A Proof for Theorems

We prove Theorem before Theorem since the former one includes more technical steps and main parts of the two
proofs are similar.

A.1 Proof of Theorem[2|(C-TS)

Proof. By definition, u, := E [Y|a] = Zzl E[Y|Pay = Z;] P (Pay = Z;|a), a* = argmax, fiq.
Define:

t
Ty(t) =Y L{z. 2}
s=1

t
fiz(t) = %(t) Zl Ysliz. =2y,
pz = E[Y|Pay = 7],
where Z () denotes the observed values of parent nodes for Y, in round s. Note that fiz(t) = 0 when T'z(t) = 0.
Let E be the event that for all t € [T, i € [k"] such that max,c 4 P(Pay = Z;|a) > 0, we have
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For fixed ¢ and ¢, by Sub-Gaussian property, we can show
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P <|ﬂz7¢(t) — iz > 2log(1/0)
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By union bound, we have P (E°) < 26Tk™.
The Bayesian regret can be written as

T

BRr =E lz (Hax — uat)] =E [ZE (o — uatlftﬂ] ,

t=1 t=1
where Fy_1 = 0 (a1, Z1,Y1,. .., ai—1, Z4—1,Yi—1).
The key insight is to notice that by definition of Thompson Sampling,

P(a*:-\ft,l):P(at:-|ft,1). (1)

Further, define UCB,(t) := Zf; UCBg, (t)P(Pay = Zj|a), we can bound the conditional expected difference
between optimal arm and the arm played at round ¢ using equation[T|by

E[ttar — pta,| F—1]
= E [ptq» — UCB,, (t — 1) + UCB,, (t — 1) — 1, | Fi—1]
= E [ptgr — UCBg«(t — 1) + UCBg, (t — 1) — pta, | Fe_1] .

Next by tower rule, we have

T
BRp =E > (ptar — UCBgs(t — 1) + UCB,, (t — 1) — piq,)

t=1



On event E°, by the original definition of BRr we have BRr < 2T. On event E, the first term is negative showing
by the definition of UCBz,,j = 1,...,k™ and
o
fta= — UCBgs (t — 1) = Y (E[Y|Pay = Z;] — UCBy, (t — 1)) P(Pay = Zj|a*) <0

j=1

because E [Y|Pay = Z;] — UCBg, (t — 1) < 0 on event E. Also on event E, the second term can be bounded by

T T k"
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: 1E;; 1V Ty (t—1) (P(Pay = Zilas) = Lz =z + l{Zm:Zf}) '
2)
The second part of equation can be bounded by
K" T
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For the first part of equation [2| we define X; := >'_, Zk % (P(Pay = Zjlas) — 1{Z(S)zzj}>,
J

X := 0. Note that { X, }7_ is a martingale sequence and we have
kn

8log(1/9)
X, — X, |2 E : =
[ Xe = K| = 1V Ty, (t—1) Ty, (t—1) (P(Pay Zjlar) = 1{Z<”:Zj})

< 32log(1/6).

By applying Azuma’s inequality we have

7o 3
P(1Xr| > v/F*Tlog(T) log(T)) < exp <_m> |

We take 6 = 1/T?, combine the first and second part of equatlonl we show that with probability 1 — P(E€) —

exp ( k" log*(T) kzi (T)) —2k™/T — exp ( k" log®(T) 1%%1 (T)),

Ry < 16+/k"T log(T') log(T)
Thus the Bayesian regret can be bounded by:
k™ log*(T
E[Rr] < P(E®) x 2T + exp <—06i()> x 2T + \/64k"T log(T) log(T)
< CVEMT log(T) log(T)

where C'is a constant and the above inequality holds for large 7'. Thus we have proved that E [Ry] = O (\/ k”T) . 0O



A.2 Proof of Theorem(C-UCB)
Proof. Let E be the event that for all ¢ € [T, j € [k"], we have

21log(1/0)

iz (t—1) —E|Y|Pay = Z;]| < | —————F————.

Use same proof idea in Theorem we have P(E€) < 20Tk™. Define UCB,(t) := Zf; UCBy, (t)P(Pay = Zj|a),
the regret can be rewritten as
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On event £°, Ry < 2T'. On event ¥ we can show

o o
o — UCB,, (t — 1) Z E[Y|Pay = Z;] P(Pay = Z;la*) = Y UCBg, (t — 1)P(Pay = Zj|a;)
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where the last inequality follows by the way to choose a; in Algorithm the second last inequality follows by the
definition of event E. Thus on event E' we have

T
Ry <) (UCB,,(t—1) = ta,)

t=1
T k"
=> "> " (UCBy, (t —1) — E[Y|Pay = Z;]) P(Pay = Zj|a;)
t=1 j=1
T k"
8log(1/9)
< [ A S A A— - 7.
< ;; T (1 1)P(Pay Zj|ay)
T k"
8log(1/0)
= Z 1V Ty, (t—1) <P(Pay = Zj|at) - l{Z(z):Zj} + 1{Z(t):Zj}) : 3)

~
Il

1

.
\ |

The second part of Equation Ecan be bounded by

ZZ 8log 1/6) _ 8log(1/é) /TZ () /810g 1/5
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< Z \/32TZ )log(1/9)

32k"T log(1/9).

For the first part of equation |3| we define X, := Zb 1 an % (P(Pay = Zjlas) — 1{2(5):%}),

Xy := 0. Note that {X;}7_ is a martingale sequence.
n
8log(1/4)
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< 32log(1/6).



By applying Azuma’s inequality we have

7o 3
P(|X7| > /k"T log(T) log(T)) < exp <?7)€2110gg(1(/T5))> '

We take § = 1/T"?, combine the first and second part of equation|3| with probability 1 — P(E€) —exp ( — Erlog?(T)) _
p q 64

1—2k"/T —exp (716"107&@)) , the regret can be bounded by

64
Rp < 16+/k"T log(T') log(T).
Thus the expected regret can be bounded by:
k" log*(T
E[Rr] < P(E) x 2T + exp (—%i”) x 2T + /64k" T log(T) log(T))
< CVET log(T) log(T)

where C is a constant, above inequality holds for large T'. Thus we prove E [Rr] = 0 (\/ knT ) O

A.3 Proof of Theorem(CL-TS)

Lemma 1. (Lattimore and Szepesvdri||2020) Notations same as algorithmand algorithm Let § € (0,1). Then
with probability at least 1 — ¢ it holds that for all t € N,

A 1 det Vi(\)
_ < - — ).
0, GHVt(A) _\5||0||2+\/210g (5> +log( X >

Furthermore, if ||0*|| < ma, then P(3t € N : 6* ¢ C;) < & with

1 det‘/;g_l(/\)
< 21 - 1 —_— .
o _mz\/X—F\/ 0g<6> + og( d

Lemma 2. (Lattimore and Szepesvdri| |2020) Let x1, ...,z € R? be a sequence of vectors with ||z, < L < oo
forallt € [TV, then

C, = {ee RY . He}_l —0

gk

2 TL?
(1 A ||9€tHV;11) < 2log (det V) < 2dlog [ 1+ )

t=1

where V; = Iz + Zi:l xsxl

s

Proof. W define § = 1 + \/2 log (T) +dlog (1 + L) and V; = I; + X_._, m,, mI same as Algorithm where
My = Ele f(Z,)P(Pay = Z;|a). Define upper confidence bound UCB; : A — R by

UCB;(a) = IGH%X<97ma> =< 0,_1,mq >+ ||maHV41 )
€Cy t=

< 5}. By Lemma we have
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where C; = {9 €RY: HH - ét_l
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And note ||mq||, < 1, thus by geometric means inequality we have

d d
detV, < (trace(?)) < (l—i— 5) .



Thus, by |6, <1,

0,1 —0

P(Eth:

T 1
>1 21 T dl 1+ — < —.
_ +\/ og (T) + 0g<+d>>_T

n

0,1 —0 ” <B,E:=nNL,E;,a* := argmax, Zf:1<f(Zi), 0)P(Pay = Z;|a), which
t—1

is a random variable in this setting because 6 is random. Then

Let E; be the event that

R
—E [1,56 > <Z £(Z;) (P(Pay = Z|a*) — P(Pay = Zi|a)) 9>]
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<2+E|) 1g <Z f(Z) (P(Pay = Zi|a*) — P(Pay = Zi|a,)) ,9>] . 4)
t=1 i=1
Again, we know from equation [I| such that P(a* = :|Fi—1) = Pax = -|Fi—1), where Fy_1 =

U(Zl7a17Y1, ey thl,atfl, Y;tfl)- Thus we have
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Substituting into the second term of equation

T k™
E lz 1g, <Z f(Z;) (P(Pay = Z;|a*) — P(Pay = Z|a;)) 9>]

T e
<2E|BY | 1A D f(Zi)P(Pay = Zifa)
t=1 i=1 vt
T km 2
<2 |TE |32 Z 1A Z f(Z)P(Pay = Z;|a) ( By Cauchy-Schwartz)
t=1 =1 Vt:ll
T
§2\/2dTﬂ2 log <1 + d> (By Lemmal2).
Putting together we prove
T .
BRy <2+ 2\/2(17’52 log <1 n d> -0 (d\/T) . 5)
O
A.4  Proof of Theorem[3|(CL-UCB)
Proof. Define 5 =1+ \/ 2log (T) + dlog (1 + %), by Lemmaand above proof for CL-TS we have
A 1
PEt<T:||fi_1 —0* >pB)< =
( =~ t—1 Vi, - 6) = T7
1
P3teNt:0*¢C) < T
where C; = {9 A HH — 0,4 v < B}.
Let 6, denote a @ that satisfies (ét, a;) = UCBi(at). Again let E; be the event that Hét_l —0* < B, let

t—1

E = E;, a* = argmax, Z?;(f(Zj), 0) P(Pay = Z;|a). Then on event E}, using the fact that * € C; we have

k™ k™
(07, % F(Z))P(Pay = Z;|a")) SUCBy(a*) < UCBy(ar) = (0, ) f(Z;)P(Pay = Zjlay))
Jj=1 j=1
Thus we can bound the difference of expected reward between optimal arm and a; by

k" k"
Har — ta, = (0%, Y [(Z;)P(Pay = Z;|a*)) = (0", f(Z;)P(Pay = Zj|a))
Jj=1 j=1

"
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Visa

.
<28 [ LA|D f(Z)P(Pay = Zj|a)
j=1

_

v,



So the expected regret can be further bounded by:

T T T
E [RT] =E lZ(Ma* — Hay ] =E Z Max — ,uaf 1lge Z Ha* — Hay ]
t=1 t=1 t=1
T T
S E [Z(N(l* - /U'at)lEt + E :I-EC Z(,ua* - ,Ula,,,)
t=1 t=1
T
<28) | 1A Zf P(Pay = Zj|a;) + 2T P(E°)
= V)
2
kn
<2+28 TZ 1A Z f(Z;)P(Pay = Z;|a;) (By Cauchy-Schwartz)

—1
Visy

T
<24 26\/2dT log (1 + d) (By Lemma 2)

A.5 Proof of Claim[]]

Proof. Denote the reward variable for action a by Y|, and denote the reward variable given fixed parent values by
Y'|pay —z. According to the causal information, Y|, can be represented as a weighted sum of Y|p,, —z:

Yle =Y P(Pay = Z|a)Ypay—z. (6)
Z

In the statement of claimwe know that Y'|p,, —7 are independent Gaussian distributions, therefore Y|, a weighted
sum of Gaussian distributions still follows a Gaussian distribution. It remains to show the variance of Y|, is less than
L.

Var(Y],) Z P(Pay = Z|a)*Var(Y |pay —z) 7)
gZP Pay = Z[a)’ <> P(Pay = Zla) = 1, (8)
VA VA

where the first inequality above uses the condition that Var(Y |p,, —z) < 1. We show that the reward for every arm Y|,
is Gaussian distributed with variance less than 1, thus the bandit environment ¢’ described in the claim is an instance
in Gaussian bandit environment class. O

A.6 Proof of Theorem[4]

We first introduce an important concept.

Definition 2 (p-order Policy). For K-arm unstructured Gaussian bandit environments £ := Ex(N') and policy T,
whose regret, on any v € &, is bounded by CTP for some C > 0 and p > 0. We call this policy class 11(E, C, T, p),
the class of p-order policies.

Note that UCB and TS are in this class with C' = C’+/K and p = 1/2 + ¢ with some C” > 0 for arbitrary small e.

We use the following result to prove our theorem.

Theorem S (Finite-time, instance-dependent regret lower bound for p-order policies, Theorem 16.4 in|Lattimore and
Szepesvari|(2020)). Let v € Ex(N) be a K-arm Gaussian bandit with mean vector i € RX and suboptimality gaps
A € [0,00)8. Let

EWw) ={v € Ek(N) : (V') € [, pri + 2]}



Suppose T is a p-order policy such that 3C > 0 and p € (0,1), Ry (w,v') < CT? for all T and v' € E(v). Then for
any € € (0,1],

2 (1 — p)log(T) +log(24)\ "
ERT(W,Z/)ZW Z ( A ]C ) ’

: ;>0

where (x)T = max(z,0) is the positive part of v € R.

Proof of Theorem Consider the bandit environment v described in section By claimwe know v is an instance
in unstructured Gaussian bandit environment class, so we can further apply Theorem |[5| The size of three types of
actions are all 3~ /3. For Type 1 actions, its gap compared to the optimal actions is A, for Type 0 actions, gap is p1 A.
Plugging into the results of Theorem for every p-order policy over £(v), we have

>
ERp(m,v) A 573 mA ©))

13N ((1—p)log(T)+10g(gAc)>++1?ﬂV ((1—p)log(T)Jr1<><f;(1”81$‘)>+
=23

In particular, choose A = 8pCTP~!, we get

(1 —p)log(T) + 1@(%) = log(p),

na

(1 —p)log(T) + log( SO

) = log(p1p).
Note that sup . log(p)/p = exp(—1) = 0.35, and we next plug above two equations in Equation Elto get

3V 035

>
ERr(mv) 2 5 3w

Now consider 7 to be UCB, by plugging in C' = C/v/3N and p = 1/2 + € we have

0.35
> N 1/276.
ER-(UCB,v) > 24cg\/3 T

B Probability Tables Used in Experiments

i 1 2 3
P(X, =) 03 04 03
P(Xy =) 03 03 04
P(X3=1) 05 03 02
P(X,=1) 025 025 05

PWy=1]X;=i) 02 05 08

P(Wy=1|Xy=i) 03 02 08

P(Ws=1|Xs=i) 04 06 05

PWy=1Xs=i) 03 05 06

Table 1: Marginal and conditional probabilities for pure simulation experiment in section numbers are randomly
selected.



1 1 2 3 4

P(X; =) 02 02 06
P(Xy =) 005 06 03 0.05
P(Z3 =) 05 02 03

P(Zy =1]|X; =) 07 07 03 03

P(Zy=1X,=3,Xo=4) 06 07 06 05
P(Zy=1|X; #3,Xo=4) 08 09 05 02

Table 2: Marginal and conditional probabilities for email campaign causal graph.



