Tutorial: Robustness and Optimization

John Duchi

UAI 2020

Outline

Part I: (convex) optimization

- 1 Convex optimization
- 2 Formulation and "technology"
- Part II: robust optimization
- 1 Formulation of robust optimization problems
- 2 Data uncertainty and construction

Part III: distributional robustness

- 1 Ambiguity and confidence
- 2 Uniform performance and sub-population robustness

Part IV: valid predictions

- 1 Conformal inference
- 2 Robustness to the future?

Optimization

Basic optimization

minimize $f_0(x)$ subject to $f_i(x) \le 0, i = 1, \dots, m$

- $x \in \mathbf{R}^d$ is variable (or decision variable)
- $f_0: \mathbf{R}^d \to \mathbf{R}$ is objective
- $f_i: \mathbf{R}^d \to \mathbf{R}$ are constraints

solution is x^* minimizing f_0 subject to constraints

Applications and examples

Operations research (1940s on)

- Facility placement: choose location of facility minimize cost of transporting materials
- Portfolio optimization: minimize risk or variance subject to expected returns of investments

Engineering and control (1980s on)

- Control: minimize expended energy subject to moving from one location to another (variables are control inputs)
- Device design: (e.g.) minimize power consumption subject to manufacturing limits, timing requirements, size

Statistics and machine learning (1990s on)

 minimize prediction error or model mis-fit subject to prior information, sparsity, parameter limits

Convex optimization problems

minimize
$$f_0(x)$$

subjct to $f_i(x) = 0, i = 1, \dots, m$
 $h_i(x) = b_i, i = 1, \dots, p$

• objective f_0 and inequality constraints f_i are convex:

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) \quad \text{for } 0 \le \lambda \le 1$$

• equalities h_i are linear:

$$h_i(x) = a_i^T x$$

this is a technology

Linear programs

objective and constraints are linear

minimize $c^T x$ subject to $Ax \preceq b$, Fx = g

Quadratic programs

objective and inequality constraints are quadratic

minimize
$$x^T A x + b^T x$$

subject to $x^T P_i x + q_i^T x + r_i \le 0, \ i = 1, \dots, m$
 $F x = g$

Semidefinite programs

variables are matrices $X \in \mathbf{S}^n = \{X \in \mathbf{R}^{n \times n} \mid X = X^T\}$, constraints are in semidefinite order

minimize
$$\operatorname{tr}(CX)$$

subject to $\operatorname{tr}(A_iX) = b_i, \ i = 1, \dots, m$
 $X \succeq 0$

Example: matrix completion

- ▶ partially observed matrix $M \in \mathbf{R}^{m \times n}_+$ of movie ratings in locations $(i, j) \in \Omega$
- user i represented by vector $u_i \in \mathbf{R}^r$, movie j by v_j , and $M_{ij} = u_i^T v_j$

For
$$X = UV^T$$
, $U \in \mathbf{R}^{m \times r}$, $V \in \mathbf{R}^{n \times r}$,

minimize $\operatorname{rank}(X)$ subject to $X_{\Omega} = M_{\Omega}$

has convex relaxation

minimize
$$\sum_{i=1}^n \sigma_i(X) = \|X\|_*$$

subject to $X_\Omega = M_\Omega$

Nuclear norm minimization

minimize
$$\sum_{i=1}^{n} \sigma_i(X) = \|X\|_*$$

subject to $X_\Omega = M_\Omega$

has equivalent semidefinite program

$$\begin{array}{l} \text{minimize } \operatorname{tr}(Z) + \operatorname{tr}(W) \\ \text{subject to } X_{\Omega} = M_{\Omega} \\ \\ \begin{bmatrix} Z & -X \\ -X^T & W \end{bmatrix} \succeq 0, \quad Z \succeq 0, \ W \succeq 0 \end{array}$$

in variables $X \in \mathbf{R}^{m imes n}$, $Z \in \mathbf{S}^n$, $W \in \mathbf{S}^m$

A few important calculus rules

Let $f_1, f_2: \mathbf{R}^d \to \mathbf{R}$ be convex functions

- $f(x) = \alpha f_1(x) + \beta f_2(x)$ is convex for $\alpha, \beta \ge 0$
- maxima of convex functions are convex:

$$f(x) = \max\{f_1(x), f_2(x)\}\$$

• even for an infinite index set \mathcal{A} ,

$$f(x) = \sup_{\alpha \in \mathcal{A}} f_{\alpha}(x)$$

is convex

A failure of linear programming

c vector of costs/profits for two drugs, constraints $Ax \preceq b$ on production

what happens if we vary percentages .01, .02 (chemical composition of raw materials) by .5% and 2%, i.e. .01 ± .00005 and .02 ± .0004?

Example failure for linear programming

Frequently lose 15-20% of profits

Tutorial: Robustness and Optimization

John Duchi

UAI 2020

Outline

Part I: (convex) optimization

- 1 Convex optimization
- 2 Formulation and "technology"

Part II: robust optimization

- 1 Formulation of robust optimization problems
- 2 Data uncertainty and construction

Part III: distributional robustness

- $1\;$ Ambiguity and confidence
- 2 Uniform performance and sub-population robustness

Part IV: valid predictions

- 1 Conformal inference
- 2 Robustness to the future?

Robust optimization

```
objective f_0 : \mathbf{R}^n \to \mathbf{R}, uncertainty set \mathcal{U}, f_i : \mathbf{R}^n \times \mathcal{U} \to \mathbf{R},

f_i(x, u) convex in x for all u \in \mathcal{U}

general form

minimize f_0(x)

subject to f_i(x, u) \leq 0 for all u \in \mathcal{U}, i = 1, \dots, m.

equivalent to
```

```
minimize f_0(x)
subject to \sup_{u \in \mathcal{U}} f_i(x, u) \le 0, i = 1, \dots, m.
```

Bertsimas, Ben-Tal, El-Ghaoui, Nemirovski (1990s–now)

Setting up robust problem

▶ can replace objective f_0 with $\sup_{u \in U} f_0(x, u)$, rewrite as

minimize tsubject to $\sup_{u} f_0(x, u) \le t$, $\sup_{u} f_i(x, u) \le 0$, i = 1, ..., m

• equality constraints make no sense: a robust equality $a^T(x+u) = b$ for all $u \in \mathcal{U}$?

three questions:

- is robust formulation useful?
- is robust formulation computable?
- how should we choose U?

A failure of linear programming

c vector of costs/profits for two drugs, constraints $Ax \preceq b$ on production

what happens if we vary percentages .01, .02 (chemical composition of raw materials) by .5% and 2%, i.e. .01 ± .00005 and .02 ± .0004?

Example failure for linear programming

Frequently lose 15-20% of profits

Alternative robust LP

minimize $c^T x$ subject to $(A + \Delta)x \leq b$, all $\Delta \in \mathcal{U}$ where $|\Delta_{11}| \leq .00005$, $|\Delta_{12}| \leq .0004$, $\Delta_{ij} = 0$ otherwise

▶ solution x_{robust} has degradation *provably* no worse than 6%

How to choose uncertainty sets

- \blacktriangleright uncertainty set ${\mathcal U}$ a modeling choice
- \blacktriangleright common idea: let U be random variable, want constraints that

$$\mathbf{Pr}(f_i(x,U) \ge 0) \le \epsilon \tag{1}$$

- typically hard (non-convex except in special cases)
- Find set U such that Pr(U ∈ U) ≥ 1 − ε, then sufficient condition for (1)

$$f_i(x,u) \leq 0$$
 for all $u \in \mathcal{U}$

Uncertainty set with Gaussian data

minimize
$$c^T x$$

subject to $\mathbf{Pr}(a_i^T x > b_i) \le \epsilon, \ i = 1, \dots, m$

coefficient vectors a_i i.i.d. $\mathcal{N}(\overline{a}, \Sigma)$ and failure probability ϵ

• marginally
$$a_i^T x \sim \mathcal{N}(\overline{a}_i^T x, x^T \Sigma x)$$

• for
$$\epsilon = .5$$
, just LP

minimize $c^T x$ subject to $a_i^T x \leq b_i, \ i = 1, \dots, m$

• what about
$$\epsilon = .1, .9?$$

Gaussian uncertainty sets

$$\{x \mid \mathbf{Pr}(a_i^T x > b_i) \le \epsilon\} = \{x \mid \overline{a}_i^T x - b_i - \Phi^{-1}(\epsilon)\sqrt{x^T \Sigma x} \le 0\}$$

(Source: ee364b, Stanford)

Robust problems are convex, so no problem?

```
not quite...
consider quadratic constraint
```

$$\|Ax+Bu\|_2 \leq 1 \ \text{ for all } \ \|u\|_\infty \leq 1$$

- convex quadratic maximization in u
- solutions on extreme points $u \in \{-1, 1\}^n$
- and NP-hard to maximize (even approximately [Håstad]) convex quadratics over hypercube

Tractability

Important question: when is a robust LP still an LP (robust SOCP an SOCP, robust SDP an SDP)

minimize
$$c^T x$$

subject to $(A + U)x \preceq b$ for $U \in \mathcal{U}$.

can always represent formulation constraint-wise, consider only one inequality

$$(a+u)^Tx\leq b \ \text{ for all } u\in\mathcal{U}.$$

▶ Simple example: $\mathcal{U} = \{ u \in \mathbf{R}^n \mid ||u||_{\infty} \leq \delta \}$, then

 $a^T x + \delta \left\| x \right\|_1 \le b$

When are things tractable?

Duality typically used to get tractability (but we're not going to do that)

Portfolio optimization (with robust LPs)

• d assets i = 1, ..., d, random multiplicative return R_i with $\mathbb{E}[R_i] = \mu_i \ge 1, \ \mu_1 \ge \mu_2 \ge \cdots \ge \mu_n$

• "certain" problem has solution $x_{nom} = e_1$,

maximize
$$\mu^T x$$
 subject to $x^T \mathbf{1} = 1, \ x \succeq 0$

• if asset i varies in range $\mu_i \pm u_i$, robust problem

maximize
$$\sum_{i=1}^{d} \inf_{u \in [-u_1, u_i]} (\mu_i + u) x_i$$
 subject to $\mathbf{1}^T x = 1, \ x \succeq 0$

and equivalent

maximize
$$\mu^T x - u^T x$$
 subject to $\mathbf{1}^T x = 1, \ x \succeq 0$
Portfolio optimization (tigher control)

- Returns $R_i \in [\mu_i u_i, \mu_i + u_i]$ with $\mathbb{E}R_i = \mu_i$
- guarantee return with probability $1-\epsilon$

 $maximize_{x,t} t$

subject to
$$\mathbf{Pr}\left(\sum_{i=1}^{n} R_{i} x_{i} \geq t\right) \geq 1 - \epsilon, \ x^{T} \mathbf{1} = 1, \ x \succeq 0$$

- value at risk is non-convex in x, approximate it?
- approximate with high-probability bounds
- less conservative than LP (certain returns) approach

Portfolio optimization: probability approximation

Hoeffding's inequality

$$\mathbf{Pr}\left(\sum_{i=1}^{n} (R_i - \mu_i) x_i \le -t\right) \le \exp\left(-\frac{t^2}{2\sum_{i=1}^{n} x_i^2 u_i^2}\right).$$

written differently

$$\mathbf{Pr}\left[\sum_{i=1}^{n} R_i x_i \le \mu^T x - t \left(\sum_{i=1}^{n} u_i^2 x_i^2\right)^{\frac{1}{2}}\right] \le \exp\left(-\frac{t^2}{2}\right)$$

▶ set $t = \sqrt{2 \log(1/\epsilon)}$, gives robust problem

$$\text{maximize } \mu^T x - \sqrt{2\log\frac{1}{\epsilon}} \left\| \text{diag}(u) x \right\|_2 \text{ subject to } \mathbf{1}^T x = 1, \ x \succeq 0.$$

Portfolio optimization comparison

- ▶ data $\mu_i = 1.05 + \frac{3(n-i)}{10n}$, uncertainty $|u_i| \le u_i = .05 + \frac{n-i}{2n}$ and $u_n = 0$
- nominal minimizer $x_{nom} = e_1$
- ► conservative (LP) minimizer x_{con} = e_n (guaranteed 5% return),
- ▶ robust (SOCP) minimizer x_{ϵ} for value-at risk $\epsilon = 2 \times 10^{-4}$

Portfolio optimization comparison

Returns chosen randomly in $\mu_i \pm u_i$, 10,000 experiments

Tutorial: Robustness and Optimization

John Duchi

UAI 2020

Outline

Part I: (convex) optimization

- 1 Convex optimization
- 2 Formulation and "technology"

Part II: robust optimization

- 1 Formulation of robust optimization problems
- 2 Data uncertainty and construction

Part III: distributional robustness

- 1 Ambiguity and confidence
- 2 Uniform performance and sub-population robustness

Part IV: valid predictions

- 1 Conformal inference
- 2 Robustness to the future?

Stochastic optimization

Data X and parameters θ to learn, with loss

 $\ell(\theta, X)$

Goal: Minimize the population risk

minimize
$$L(\theta) := \mathbb{E}_{P_0}[\ell(\theta, X)] = \int \ell(\theta, x) dP_0(x)$$

subject to $\theta \in \Theta$

given an i.i.d. sample $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} P_0$ Empirical risk minimization:

$$\widehat{\theta} = \operatorname*{argmin}_{\theta \in \Theta} \mathbb{E}_{\widehat{P}_n}[\ell(\theta, X)] = \frac{1}{n} \sum_{i=1}^n \ell(\theta, X_i)$$

Curly fries and intelligence

Liking curly fries on Facebook reveals your high IQ

By PHILIPPA WARR 12 Mar 2013

What you Like on Facebook could reveal your race, age, IQ, sexuality and other personal data, even if you've set that information to "private".

Unlikely to be robust to even small changes in the underlying data

Revisiting uncertainty sets

minimize
$$f_0(x)$$

subject to $f_i(x, u) \leq 0$, all $u \in \mathcal{U}$

the basic idea so far:

 \blacktriangleright assume uncertainty variable U, choose ${\cal U}$ so that

$$\mathbf{Pr}(U \in \mathcal{U}) \ge 1 - \epsilon$$

• use this \mathcal{U} in problem above

When do we actually know $\mathbf{Pr}(U \in \mathcal{U})$?

Distributionally robust optimization

Idea: Replace distribution P_0 with "uncertainty" set \mathcal{P} of possible distributions around P_0

$$\mathsf{minimize}_{\theta \in \Theta} \ L(\theta) = \mathbb{E}_{P_0}[\ell(\theta, X)]$$

Big question: How do we choose the set \mathcal{P} ?

- (i) Hypothesis testing, covariance, and other moment constraints
- (ii) Non-parametric approaches

Distributionally robust optimization

Idea: Replace distribution P_0 with "uncertainty" set \mathcal{P} of possible distributions around P_0

$$\operatorname{minimize}_{\theta \in \Theta} L(\theta, \mathcal{P}) := \sup_{P \in \mathcal{P}} \mathbb{E}_{P}[\ell(\theta, X)]$$

Big question: How do we choose the set \mathcal{P} ?

- (i) Hypothesis testing, covariance, and other moment constraints
- (ii) Non-parametric approaches

A hypothesis testing approach

basic idea in hypothesis testing: for data \boldsymbol{X} drawn from some distribution

- have null hypothesis $H_0: X \sim P_0$
- have a statistic $T : \mathcal{X} \to \mathbf{R}$ of observations X
- for *level* α , find threshold τ_{α} such that

$$P_0(T(X) > \tau_\alpha(P_0)) \le \alpha$$

• reject null
$$H_0$$
 if $T(X) \ge \tau_{\alpha}$

example

▶ null is $H_0: X_i \stackrel{\text{iid}}{\sim} \mathsf{N}(0,1)$, $i = 1, \dots, n$, $T(X_1^n) = |\overline{X}_n|$

• threshold
$$\tau_{\alpha} = z_{1-\alpha/2}$$

Hypothesis testing/confidence set duality

consider a collection of distributions ${\mathcal P}$ on space ${\mathcal X}$

- ▶ let $T, \tau_{\alpha}(P)$ be a statistic with level α for distributions $P \in \mathcal{P}$
- ▶ sample $X \sim P$, observe $t^{obs} = T(X)$
- confidence set

$$C(X) := \left\{ P \in \mathcal{P} \mid \mathbf{Pr}_P(T(X) \le t^{\mathsf{obs}}) > \alpha \right\}$$

then

$$\mathbf{Pr}(P \in C(X)) \ge 1 - \alpha$$

example

normal family

$$\mathcal{P} = \{ \mathsf{N}(\theta, 1) \mid \theta \in \mathbf{R} \}$$

confidence set (abusing notation) is means

$$C(X_1^n) = \left[\overline{X}_n - z_{1-\alpha/2}, \overline{X}_n + z_{1-\alpha/2}\right]$$

Asymptotic validity

We say a test is asymptotically of level α for $H_0: X_i \stackrel{\text{iid}}{\sim} P$ if $\limsup_{n \to \infty} P(T(X_1^n) > \tau_{\alpha}(P)) \leq \alpha$

► asymptotic confidence sets: for observations $t_n^{\text{obs}} = T(X_1^n)$,

$$C(X_1^n) := \left\{ P \in \mathcal{P} \mid \mathbf{Pr}_P(T(X_1^n) \le t_n^{\mathsf{obs}}) > \alpha \right\}$$

• Then as $n \to \infty$, get

 $\liminf_{n \to \infty} \mathbf{Pr}(P \in C(X_1^n)) \ge 1 - \alpha$

A distributionally robust formulation

Steps:

- 1. choose valid (maybe asymptotically) confidence set $C(X_1^n)$
- 2. take uncertainty set

$$\mathcal{P}_n := C(X_1^n)$$

3. solve robust problem

$$\mathsf{minimize}_{\theta \in \Theta} \ L(\theta, \mathcal{P}_n)$$

Theorem Let $L_n^{\star} = \inf_{\theta \in \Theta} L(\theta, \mathcal{P}_n)$ and $\widehat{\theta}_n \in \operatorname{argmin}_{\theta \in \Theta} L(\theta, \mathcal{P}_n)$. Then $\limsup_{n \to \infty} \mathbf{Pr}(L(\widehat{\theta}_n) \ge L_n^{\star}) \le \alpha.$

Example: portfolio optimization

- random returns R_i ∈ R^d₊ for d assets, periods i = 1, 2, ...
 (assumed i.i.d.), mean returns r̄ = E[R]
- goal

maximize
$$\overline{r}^T \theta$$
 subject to $\theta \succeq 0, \ \mathbf{1}^T \theta = 1$

central limit theorem:

$$\overline{R}_n = \frac{1}{n} \sum_{i=1}^n R_i \quad \Sigma_n = \frac{1}{n} \sum_{i=1}^n (R_i - \overline{R}_n) (R_i - \overline{R}_n)^T$$

have

$$\sqrt{n} \Sigma_n^{-1/2} (\overline{R}_n - \overline{r}) \stackrel{d}{\rightsquigarrow} \mathsf{N}(0, I)$$

▶ lots of distributional facts about $Z \sim N(0, I)$ known

Example: portfolio optimization (continued)

• choose threshold
$$au_{lpha}$$
 so that

$$\mathbf{Pr}(\|Z\|_2^2 \ge \tau_\alpha) \le \alpha$$

confidence set

$$\mathcal{P}_n := \left\{ \text{distributions } P \text{ with } \left\| \sqrt{n} \, \Sigma_n^{-1/2} (\overline{R}_n - \mathbb{E}_P[R]) \right\|_2^2 \leq \tau_\alpha \right\}$$

optimization problem

maximize_{$$\theta$$} inf $\left\{ r^T \theta \text{ s.t. } \| \Sigma_n^{-1/2} (\overline{R}_n - r) \|_2^2 \le \tau_{\alpha} / n \right\}$

Example behavior

Asymptotic risks

Challenge: often very computationally hard to use valid confidence sets (or risk is infinite)

The f-divergence between distributions P and Q is

$$D_f(P||Q) := \int f\left(\frac{dP}{dQ}\right) dQ$$

where f is some convex function with f(1) = 0.

The f-divergence between distributions P and Q is

$$D_f(P||Q) := \int f\left(\frac{dP}{dQ}\right) dQ$$

where f is some convex function with f(1) = 0. Familiar examples:

•
$$f(t) = \frac{1}{2}(\sqrt{t}-1)^2$$
 gives $d_{\text{Hel}}^2(P,Q)$

The f-divergence between distributions P and Q is

$$D_f(P||Q) := \int f\left(\frac{dP}{dQ}\right) dQ$$

where f is some convex function with f(1) = 0. Use uncertainty region

$$\mathcal{P}_{\rho} := \{P : D_f \left(P \| P_0 \right) \le \rho \}$$

The f-divergence between distributions P and Q is

$$D_f(P||Q) := \int f\left(\frac{dP}{dQ}\right) dQ$$

where f is some convex function with f(1) = 0. Use uncertainty region

$$\mathcal{P}_{\rho} := \{ P : D_f \left(P \| P_0 \right) \le \rho \}$$

Divergence-based robustness sets

Idea: Instead of using empirical distribution \widehat{P}_n on sample X_1, \ldots, X_n , look at non-parametrically reweighted versions

$$\mathcal{P}_{n,\rho} := \left\{ P : D_f\left(P \| \widehat{P}_n\right) \le \frac{\rho}{n} \right\}$$

and minimize

$$L(\theta, \mathcal{P}_{n,\rho}) = \sup_{P \in \mathcal{P}_{n,\rho}} \mathbb{E}_{P}[\ell(\theta, X)] = \sup_{p \in \mathcal{P}_{n,\rho}} \sum_{i=1}^{n} p_{i}\ell(\theta, X_{i})$$
$$= \inf_{\lambda \ge 0,\eta} \left\{ \mathbb{E}_{\widehat{P}_{n}} \left[\lambda f^{*} \left(\frac{\ell(\theta, X) - \eta}{\lambda} \right) \right] + \frac{\rho}{n} \lambda + \eta \right\}$$

For data $Z_i \in \mathbf{R}^k$, define *confidence ellipse*

$$E_n(\rho) := \left\{ \sum_{i=1}^n p_i Z_i \mid \sum_{i=1}^n (np_i - 1)^2 \le \rho \right\}$$

$$\mathbf{Pr}(\mathbb{E}[Z] \in E_n(\rho)) \to \mathbf{Pr}(\chi_k^2 \le \rho).$$

For data $Z_i \in \mathbf{R}^k$, define *confidence ellipse*

$$E_n(\rho) := \left\{ \sum_{i=1}^n p_i Z_i \mid \sum_{i=1}^n (np_i - 1)^2 \le \rho \right\}$$

$$\mathbf{Pr}(\mathbb{E}[Z] \in E_n(\rho)) \to \mathbf{Pr}(\chi_k^2 \le \rho).$$

For data $Z_i \in \mathbf{R}^k$, define *confidence ellipse*

$$E_n(\rho) := \left\{ \sum_{i=1}^n p_i Z_i \mid \sum_{i=1}^n (np_i - 1)^2 \le \rho \right\}$$

$$\mathbf{Pr}(\mathbb{E}[Z] \in E_n(\rho)) \to \mathbf{Pr}(\chi_k^2 \le \rho).$$

For data $Z_i \in \mathbf{R}^k$, define *confidence ellipse*

$$E_n(\rho) := \left\{ \sum_{i=1}^n p_i Z_i \mid \sum_{i=1}^n (np_i - 1)^2 \le \rho \right\}$$

$$\mathbf{Pr}(\mathbb{E}[Z] \in E_n(\rho)) \to \mathbf{Pr}(\chi_k^2 \le \rho).$$

For data $Z_i \in \mathbf{R}^k$, define *confidence ellipse*

$$E_n(\rho) := \left\{ \sum_{i=1}^n p_i Z_i \mid \sum_{i=1}^n (np_i - 1)^2 \le \rho \right\}$$

$$\mathbf{Pr}(\mathbb{E}[Z] \in E_n(\rho)) \to \mathbf{Pr}(\chi_k^2 \le \rho).$$

On variance expansions

Confidence ellipse for risk: Robust risk is

$$L(\theta, \mathcal{P}_{n,\rho}) = \sup_{p} \left\{ \sum_{i=1}^{n} p_i \ell(\theta, X_i) \mid \sum_{i=1}^{n} \frac{1}{n} f\left(\frac{p_i}{1/n}\right) \le \frac{\rho}{n} \right\}$$

Theorem (D., Glynn, Namkoong 20) Let f be convex with f''(1) = 2. Then

$$L(\theta, \mathcal{P}_{n,\rho}) = \frac{1}{n} \sum_{i=1}^{n} \ell(\theta, X_i) + \sqrt{\frac{\rho}{n} \mathsf{Var}_{\widehat{P}_n}(\ell(\theta, X))} + O_P(n^{-1})$$

uniformly in θ in compact sets

Problem: Classify documents as a subset of the 4 categories:

{Corporate, Economics, Government, Markets}

- ▶ Data: pairs $x \in \mathbf{R}^d$ represents document, $y \in \{-1, 1\}^4$ where $y_j = 1$ indicating x belongs j-th category.
- Logistic loss, with $\Theta = \{ \theta \in \mathbf{R}^d : \|\theta\|_1 \le 1000 \}$
- ▶ d = 47,236, n = 804,414. 10-fold cross-validation.
- Use precision and recall to evaluate performance

$$\mathsf{Precision} = \frac{\# \; \mathsf{Correct}}{\# \; \mathsf{Guessed} \; \mathsf{Positive}} \qquad \mathsf{Recall} = \frac{\# \; \mathsf{Correct}}{\# \; \mathsf{Actually} \; \mathsf{Positive}}$$

Table: Reuters Number of Examples

Corporate	Economics	Government	Markets
381,327	119,920	239,267	204,820

Figure: Recall on common category (Corporate)

Figure: Recall on rare category (Economics)

Do well almost all the time intead of just on average

Moving beyond "certificates"

New challenge: doing well on sub-populations within data

- ML models increasingly used in high-stakes decisions
- Disease diagnosis, hiring decisions, driving vehicles
- Models often underperform on minority, other subpopulations
 - As of 2015, only 1.9 percent of all studies of respiratory disease included minority subjects despite African Americans more likely to suffer respiratory ailments
 - Only 2 percent of more than 10,000 cancer clinical trials funded by the National Cancer Institute focused on a racial or ethnic minority
Approaches: group-based or pure robustness

Given groups $g \in \mathcal{G}$ with populations P_g , minimize

 $\max_{g \in \mathcal{G}} \mathbb{E}_{P_g}[\ell(\theta; X)]$

[Meinshausen & Bühlmann 15; Kearns et al. 19; Sagawa, Koh et al. 19–20]

- requires pre-defined groups
- may be computationally challenging (if large numbers of potentially intersecting groups)

alternative idea: pick worst-performing sub-population, optimize that

Conditional value at risk and friends

for random variable $Z\in\mathbb{R},$ $Z\sim P_0,$ and $q_{1-\alpha}(Z)=1-\alpha$ quantile of Z,

$$\begin{aligned} \mathsf{CVaR}_{\alpha}(Z) &= \mathbb{E}[Z \mid Z \ge q_{1-\alpha}(Z)] \\ &= \inf_{\eta} \left\{ \alpha^{-1} \mathbb{E}[[Z - \eta]_{+}] + \eta \right\} \\ &= \sup \left\{ \mathbb{E}_{P}[Z] \mid \frac{p(z)}{p_{0}(z)} \le \frac{1}{\alpha} \right\} \\ &= \sup \left\{ \mathbb{E}_{P}[Z] \mid \text{there exists } Q, \beta \le \alpha \text{ s.t. } P_{0} = \beta P + (1 - \beta)Q \right\} \end{aligned}$$

intuition: choose worst sub-population of size at least α

Generalized conditional value at risk

Theorem (Kusuoka)

For any collection \mathcal{P} of distributions, there is a collection of distributions \mathcal{M} on [0,1] such that

$$\sup_{P \in \mathcal{P}} \mathbb{E}_P[Z] = \sup_{\mu \in \mathcal{M}} \int_0^1 \mathsf{CVaR}_\alpha(Z) \mu(d\alpha).$$

Interpretation: all distributionally robust formulations are mixtures of conditional value at risk

Robustness sets from f-divergences

Proposition (D. & Namkoong 20) For any f of the form $f(t) = t^k - 1$, we have

$$\sup_{P:D_f(P||P_0) \le \rho} \mathbb{E}_P[Z] = \inf_{\eta} \left\{ (1 + c(\rho)) \mathbb{E} \left[[Z - \eta]_+^{k_*} \right]^{1/k_*} + \eta \right\}$$

where $k_* = \frac{k}{k-1}$

Consider minimizing robust losses of the form

$$L(\theta, \{P: D_f(P || P_0) \le \rho\}) = \sup_{P: D_f(P || P_0) \le \rho} \mathbb{E}_P[\ell(\theta; X)]$$

Typical results (MNIST classification experiment)

- have dataset of MNIST handwritten digits (60,000 images of digits 0–9)
- smaller dataset of typewritten digits
- training data is mixture of MNIST and typewritten digits

Error on MNIST handwritten digits

Error on all typewritten digits

Error on easy typewritten digit (3)

Error on hard typewritten digit (9)

A few parting thoughts

- Have not talked about statistical consequences
- Still sometimes challenging to solve these at scale
- Hybrids between knowing groups and not knowing groups
- Connections with causality?

Tutorial: Robustness and Optimization

John Duchi

UAI 2020

Outline

Part I: (convex) optimization

- 1 Convex optimization
- 2 Formulation and "technology"

Part II: robust optimization

- 1 Formulation of robust optimization problems
- 2 Data uncertainty and construction

Part III: distributional robustness

- 1 Ambiguity and confidence
- 2 Uniform performance and sub-population robustness

Part IV: valid predictions

- 1 Conformal inference
- 2 Robustness to the future?

The actual robustness challenge

Robustness to future data

CIFAR Generalization

(Recht, Roelofs, Schmidt, Shankar 2019)

ImageNet Generalization

let's build *valid confidence* into systems Goal: get confidence regions C(x) such that for given level α

 $\mathbf{Pr}(Y \in C(X)) \ge 1 - \alpha$

Conformal inference (Vovk and colleagues): we can do this for *any* model

Scoring functions

• Prediction or score s(x, y)

confidence sets of the form

$$C(x) = \{y \mid s(x, y) \le \tau\}$$

Split conformal inference

Define scores $S_i = s(X_i, Y_i)$, i = 1, ..., n, and threshold

$$au_n := rac{n+1}{n}(1-lpha)$$
-quantile of $\{S_1, \dots, S_n\}$

and confidence set

$$C(x) := \{ y \mid s(x, y) \le \tau_n \}$$

Theorem If data are i.i.d., then

 $\mathbf{Pr}(Y_{n+1} \in C(X_{n+1})) \ge 1 - \alpha.$

Is this enough?

Distributionally robust confidence sets

Problem: Find confidence sets C(x) such that if $s(X_{n+1}, Y_{n+1}) \sim P$ and $s(X_i, Y_i) \stackrel{\text{iid}}{\sim} P_0$ where

 $D_f\left(P\|P_0\right) \le \rho$

then

$$P(Y_{n+1} \in C(X_{n+1})) \ge 1 - \alpha$$

Robust quantiles and validity under shift

Define

$$g_{f,\rho}(\beta) := \inf\left\{z \in [0,1] : \beta f\left(\frac{z}{\beta}\right) + (1-\beta)f\left(\frac{1-z}{1-\beta}\right) \le \rho\right\}$$
$$g_{f,\rho}^{-1}(\tau) = \sup\left\{\beta \in [\tau,1] : \beta f\left(\frac{\tau}{\beta}\right) + (1-\beta)f\left(\frac{1-\tau}{1-\beta}\right) \le \rho\right\}$$

Proposition

We have

$$\sup_{P:D_f(P \| P_0) \le \rho} \mathsf{Quantile}(\alpha, P) = \mathsf{Quantile}(g_{f,\rho}^{-1}(\alpha), P)$$

A coverage guarantee

Define

$$C_{\rho}(x) := \left\{ y \mid s(x,y) \leq \mathsf{Quantile}(g_{f,\rho}^{-1}(1-\alpha),\widehat{P}_n) \right\}$$

Theorem If $s(X_i, Y_i) \stackrel{\text{iid}}{\sim} P_0$ for i = 1, ..., n, and $s(X_{n+1}, Y_{n+1}) \sim P$, then for $\rho \geq D_f(P || P_0)$

$$\mathbf{Pr}(Y_{n+1} \in C_{\rho}(X_{n+1})) \ge 1 - \alpha - \frac{O(1)}{n}.$$

One experimental result

A few parting thoughts