hT ,PT,fT

)
.

To proceed our theory, we assume that dY is a metric over
Y∆, which together with the metric dX forms the metric d
(cf. (5)), implying thatWd (P·,·,P·,·) is a proper metric. We
can thus bound the quantity of interestWd

(
PT,hT ,PT,fT

)
:

Wd

(
PT,hT ,PT,fT

)
≤ Wd

(
PT,hT ,Pπ

S,hS

)
+Wd

(
Pπ
S,hS ,Pπ

S,fS

)
+Wd

(
Pπ
S,fS ,PT,fT

) (1)

≤

Wd

(
PT,hT ,Pπ

S,hS

)
+ L

(
hS , fS ,PSπ

)
+Wd

(
Pπ
S,fS ,PT,fT

)
,

(7)

where PπS,fS , a joint distribution over XS × Y∆, consists
of pairs (x, y∆) in which x ∼ PSπ and y∆ = fS (x), hS

is a classifier on the mixture of source domains (i.e., PSπ),
and the definition of PπS,hS is similar to PπS,fS by changing
the role of fS to hS . Note that we achieve the inequal-
ity (1) because Wd

(
PπS,hS ,PπS,fS

)
is upper-bounded by

L
(
hS , fS ,PSπ

)
(thanks to the statement (iii) in Theorem 3).

Moreover,Wd

(
PπS,fS ,PT,fT

)
is a constant. Hence, to min-

imize the upper-bound in (7), we seek a classifier hS work-
ing well on the mixture of source domains with a sufficiently
small L

(
hS , fS ,PSπ

)
, while encouraging hT to imitate hS

by minimizingWd

(
PT,hT ,PπS,hS

)
. To this end, we employ



 the multi-source expert teacher hS as in Section 5.2, which
can operate well on PSπ as long as we can train good domain
experts hS1:K , hence leading to the following optimization
problem:

min
hT

{
Wd

(
PT,hT ,PπS,hS

)
+ L

(
hS , fS ,PSπ

)}
. (8)

The optimization problem in (8) is in line with the context
of imitation learning for which the teacher classifier hS has
been trained effectively on the mixture source domain (i.e.,
PSπ) and the student classifier hT tries to imitate the teacher
on the target domain. Specifically, Proposition 2 implies
finding the optimal transport map H∗: H∗#PT = PSπ so that
for any x ∼ PT , hT (x) should mimic the prediction of
the expert teacher hS over H∗ (x) ∼ PSπ . This observation
forms the foundation of our proposed MOST.

Proposition 2 further illustrates that among the transport
maps H transporting PT to PSπ, we need to seek the map
incurring the minimal label shift and enabling the student
hT easiest to imitate its teacher hS . Inspired by the state-
ment (iv) in Theorem 3 whereWd

(
PπS,hS ,PT,hT

)
is lower-

bounded by λWdX

(
PSπ,PT

)
(the discrepancy gap between

the mixture of source distributions and the target one), to
reduce the data shift, we propose to map both

(
XS ,PSπ

)
and

(
X T ,PT

)
to a common joint space via two generators

GS and GT and solve the following optimization problem:

min
hT ,GT

{
L
(
hS ◦GS , fS ,PSπ

)
+Wd

(
QT,hT ,QπS,hS

)}
, (9)

where QT,hT is similar to PT,hT but on the joint space and
consists of the pairs

(
GT (x) , hT

(
GT (x)

))
for x ∼ PT

and QπS,hS is similar to PπS,hS but on the joint space and
consists of the pairs

(
GS (x) , hS

(
GS (x)

))
for x ∼ PSπ.

Note that both hS and hS1:K now act on GS (·).

Theorem 6. Let hS∗ ◦GS∗ be the optimal teacher and hT∗ , G
T
∗

be the optimal solutions of the optimization problem in (9).
Assume that GT , hT are in the families having infinite ca-
pacity (i.e., those can approximate any continuous function
up to any level of precision, e.g., neural nets), we have2

min
hT ,GT

Wd

(
PG

T

T,hT ,PG
T

T,fG
T

T

)
≤ L

(
hS∗ ◦GS∗ , fS ,PSπ

)
+Wd

(
PG

S
∗

S,fS∗
,PG

T
∗

T,fT∗

)
, (10)

where fS∗ := f
GS
∗

S and fT∗ := f
GT
∗

T .

In Theorem 6, PGT

T,hT is the distribution consisting of sam-
ples of pairs

(
GT (x) , hT

(
GT (x)

))
where x ∼ PT and

same definition for other similar distributions. Theorem 6
demonstrates that our MOST with the support of the genera-
tors and the joint space can mitigate data and label shifts as

2We define fG as the induced labeling function over the joint
space such that fG predicts G (x) as same as f predicts x.

Wd

(
PG

S
∗

S,fS
∗
,PG

T
∗

T,fT
∗

)
is the natural shift between two ground-

truth labeling functions fS and fT in the joint space.

5.4 TRAINING PROCESS OF MOST

5.4.1 Training Multi-Source Expert Teacher

To work out the multi-source expert teacher hS , we simulta-
neously train domain experts hS1:K on the labeled training
sets DS1:K and the source domain discriminator C to offer
the weights of the domain experts. Basically, we minimize:∑K
k=1 Ldek + LC , where we define

Ldek = E(x,y)∼Ds
k

[
CE

(
hSk
(
GS (x)

)
, y
)]
,

LC = E(x,y,t)∼D [CE (C (x, y) , t)]

with D is formed by sampling t ∼ Cat (π) and (x, y) ∼
DSt and CE (·, ·) is the cross-entropy loss.

5.4.2 Training Target-Domain Imitating Student

We use the entropic regularized dual form in (4) to solve
the optimization problem of interest in (9) by minimizing
Wε
d

(
QT,hT ,QπS,hS

)
, hence arriving at the following opti-

mization problem:

min
hT ,GT

LWS = min
hT ,GT

max
φ

{
EPT

[
− ε log

(
EPS

π

[
exp

{
1

ε
γ
(
xS ,xT

)}])]
+ EPS

π

[
φ
(
GS
(
xS
))]}

, where

γ
(
xS ,xT

)
= φ

(
GS
(
xS
))
− d

(
GS
(
xS
)
, GT

(
xT
))

, φ is a neural net named Kantorovich potential network and

d
(
GS
(
xS
)
, GT

(
xT
))

= dY

(
hT
(
GT
(
xT
))
,

hS
(
GS
(
xS
)) )

+ λ
∥∥GT (xT )−GS (xS)∥∥

, while xT ∼ PT ,xS ∼ PSπ .

Clustering view explanation of the WS distance term.
More specifically, according to the cluster view of optimal
transportWε

d

(
QT,hT ,QπS,hS

)
, at the optimal solution, each

GT
(
xT
)

finds a cluster of GS
(
xS
)

(s) to minimize the
distortion w.r.t. the metric d

(
GT
(
xT
)
, GS

(
xS
))

defined
as

dY
(
hT
(
GT
(
xT
))
, hS

(
GS
(
xS
)))

+ λ
∥∥GT (xT )−GS (xS)∥∥

, which further implies that GT
(
xT
)

should move closely
to a cluster of GS

(
xS
)
(s) with the same predicted label



 

Figure 2: Left: The overall structure of our proposed method for multi-source domain adaptation. MOST consists of two
cooperative agents: an expert teacher hS , a weighted combination of domain experts and a student hT that tries to imitate the
prediction of the teacher via the OT-based imitation learning. Right: Clustering view explanation of the WS distance term.

regarding hS so as to imitate the prediction of hS (i.e.,
min dY

(
hT
(
GT
(
xT
))
, hS

(
GS
(
xS
)))

). This certainly
helps to mitigate the label shift problem (see Figure 2).

The teacher hS also offers pseudo labels on source and target
examples for the student hT to imitate, hence we minimize:

Lpl = Ex∼PS
π,PT

[
CE

(
hS
(
GS (x)

)
, hT

(
GT (x)

))]
.

Virtual adversarial training (VAT) [Miyato et al., 2019] in
conjunction with minimizing entropy of prediction [Grand-
valet and Bengio, 2005] with the aim to ensuring the cluster-
ing assumption [Chapelle and Zien, 2005] has been applied
successfully to UDA [Shu et al., 2018, Kumar et al., 2018].
Inspired by this success, we propose to minimize:

Lclus = Lent + Lvat,

where
Lent = EPT

[
H
(
hT
(
GT (x)

))]
, H is the entropy and

Lvat = Ex∼PT[
max x′:‖x′−x‖<θDKL

(
hT
(
GT (x)

)
, hT

(
GT (x′)

))]
with which DKL represents a Kullback-Leibler divergence
and θ is very small positive number.

5.4.3 Simultaneous Training of Student and Teacher

We have two scenarios to train our teacher and student
paradigm: (i) sequential training and (ii) simultaneous train-
ing of teacher and student. As suggested by the ablation
study (see Section 6.4.1), we follow the strategy of simulta-
neous training of teacher and student in which we minimize:

L =

K∑
k=1

Ldek + LC + αLWS + βLpl + γLclus, (11)

where α, β, γ > 0 are trade-off parameters.

We note that the loss LWS has the form of maximizing over
φ which is parameterized by a neural net. In training MOST,
we update φ several times for each mini-batch of data. Due
to the effect of the envelope theorem, the term LWS (hence
the total loss L) smoothly decreases (see Figure 3). Finally,
we present the overview of our approach in Figure 2.

6 EXPERIMENTS

6.1 MODEL EVALUATION

We evaluate our proposed MOST on several commonly-used
benchmark domain adaptation datasets.

Digits-five [Peng et al., 2019] consists of five-digit datasets:
MNIST (mt), MNIST-M (mm), USPS (up), SVHN (sv),
Synthetic Digits (sy). There are 10 classes corresponding to
digits ranging from 0 to 9 in each domain.

Office-Caltech10 [Gong et al., 2012] is categorized in four
different domains: Amazon (A), Caltech (C), DSLR (D),
and Webcam (W) with 10 common classes and 2533 images
in total.

Office-31 [Saenko et al., 2010] contains 4,110 images with
31 classes, and is categorized into three domains: Amazon
(A), DSLR (D), and Webcam (W).

The details of the data preparation and preprocessing of
all datasets are described in our supplementary material.
Similar to Wang et al. [2020], we compare our MOST with
the MSDA standards: (1) Single Best: the best classification
accuracy on the test set among single-source transfer results;
(2) Source Combine: the evaluation on single-source domain
adaptation whereas the single-source is combined by all
source data; (3) Multi-Source: results on the adaptation from
multiple source domains to the target domain.



 Table 1: Classification results with mean and standard deviation on Digits-five.
Standards Methods →mm →mt →up →sv →sy Avg

Single
Best

Source-only 59.2±0.6 97.2±0.6 84.7±0.8 77.7±0.8 85.2±0.6 80.8
DAN [Long et al., 2015] 63.8±0.7 96.3±0.5 94.2±0.9 62.5±0.7 85.4±0.8 80.4

CORAL [Sun and Saenko, 2016] 62.5±0.7 97.2±0.8 93.5±0.8 64.4±0.7 82.8±0.7 80.1
DANN [Ganin et al., 2016] 71.3±0.6 97.6±0.8 92.3±0.9 63.5±0.8 85.4±0.8 82.0
ADDA [Tzeng et al., 2017] 71.6±0.5 97.9±0.8 92.8±0.7 75.5±0.5 86.5±0.6 84.8

Source
Combine

Source-only 63.4±0.7 90.5±0.8 88.7±0.9 63.5±0.9 82.4±0.6 77.7
DAN [Long et al., 2015] 67.9±0.8 97.5±0.6 93.5±0.8 67.8±0.6 86.9±0.5 82.7

DANN [Ganin et al., 2016] 70.8±0.8 97.9±0.7 93.5±0.8 68.5±0.5 87.4±0.9 83.6
JAN [Long et al., 2017] 65.9±0.7 97.2±0.7 95.4±0.8 75.3±0.7 86.6±0.6 84.1

ADDA [Tzeng et al., 2017] 72.3±0.7 97.9±0.6 93.1±0.8 75.0±0.8 86.7±0.6 85.0
MCD [Saito et al., 2018] 72.5±0.7 96.2±0.8 95.3±0.7 78.9±0.8 87.5±0.7 86.1

Multi-
Source

MDAN [Zhao et al., 2018] 69.5±0.3 98.0±0.9 92.4±0.7 69.2±0.6 87.4±0.5 83.3
DCTN [Xu et al., 2018] 70.5±1.2 96.2±0.8 92.8±0.3 77.6±0.4 86.8±0.8 84.8

M3SDA [Peng et al., 2019] 72.8±1.1 98.4±0.7 96.1±0.8 81.3±0.9 89.6±0.6 87.7
MDDA [Zhao et al., 2020] 78.6±0.6 98.8±0.4 93.9±0.5 79.3±0.8 89.7±0.7 88.1

LtC-MSDA [Wang et al., 2020] 85.6±0.8 99.0±0.4 98.3±0.4 83.2±0.6 93.0±0.5 91.8
MOST (ours) 91.5±1.7 99.6±0.0 98.4± 0.0 90.9±0.6 96.4±2.7 95.4

Table 2: Classification accuracy (%) on Office-Caltech10 using pretrained ResNet-101.
Standards Methods →W →D →C →A Avg

Source
Combine

Source-only 99.0 98.3 87.8 86.1 92.8
DAN [Long et al., 2015] 99.3 98.2 89.7 94.8 95.5

Multi-
Source

Source-only 99.1 98.2 85.4 88.7 92.9
DAN [Long et al., 2015] 99.5 99.1 89.2 91.6 94.8
DCTN [Xu et al., 2018] 99.4 99.0 90.2 92.7 95.3
JAN [Long et al., 2017] 99.4 99.4 91.2 91.8 95.5

MEDA [Wang et al., 2018] 99.3 99.2 91.4 92.9 95.7
MCD [Saito et al., 2018] 99.5 99.1 91.5 92.1 95.6

M3SDA [Peng et al., 2019] 99.5 99.2 92.2 94.5 96.4
MOST (ours) 100 100 96.0 96.4 98.1

Table 3: Classification accuracy (%) on Office-31 using pretrained AlexNet.
Standards Methods →D →W →A Avg

Single
Best

Source-only 99.0 95.3 50.2 81.5
RevGrad [Ganin and Lempitsky, 2015] 99.2 96.4 53.4 83.0

DAN [Long et al., 2015] 99.0 96.0 54.0 83.0
RTN [Long et al., 2016] 99.6 96.8 51.0 82.5

ADDA [Tzeng et al., 2017] 99.4 95.3 54.6 83.1

Source
Combine

Source-only 97.1 92.0 51.6 80.2
DAN [Long et al., 2015] 98.8 96.2 54.9 83.3
RTN [Long et al., 2016] 99.2 95.8 53.4 82.8
JAN [Long et al., 2017] 99.4 95.9 54.6 83.3

ADDA [Tzeng et al., 2017] 99.2 96.0 55.9 83.7
MCD [Saito et al., 2018] 99.5 96.2 54.4 83.4

Multi-
Source

MDAN [Zhao et al., 2018] 99.2 95.4 55.2 83.3
DCTN [Xu et al., 2018] 99.6 96.9 54.9 83.8

M3SDA [Peng et al., 2019] 99.4 96.2 55.4 83.7
MDDA [Zhao et al., 2020] 99.2 97.1 56.2 84.2

LtC-MSDA [Wang et al., 2020] 99.6 97.2 56.9 84.6
MOST (ours) 100 98.7 60.6 86.4



 
Table 4: Results (%) on different training strategies.

Methods →mm →mt →up →sv →sy Avg
Two-phase training 89.7 99.6 98.2 92.0 97.7 95.4

Simultaneous training 93.4 99.6 98.4 90.9 97.8 96.0

6.2 ARCHITECTURE/HYPERPARAMETERS

We follow the training paradigms in Saito et al. [2018], Peng
et al. [2019] where GS are shared weights with GT . All the
experiments on Office-Caltech10 and Office-31 are based
on pre-trained ResNet-101 [He et al., 2016] and AlexNet
[Krizhevsky et al., 2012], respectively. The network archi-
tecture and hyperparameter settings are presented in the
supplementary material.

6.3 RESULTS

We first compare MOST with recent state-of-the-art works
on Digits-five whose results are reported in Table 1. Our
MOST surpasses all transfer tasks, with a sizable margin es-
pecially in the following adaptation tasks: “→mm”, “→sv”,
and “→sy”. Overall, our proposed method achieves a high
average accuracy of 96.0%, which is a 4.2% increase com-
pared to LtC-MSDA [Wang et al., 2020].

The experimental results on Office-Caltech10 are shown
in Table 2. Compared to the baselines, our MOST obtains
impressive scores on all the settings: 100% on the adaptation
tasks from corresponding source domains to W and D, and
significant improvements on “→C”, and “→A” tasks. As a
result, our proposed method experiences a rise of 1.7% on
average compared to the runner-up method M3SDA [Peng
et al., 2019].

Finally, we report the performance on Office-31 and com-
pare results in Table 3. MOST continues to perform the best
with 1.8% improvement on average over the second. Addi-
tionally, on the challenging task “→A”, MOST significantly
surpasses the state-of-the-art method by 3.7%.

6.4 ABLATION STUDY

6.4.1 Training Strategy

We consider two training strategies for MOST, which are
two-phase training and simultaneous training. In the former,
we train a perfect teacher and then train a student to imitate
it, while in the latter, we train all in once with the loss in (11).
Table 4 shows that simultaneous training is more effective
with an improvement of 0.6% on the average accuracy. We
hence stick to this strategy for our main experiments.

6.4.2 Effect of Losses

We investigate the effectiveness of the component losses in
(11) w.r.t. the source domain (a.k.a. source only setting), i.e.,
Ldek + LC , and w.r.t. the target domain to perform domain
adaptation, i.e., Lpl, LWS , Lent and Lvat. The average
results reported in Table 5 show that by only incorporating

Table 5: Average accuracies (%) on Digits-five and Office-
Caltech10 datasets with different settings.
Ldek + LC Lpl LWS Lent Lvat Digits-five Office-Caltech10

X 82.6 95.8
X X 89.9 96.7
X X X 94.2 96.9
X X X X 93.8 97.9
X X X X 94.8 97.4
X X X X X 96.0 98.1

Figure 3: Values ofWε
d

(
QT,hT ,QπS,hS

)
during training.

2 losses Lpl +LWS (fourth row) to align the target samples
to source samples, MOST already achieves the state-of-
the-art results (94.2% on Digits-five and 96.9% on Office-
Caltech10) compared to the runner-up baselines (91.8%
on Digits-five and 96.4% on Office-Caltech10). While the
performance is improved further with the help of clustering
assumption (the last row).

6.4.3 Wasserstein Distance
We further observe the values of the WS distance between
QT,hT and QπS,hS in (3) on “→mm” task during training.
As shown in Figure 3, the WS values tend to go down, which
signals the decline of the data shift and label shift between
the two domains.

7 CONCLUSION
In this paper, inspired by the principle of imitation learn-
ing and the theory of optimal transport, we propose Multi-
Source Domain Adaptation via Optimal Transport for
Student-Teacher Learning (MOST). Via rigorous theoretical
guarantees, we introduce a model with two fundamental
components: a teacher and a student for multi-source do-
main adaptation to actualize the cross-domain imitation
capability. Comprehensive experiments demonstrate that
MOST outperforms the state-of-the-art methods on several
benchmark domain adaptation datasets.
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