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Optimization

Basic optimization

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

I x ∈ Rd is variable (or decision variable)

I f0 : Rd → R is objective

I fi : Rd → R are constraints

solution is x? minimizing f0 subject to constraints



Applications and examples

Operations research (1940s on)

I Facility placement: choose location of facility minimize cost of
transporting materials

I Portfolio optimization: minimize risk or variance subject to
expected returns of investments

Engineering and control (1980s on)

I Control: minimize expended energy subject to moving from
one location to another (variables are control inputs)

I Device design: (e.g.) minimize power consumption subject to
manufacturing limits, timing requirements, size

Statistics and machine learning (1990s on)

I minimize prediction error or model mis-fit subject to prior
information, sparsity, parameter limits



Convex optimization problems

minimize f0(x)

subect to fi(x) = 0, i = 1, . . . ,m

hi(x) = bi, i = 1, . . . , p

I objective f0 and inequality constraints fi are convex:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) for 0 ≤ λ ≤ 1

I equalities hi are linear:

hi(x) = aTi x

this is a technology



Linear programs

objective and constraints are linear

minimize cTx

subject toAx � b, Fx = g



Quadratic programs

objective and inequality constraints are quadratic

minimize xTAx+ bTx

subject to xTPix+ qTi x+ ri ≤ 0, i = 1, . . . ,m

Fx = g



Semidefinite programs

variables are matrices X ∈ Sn = {X ∈ Rn×n | X = XT },
constraints are in semidefinite order

minimize tr(CX)

subject to tr(AiX) = bi, i = 1, . . . ,m

X � 0



Example: matrix completion

I partially observed matrix M ∈ Rm×n
+ of movie ratings in

locations (i, j) ∈ Ω

I user i represented by vector ui ∈ Rr, movie j by vj , and
Mij = uTi vj

For X = UV T , U ∈ Rm×r, V ∈ Rn×r,

minimize rank(X)

subject to XΩ = MΩ

has convex relaxation

minimize
n∑
i=1

σi(X) = ‖X‖∗

subject to XΩ = MΩ



Nuclear norm minimization

minimize
n∑
i=1

σi(X) = ‖X‖∗

subject to XΩ = MΩ

has equivalent semidefinite program

minimize tr(Z) + tr(W )

subject to XΩ = MΩ[
Z −X
−XT W

]
� 0, Z � 0, W � 0

in variables X ∈ Rm×n, Z ∈ Sn, W ∈ Sm



A few important calculus rules

Let f1, f2 : Rd → R be convex functions

I f(x) = αf1(x) + βf2(x) is convex for α, β ≥ 0

I maxima of convex functions are convex:

f(x) = max{f1(x), f2(x)}

I even for an infinite index set A,

f(x) = sup
α∈A

fα(x)

is convex



A failure of linear programming

c =


100

199.9
−5500
−6100

 A =



−.01 −.02 .5 .6
1 1 0 0
0 0 90 100
0 0 40 50

100 199.9 700 800
−I4

 and b =



0
1000
2000
800

100000
0
0
0
0


.

c vector of costs/profits for two drugs, constraints Ax � b on
production

I what happens if we vary percentages .01, .02 (chemical
composition of raw materials) by .5% and 2%, i.e.
.01± .00005 and .02± .0004?



Example failure for linear programming
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Example (Truss Design)

Problem: Choose thickness of bars to (1) minimize use of material
and (2) support desired load
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Robust optimization

objective f0 : Rn → R, uncertainty set U , fi : Rn × U → R,

fi(x, u) convex in x for all u ∈ U
general form

minimize f0(x)

subject to fi(x, u) ≤ 0 for all u ∈ U , i = 1, . . . ,m.

equivalent to

minimize f0(x)

subject to sup
u∈U

fi(x, u) ≤ 0, i = 1, . . . ,m.

I Bertsimas, Ben-Tal, El-Ghaoui, Nemirovski (1990s–now)



Setting up robust problem

I can replace objective f0 with supu∈U f0(x, u), rewrite as

minimize t

subject to sup
u
f0(x, u) ≤ t, sup

u
fi(x, u) ≤ 0, i = 1, . . . ,m

I equality constraints make no sense: a robust equality
aT (x+ u) = b for all u ∈ U?

three questions:

I is robust formulation useful?
I is robust formulation computable?
I how should we choose U?
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Alternative robust LP

minimize cTx

subject to (A+ ∆)x � b, all ∆ ∈ U

where |∆11| ≤ .00005, |∆12| ≤ .0004, ∆ij = 0 otherwise

I solution xrobust has degradation provably no worse than 6%
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Problem: Choose thickness of bars to (1) minimize use of material
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How to choose uncertainty sets

I uncertainty set U a modeling choice

I common idea: let U be random variable, want constraints that

Pr(fi(x, U) ≥ 0) ≤ ε (1)

I typically hard (non-convex except in special cases)

I find set U such that Pr(U ∈ U) ≥ 1− ε, then sufficient
condition for (1)

fi(x, u) ≤ 0 for all u ∈ U



Uncertainty set with Gaussian data

minimize cTx

subject to Pr(aTi x > bi) ≤ ε, i = 1, . . . ,m

coefficient vectors ai i.i.d. N (a,Σ) and failure probability ε

I marginally aTi x ∼ N (aTi x, x
TΣx)

I for ε = .5, just LP

minimize cTx subject to aTi x ≤ bi, i = 1, . . . ,m

I what about ε = .1, .9?



Gaussian uncertainty sets

{x | Pr(aTi x > bi) ≤ ε} = {x | aTi x− bi − Φ−1(ε)
√
xTΣx ≤ 0}

ε = .9 ε = .5 ε = .1
(Source: ee364b, Stanford)



Robust problems are convex, so no problem?

not quite...
consider quadratic constraint

‖Ax+Bu‖2 ≤ 1 for all ‖u‖∞ ≤ 1

I convex quadratic maximization in u

I solutions on extreme points u ∈ {−1, 1}n

I and NP-hard to maximize (even approximately [Håstad])
convex quadratics over hypercube



Tractability

Important question: when is a robust LP still an LP (robust SOCP
an SOCP, robust SDP an SDP)

minimize cTx

subject to (A+ U)x � b for U ∈ U .

can always represent formulation constraint-wise, consider only one
inequality

(a+ u)Tx ≤ b for all u ∈ U .

I Simple example: U = {u ∈ Rn | ‖u‖∞ ≤ δ}, then

aTx+ δ ‖x‖1 ≤ b



When are things tractable?

Duality typically used to get tractability
(but we’re not going to do that)



Portfolio optimization (with robust LPs)

I d assets i = 1, . . . , d, random multiplicative return Ri with
E[Ri] = µi ≥ 1, µ1 ≥ µ2 ≥ · · · ≥ µn

I “certain” problem has solution xnom = e1,

maximize µTx subject to xT1 = 1, x � 0

I if asset i varies in range µi ± ui, robust problem

maximize
d∑
i=1

inf
u∈[−u1,ui]

(µi + u)xi subject to 1Tx = 1, x � 0

and equivalent

maximize µTx− uTx subject to 1Tx = 1, x � 0



Portfolio optimization (tigher control)

I Returns Ri ∈ [µi − ui, µi + ui] with ERi = µi

I guarantee return with probability 1− ε

maximizex,t t

subject to Pr

( n∑
i=1

Rixi ≥ t
)
≥ 1− ε, xT1 = 1, x � 0

I value at risk is non-convex in x, approximate it?

I approximate with high-probability bounds

I less conservative than LP (certain returns) approach



Portfolio optimization: probability approximation

I Hoeffding’s inequality

Pr

( n∑
i=1

(Ri − µi)xi ≤ −t
)
≤ exp

(
− t2

2
∑n

i=1 x
2
iu

2
i

)
.

I written differently

Pr

[
n∑
i=1

Rixi ≤ µTx− t
( n∑
i=1

u2ix
2
i

) 1
2

]
≤ exp

(
− t

2

2

)
I set t =

√
2 log(1/ε), gives robust problem

maximize µTx−
√

2 log
1

ε
‖diag(u)x‖2 subject to 1Tx = 1, x � 0.



Portfolio optimization comparison

I data µi = 1.05 + 3(n−i)
10n , uncertainty |ui| ≤ ui = .05 + n−i

2n
and un = 0

I nominal minimizer xnom = e1

I conservative (LP) minimizer xcon = en (guaranteed 5%
return),

I robust (SOCP) minimizer xε for value-at risk ε = 2× 10−4



Portfolio optimization comparison
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Stochastic optimization

Data X and parameters θ to learn, with loss

`(θ,X)

Goal: Minimize the population risk

minimize L(θ) := EP0 [`(θ,X)] =

∫
`(θ, x)dP0(x)

subject to θ ∈ Θ

given an i.i.d. sample X1, . . . , Xn
iid∼ P0

Empirical risk minimization:

θ̂ = argmin
θ∈Θ

E
P̂n

[`(θ,X)] =
1

n

n∑
i=1

`(θ,Xi)



Curly fries and intelligence

Unlikely to be robust to even small changes in the underlying data



Revisiting uncertainty sets

minimize f0(x)

subject to fi(x, u) ≤ 0, all u ∈ U

the basic idea so far:

I assume uncertainty variable U , choose U so that

Pr(U ∈ U) ≥ 1− ε

I use this U in problem above

When do we actually know Pr(U ∈ U)?



Distributionally robust optimization

Idea: Replace distribution P0 with “uncertainty” set P of possible
distributions around P0

minimizeθ∈Θ L(θ) = EP0 [`(θ,X)]

Big question: How do we choose the set P?

(i) Hypothesis testing, covariance, and other moment constraints

(ii) Non-parametric approaches



Distributionally robust optimization

Idea: Replace distribution P0 with “uncertainty” set P of possible
distributions around P0

minimizeθ∈Θ L(θ,P) := sup
P∈P

EP [`(θ,X)]

Big question: How do we choose the set P?

(i) Hypothesis testing, covariance, and other moment constraints

(ii) Non-parametric approaches



A hypothesis testing approach

basic idea in hypothesis testing: for data X drawn from some
distribution

I have null hypothesis H0 : X ∼ P0

I have a statistic T : X → R of observations X

I for level α, find threshold τα such that

P0(T (X) > τα(P0)) ≤ α

I reject null H0 if T (X) ≥ τα
example

I null is H0 : Xi
iid∼ N(0, 1), i = 1, . . . , n, T (Xn

1 ) = |Xn|
I threshold τα = z1−α/2



Hypothesis testing/confidence set duality

consider a collection of distributions P on space X
I let T, τα(P ) be a statistic with level α for distributions P ∈ P
I sample X ∼ P , observe tobs = T (X)

I confidence set

C(X) :=
{
P ∈ P | PrP (T (X) ≤ tobs) > α

}
I then

Pr(P ∈ C(X)) ≥ 1− α

example

I normal family
P = {N(θ, 1) | θ ∈ R}

I confidence set (abusing notation) is means

C(Xn
1 ) =

[
Xn − z1−α/2, Xn + z1−α/2

]



Asymptotic validity

We say a test is asymptotically of level α for H0 : Xi
iid∼ P if

lim sup
n→∞

P (T (Xn
1 ) > τα(P )) ≤ α

I asymptotic confidence sets: for observations tobsn = T (Xn
1 ),

C(Xn
1 ) :=

{
P ∈ P | PrP (T (Xn

1 ) ≤ tobsn ) > α
}

I Then as n→∞, get

lim inf
n→∞

Pr(P ∈ C(Xn
1 )) ≥ 1− α



A distributionally robust formulation

Steps:

1. choose valid (maybe asymptotically) confidence set C(Xn
1 )

2. take uncertainty set
Pn := C(Xn

1 )

3. solve robust problem

minimizeθ∈Θ L(θ,Pn)

Theorem
Let L?n = infθ∈Θ L(θ,Pn) and θ̂n ∈ argminθ∈Θ L(θ,Pn). Then

lim sup
n→∞

Pr(L(θ̂n) ≥ L?n) ≤ α.



Example: portfolio optimization

I random returns Ri ∈ Rd
+ for d assets, periods i = 1, 2, . . .

(assumed i.i.d.), mean returns r = E[R]

I goal
maximize rT θ subject to θ � 0, 1T θ = 1

I central limit theorem:

Rn =
1

n

n∑
i=1

Ri Σn =
1

n

n∑
i=1

(Ri −Rn)(Ri −Rn)T

have √
nΣ−1/2

n (Rn − r)
d
 N(0, I)

I lots of distributional facts about Z ∼ N(0, I) known



Example: portfolio optimization (continued)

I choose threshold τα so that

Pr(‖Z‖22 ≥ τα) ≤ α

I confidence set

Pn :=

{
distributions P with

∥∥∥√nΣ−1/2
n (Rn − EP [R])

∥∥∥2

2
≤ τα

}
I optimization problem

maximizeθ inf
{
rT θ s.t. ‖Σ−1/2

n (Rn − r)‖22 ≤ τα/n
}



Example behavior

Delage and Ye: Distributionally Robust Optimization Under Moment Uncertainty
610 Operations Research 58(3), pp. 595–612, © 2010 INFORMS

Table 1. Comparison of short-term and long-term per-
formance over six years of trading.

Single
day utility Yearly return Yearly return

(2001–2007) (2001–2004) (2004–2007)

Method Avg. 1st perc. Avg. 10th perc. Avg. 10th perc.

Our DRPO 1!000 0!983 0!944 0!846 1!102 1!025
model

Popescu’s 1!000 0!975 0!700 0!334 1!047 0!936
DRPO
model

SP model 1!000 0!973 0!908 0!694 1!045 0!923

referred to as the SP model, which maximizes the average
utility over the last 30 days. We believe that the statistics
obtained over the set of 300 experiments and presented in
Table 1 demonstrate how much there is to gain in terms of
average performance and risk reduction by considering an
optimization model that accounts for both distribution and
moment uncertainty.

First, from the analysis of the daily returns generated by
each method, one observes that they achieve comparable
average daily utility. However, our DRPO model stands out
as being more reliable. For example, the lower first per-
centile of the utility distribution is 0.8% higher then the
two competing methods. Also, this difference in reliabil-
ity becomes more obvious when considering the respective
long-term performances. Figure 1 presents the average evo-
lution of wealth on a six-year period when managing a
portfolio of four assets on a daily basis with any of the three
methods. In Table 1, the performances over the years 2001–
2004 are presented separately from the performances over
the years 2004–2007 to measure how they are affected by
different levels of economic growth. The figures also peri-
odically indicate the 10th and 90th percentile of the wealth
distribution over the set of 300 experiments. The statistics
of the long-term experiments demonstrate empirically that

Figure 1. Comparison of wealth evolution in 300 experiments conducted over the years 2001–2007.

2001 2002 2003 2004

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Year

W
ea

lth

Our DRPO model
Popescu’s DRPO model
SP model

2004 2005 2006 2007

0.50

0.75

1.00

1.25

1.50

Year

W
ea

lth

Note. For each approach, the figures indicate periodically the 10th and 90th percentiles of the distribution of accumulated wealth.

our method significantly outperforms the two other ones in
terms of average return and risk during both the years of
economic growth and the years of decline. More specif-
ically, our DRPO model outperformed Popescu’s DRPO
model in terms of total return accumulated over the period
2001–2007 in 79.2% of our experiments. Also, it performed
on average at least 1.67 times better than any competing
model. Note that these experiments are purely illustrative
of the strengths and weaknesses of the different models.
For example, the returns measured in each experiment do
not take into account transaction fees. The realized returns
are also biased due to the fact that the assets involved in
our experiments were known to be major assets in their
category in January 2007. On the other hand, the realized
returns were also negatively biased due to the fact that
in each experiment the models were managing a portfolio
of only four assets. Overall, we believe that these biases
affected all methods equally.

Appendix. Proof of Lemma 1
We first establish the primal-dual relationship between
problems (4) and (5). In a second step, we demonstrate that
the conditions for strong duality to hold are met.

Step 1. One can first show, by formulating the
Lagrangian of problem (3), that the dual can take the fol-
lowing form:

minimize
r" Q" P" p" s

#$2!0 − "0"
T
0 % • Q + r + #!0

• P%

− 2"T
0 p + $1s (22a)

subject to #TQ# − 2#T#p + Q"0% + r − h#x"#%! 0

∀# ∈! " (22b)

Q $ 0" (22c)
[

P p
pT s

]
$ 0" (22d)

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

40
.2

47
.0

.2
5]

 o
n 

26
 Ja

nu
ar

y 
20

14
, a

t 1
5:

29
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 

(Delage and Ye, 2010)



Asymptotic risks

Challenge: often very computationally hard to use valid
confidence sets (or risk is infinite)



Divergence-based uncertainty sets
The f -divergence between distributions P and Q is

Df (P ||Q) :=

∫
f

(
dP

dQ

)
dQ

where f is some convex function with f(1) = 0.



Divergence-based uncertainty sets
The f -divergence between distributions P and Q is

Df (P ||Q) :=

∫
f

(
dP

dQ

)
dQ

where f is some convex function with f(1) = 0.
Familiar examples:

I f(t) = − log t gives Df (P ||Q) = Dkl (Q||P )

I f(t) = t log t gives Df (P ||Q) = Dkl (P ||Q)

I f(t) = 1
2(t− 1)2 gives Dχ2 (P ||Q)

I f(t) = 1
2(
√
t− 1)2 gives d2

Hel(P,Q)



Divergence-based uncertainty sets
The f -divergence between distributions P and Q is

Df (P ||Q) :=

∫
f

(
dP

dQ

)
dQ

where f is some convex function with f(1) = 0.
Use uncertainty region

Pρ := {P : Df (P ||P0) ≤ ρ}



Divergence-based uncertainty sets
The f -divergence between distributions P and Q is

Df (P ||Q) :=

∫
f

(
dP

dQ

)
dQ

where f is some convex function with f(1) = 0.
Use uncertainty region

Pρ := {P : Df (P ||P0) ≤ ρ}



Divergence-based robustness sets

Idea: Instead of using empirical distribution P̂n on sample
X1, . . . , Xn, look at non-parametrically reweighted versions

Pn,ρ :=
{
P : Df

(
P ||P̂n

)
≤ ρ

n

}
and minimize

L(θ,Pn,ρ) = sup
P∈Pn,ρ

EP [`(θ,X)] = sup
p∈Pn,ρ

n∑
i=1

pi`(θ,Xi)

= inf
λ≥0,η

{
E
P̂n

[
λf∗

(
`(θ,X)− η

λ

)]
+
ρ

n
λ+ η

}



Empirical likelihood (Owen 1990)

For data Zi ∈ Rk, define confidence ellipse

En(ρ) :=

{ n∑
i=1

piZi |
n∑
i=1

(npi − 1)2 ≤ ρ
}

then independently of distribution on Z ∈ Rk

Pr(E[Z] ∈ En(ρ))→ Pr(χ2
k ≤ ρ).
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then independently of distribution on Z ∈ Rk

Pr(E[Z] ∈ En(ρ))→ Pr(χ2
k ≤ ρ).
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On variance expansions

Confidence ellipse for risk: Robust risk is

L(θ,Pn,ρ) = sup
p

{
n∑
i=1

pi`(θ,Xi) |
n∑
i=1

1

n
f

(
pi

1/n

)
≤ ρ

n

}

Theorem (D., Glynn, Namkoong 20)

Let f be convex with f ′′(1) = 2. Then

L(θ,Pn,ρ) =
1

n

n∑
i=1

`(θ,Xi) +

√
ρ

n
Var

P̂n
(`(θ,X)) +OP (n−1)

uniformly in θ in compact sets



Experiment: Reuters Corpus (multi-label)

Problem: Classify documents as a subset of the 4 categories:{
Corporate, Economics, Government, Markets

}
I Data: pairs x ∈ Rd represents document, y ∈ {−1, 1}4 where
yj = 1 indicating x belongs j-th category.

I Logistic loss, with Θ =
{
θ ∈ Rd : ‖θ‖1 ≤ 1000

}
I d = 47, 236, n = 804, 414. 10-fold cross-validation.

I Use precision and recall to evaluate performance

Precision =
# Correct

# Guessed Positive
Recall =

# Correct

# Actually Positive



Experiment: Reuters Corpus (multi-label)

Table: Reuters Number of Examples

Corporate Economics Government Markets
381,327 119,920 239,267 204,820



Experiment: Reuters Corpus (multi-label)

Figure: Recall on common category (Corporate)
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Experiment: Reuters Corpus (multi-label)

Figure: Recall on rare category (Economics)
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Experiment: Reuters Corpus (multi-label)

Do well almost all the time intead of just on average
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Moving beyond “certificates”

New challenge: doing well on sub-populations within data

I ML models increasingly used in high-stakes decisions

I Disease diagnosis, hiring decisions, driving vehicles
I Models often underperform on minority, other subpopulations

I As of 2015, only 1.9 percent of all studies of respiratory
disease included minority subjects despite African Americans
more likely to suffer respiratory ailments

I Only 2 percent of more than 10,000 cancer clinical trials
funded by the National Cancer Institute focused on a racial or
ethnic minority



Approaches: group-based or pure robustness

Given groups g ∈ G with populations Pg, minimize

max
g∈G

EPg [`(θ;X)]

[Meinshausen & Bühlmann 15; Kearns et al. 19; Sagawa, Koh et
al. 19–20]

I requires pre-defined groups

I may be computationally challenging (if large numbers of
potentially intersecting groups)

alternative idea: pick worst-performing sub-population, optimize
that



Conditional value at risk and friends

for random variable Z ∈ R, Z ∼ P0, and q1−α(Z) = 1−α quantile
of Z,

CVaRα(Z) = E[Z | Z ≥ q1−α(Z)]

= inf
η

{
α−1E[[Z − η]+] + η

}
= sup

{
EP [Z] | p(z)

p0(z)
≤ 1

α

}
= sup {EP [Z] | there exists Q, β ≤ α s.t. P0 = βP + (1− β)Q}

intuition: choose worst sub-population of size at least α



Generalized conditional value at risk

Theorem (Kusuoka)

For any collection P of distributions, there is a collection of
distributions M on [0, 1] such that

sup
P∈P

EP [Z] = sup
µ∈M

∫ 1

0
CVaRα(Z)µ(dα).

Interpretation: all distributionally robust formulations are mixtures
of conditional value at risk



Robustness sets from f -divergences

Proposition (D. & Namkoong 20)

For any f of the form f(t) = tk − 1, we have

sup
P :Df (P ||P0)≤ρ

EP [Z] = inf
η

{
(1 + c(ρ))E

[
[Z − η]k∗+

]1/k∗
+ η

}
where k∗ = k

k−1

Consider minimizing robust losses of the form

L(θ, {P : Df (P ||P0) ≤ ρ}) = sup
P :Df (P ||P0)≤ρ

EP [`(θ;X)]



Typical results (MNIST classification experiment)

I have dataset of MNIST handwritten digits (60,000 images of
digits 0–9)

I smaller dataset of typewritten digits

I training data is mixture of MNIST and typewritten digits



Error on MNIST handwritten digits
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Error on all typewritten digits
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Error on easy typewritten digit (3)
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Error on hard typewritten digit (9)
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A few parting thoughts

I Have not talked about statistical consequences

I Still sometimes challenging to solve these at scale

I Hybrids between knowing groups and not knowing groups

I Connections with causality?



Tutorial: Robustness and Optimization

John Duchi

UAI 2020



Outline

Part I: (convex) optimization

1 Convex optimization

2 Formulation and “technology”

Part II: robust optimization

1 Formulation of robust optimization problems

2 Data uncertainty and construction

Part III: distributional robustness

1 Ambiguity and confidence

2 Uniform performance and sub-population robustness

Part IV: valid predictions

1 Conformal inference

2 Robustness to the future?



The actual robustness challenge

Robustness to future data



CIFAR Generalization

are an effective way to improve image classification models. Adaptivity is therefore an unlikely
explanation for the accuracy drops.

Instead, we propose an alternative explanation based on the relative difficulty of the original and
new test sets. We demonstrate that it is possible to recover the original ImageNet accuracies almost
exactly if we only include the easiest images from our candidate pool. This suggests that the accuracy
scores of even the best image classifiers are still highly sensitive to minutiae of the data cleaning
process. This brittleness puts claims about human-level performance into context [20, 31, 48]. It
also shows that current classifiers still do not generalize reliably even in the benign environment of a
carefully controlled reproducibility experiment.

Figure 1 shows the main result of our experiment. Before we describe our methodology in Section 3,
the next section provides relevant background. To enable future research, we release both our new
test sets and the corresponding code.1
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Figure 1: Model accuracy on the original test sets vs. our new test sets. Each data point corresponds
to one model in our testbed (shown with 95% Clopper-Pearson confidence intervals). The plots
reveal two main phenomena: (i) There is a significant drop in accuracy from the original to the new
test sets. (ii) The model accuracies closely follow a linear function with slope greater than 1 (1.7
for CIFAR-10 and 1.1 for ImageNet). This means that every percentage point of progress on the
original test set translates into more than one percentage point on the new test set. The two plots
are drawn so that their aspect ratio is the same, i.e., the slopes of the lines are visually comparable.
The red shaded region is a 95% confidence region for the linear fit from 100,000 bootstrap samples.

2 Potential Causes of Accuracy Drops

We adopt the standard classification setup and posit the existence of a “true” underlying data
distribution D over labeled examples (x, y). The overall goal in classification is to find a model f̂

1https://github.com/modestyachts/CIFAR-10.1 and https://github.com/modestyachts/ImageNetV2

2

(Recht, Roelofs, Schmidt, Shankar 2019)



ImageNet Generalization

are an effective way to improve image classification models. Adaptivity is therefore an unlikely
explanation for the accuracy drops.

Instead, we propose an alternative explanation based on the relative difficulty of the original and
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test sets. (ii) The model accuracies closely follow a linear function with slope greater than 1 (1.7
for CIFAR-10 and 1.1 for ImageNet). This means that every percentage point of progress on the
original test set translates into more than one percentage point on the new test set. The two plots
are drawn so that their aspect ratio is the same, i.e., the slopes of the lines are visually comparable.
The red shaded region is a 95% confidence region for the linear fit from 100,000 bootstrap samples.

2 Potential Causes of Accuracy Drops

We adopt the standard classification setup and posit the existence of a “true” underlying data
distribution D over labeled examples (x, y). The overall goal in classification is to find a model f̂

1https://github.com/modestyachts/CIFAR-10.1 and https://github.com/modestyachts/ImageNetV2
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(Recht, Roelofs, Schmidt, Shankar 2019)



An alternative idea

let’s build valid confidence into systems
Goal: get confidence regions C(x) such that for given level α

Pr(Y ∈ C(X)) ≥ 1− α

Conformal inference (Vovk and colleagues): we can do this for any
model



Scoring functions

I Prediction or score s(x, y)

I confidence sets of the form

C(x) = {y | s(x, y) ≤ τ}



Split conformal inference

Define scores Si = s(Xi, Yi), i = 1, . . . , n, and threshold

τn :=
n+ 1

n
(1− α)-quantile of {S1, . . . , Sn}

and confidence set

C(x) := {y | s(x, y) ≤ τn}

Theorem
If data are i.i.d., then

Pr(Yn+1 ∈ C(Xn+1)) ≥ 1− α.





Is this enough?
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Distributionally robust confidence sets

Problem: Find confidence sets C(x) such that if

s(Xn+1, Yn+1) ∼ P and s(Xi, Yi)
iid∼ P0 where

Df (P ||P0) ≤ ρ

then
P (Yn+1 ∈ C(Xn+1)) ≥ 1− α



Robust quantiles and validity under shift

Define

gf,ρ(β) := inf

{
z ∈ [0, 1] : βf

(
z

β

)
+ (1− β)f

(
1− z
1− β

)
≤ ρ
}

g−1f,ρ(τ) = sup

{
β ∈ [τ, 1] : βf

(
τ

β

)
+ (1− β)f

(
1− τ
1− β

)
≤ ρ
}

Proposition

We have

sup
P :Df (P ||P0)≤ρ

Quantile(α, P ) = Quantile(g−1f,ρ(α), P )



A coverage guarantee

Define

Cρ(x) :=
{
y | s(x, y) ≤ Quantile(g−1f,ρ(1− α), P̂n)

}
Theorem
If s(Xi, Yi)

iid∼ P0 for i = 1, . . . , n, and s(Xn+1, Yn+1) ∼ P , then
for ρ ≥ Df (P ||P0)

Pr(Yn+1 ∈ Cρ(Xn+1)) ≥ 1− α− O(1)

n
.



One experimental result
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A few parting thoughts


