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Abstract

Domain adaptation in imitation learning repre-
sents an essential step towards improving gen-
eralizability. However, even in the restricted
setting of third-person imitation where trans-
fer is between isomorphic Markov Decision
Processes, there are no strong guarantees on
the performance of transferred policies. We
present problem-dependent, statistical learn-
ing guarantees for third-person imitation from
observation in an offline setting, and a lower
bound on performance in an online setting.

1 INTRODUCTION

Imitation learning typically performs training and test-
ing in the same environment. This is by necessity as
the Markov Decision Process (MDP) formalism defines
a policy on a particular state space. However, real world
environments are rarely so cleanly defined and benign
changes to the environment can induce a completely new
state space. Although deep imitation learning (Ho and
Ermon, 2016) still defines a policy on unseen states, it re-
mains extremely difficult to effectively generalize (Duan
et al., 2017).

Domain adaptation addresses how to generalize a policy
defined in a source domain to perform the same task in
a target domain (Higgins et al., 2017). Unfortunately,
this objective is inherently ill-defined. One wouldn’t ex-
pect to successfully transfer from a 2D gridworld to a
self-driving car, but there is ambiguity in how to define a
similarity measure on MDPs.

Third-person imitation (Stadie et al., 2017) resolves this
ambiguity by considering transfer between isomorphic
MDPs (formally defined in Section 2), where the ob-
jective is to observe a policy in the source domain, and
imitate that policy in the target domain. In contrast to
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domain adaptation between unaligned distributions, the
dynamics structure constrains the space of possible iso-
morphisms, and in some cases the source and target may
be related by a unique isomorphism.

We consider an idealized setting for third-person imita-
tion with complete information about the source domain,
where we perfectly understand the dynamics and the pol-
icy to be imitated. This work offers a theoretical analysis,
in particular demonstrating that restricting to isomorphic
MDPs with complete knowledge does not trivialize the
problem. Specifically, regarding how the agent may ob-
serve the target domain, we consider two regimes, sum-
marized in Figure 1:

• In the offline regime (Section 4), an oracle perfectly
transfers the source policy into the target domain,
and the agent observes trajectories from the oracle
policy (without seeing the oracle’s actions). In this
regime, we provide positive results establishing that
with limited, state-only observations in the target
domain, we can still efficiently imitate a policy de-
fined in the source domain (Theorem 4.12).

• In the online regime (Section 5), the agent chooses
policies in the target domain and draws trajectories.
Our negative results in this setting (Theorem 5.1)
prove that with full interaction in the target domain,
imitation is extremely difficult in the presence of
structural symmetry.

A Motivating Example: To clarify the setup and dis-
tinguish the two observation regimes, we elaborate upon
an example. Suppose our source domain is a video game,
where the state space corresponds to the monitor screen
and the action space corresponds to key presses. And
we wish to imitate an expert player of the game. The
target domain is the same game played on a new mon-
itor with higher screen brightness. Clearly the underly-
ing game hasn’t changed, and there is a natural bijection



from screen states of the target monitor to those of the
source monitor, namely “dimming the screen”.

On the one hand, in the offline setting, we’re forbidden
from playing on the new monitor ourselves. Instead we
observe recordings of the expert, played on the brighter
monitor. Again, as these are recordings, we see the states
the expert visits but not their actions. On the other hand,
in the online setting, we simply run transitions on the
brighter monitor. Note that if the screen includes be-
nign features which minimally impact the game (say the
player’s chosen name appears onscreen), it may be very
difficult to learn the bijection between target and source
monitor. Either way, through observations we guess a
new policy to be played on the bright monitor, which
hopefully mimics the expert’s behavior.

Summary of Contributions: Our primary contribu-
tion in this work is a provably efficient algorithm for
offline third-person imitation, with an polynomial upper
bound for the sample complexity necessary to control the
imitation loss. Our main technical novelty is a means of
clipping the states of a Markov chain according to their
stationary distribution, while preserving properties of a
bijection between isomorphic chains. We also prove an
algorithm-agnostic lower bound for online third-person
imitation, through reduction to bandit lower bounds.

2 SETUP

2.1 Preliminaries

We consider a source MDP without reward M =
{S,A, P, p0, �}, and target MDP M̂ = {Ŝ, A, P̂ , p̂0, �}.
To characterize an isomorphism between M and M̂, we
assume the existence of a bijective mapping ⇡⇤ : Ŝ ! S,
such that P̂ (s0|s, a) = P (⇡⇤(s0)|⇡⇤(s), a) and p̂0(s) =
p0(⇡⇤(s)). Note that in this notation, ⇡⇤ is not a policy.

We also fix an ordering of the states Ŝ so that ⇡⇤ may
be written in matrix form ⇧⇤ as a permutation matrix.
In particular, we will overload notation to use ⇡⇤ as a
permutation on [|S|], such that ⇡⇤(i) = j denotes that
⇡⇤(ŝi) = sj . Let P denote the space of Ŝ ! S permu-
tation matrices.

A policy � maps states to distributions on actions, but for
our purposes it will be convenient to consider the policy
as a matrix � : S ! S ⇥ A. To relate the two no-
tions, � is a block of diagonal matrices �a : S ! S
for each action, where (�a)ii = �(a|si), and � =
[�a1 | . . . |�a|A| ]

T .

The dynamics matrix is denoted P : S ⇥ A ! S. It
can also be decomposed into blocks Pa : S ! S where
(Pa)ij = p(sj |si, a), and P = [Pa1 | . . . |Pa|A| ].

Using this notation, �TPT forms the Markov chain on
S induced by following policy �. Explicitly,

P�(s
0|s) =

X

a

�(a|s)P (s0|s, a) =
�
�TPT

�
s,s0

(1)

Note that under this notation, the dynamics and initial
distribution in M̂ can be written as P̂ = ⇧T

⇤ P (I ⌦
⇧⇤) and p̂0 = ⇧T

⇤ p0 respectively. The occu-
pancy measure ⇢� is defined with regard to a pol-
icy, as well as the underlying dynamics and ini-
tial distribution. Specifically, ⇢�(s, a) = (1 �
�)Es0⇠p0,⌧⇠�

⇥P1
i=0 �

i�(a|s)P (si = s)
⇤
, where the

dependence on the dynamics P is through the sampling
of a trajectory ⌧ .

Similarly, we introduce the state-only occupancy mea-
sure µ�(s) :=

P
a ⇢�(s, a). We will make use of the

identity ⇢�(s, a) = �(a|s)µ�(s), as well as the fact
that µ� is the stationary distribution of the Markov chain
�T ((1 � �)p01T + �P )T , which both follow from the
constraint-based characterization of occupancy (Puter-
man, 1994).

The value function for a given policy � and reward func-
tion R is defined as

V�,R(s) = Es0=s,⌧⇠�

" 1X

i=0

�iR(si, ai)

#
. (2)

We note the very useful identity (1 �
�)Es0⇠p0 [V�,R(s0)] = h⇢�, Ri.

Lastly, we use the notation �i(A) to denote the ith largest
singular value of A.

2.2 Observation Settings

To begin, we’re given full knowledge of the source do-
main M, as well as � : S⇥A! S and ⇢� 2 RS⇥A, the
policy and corresponding occupancy measure we want to
imitate. We consider two settings through which we can
interact with the target domain, in order to learn how to
adapt � into this new domain.

Offline: In the offline setting, we only observe the pol-
icy �⇤ := (I ⌦ ⇧T

⇤ )�⇧⇤ being played in M̂. We
can consider �⇤ as an oracle for third-person imitation,
as this policy exactly maps from M̂ to M, calls �,
and maps back. To guarantee the trajectories don’t get
trapped in a terminal state, we assume this agent has a
1 � � reset probability. Through these observations, we
must output a policy �̂ to be played in M̂. We provide
upper bounds for this setting in Section 4.
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Figure 1: The observation regimes. In the offline setting (a), the agent observes trajectories ⌧ sampled from the policy
� that have been perfectly transferred into the isomorphic target domain. In the online setting (b), the MDPs are still
isomorphic but the agent only observes trajectories after playing their own policy �̂.

Crucially, in this setting we assume access to the states
but not actions from observed trajectories, in the imi-
tation from observation setting (Sun et al., 2019). This
assumption is well-motivated. In practice, observed tra-
jectories from an expert often come from video, where
actions are difficult to infer (Liu et al., 2018). Addition-
ally, the problem becomes trivial with observed actions,
as one may mimic the oracle’s actions at each state in Ŝ
without trying to understand ⇧⇤ at all.

Online: In the online setting, we define our own pol-
icy �̂t to play in M̂ at each timestep t, with full obser-
vation of the trajectories. After T total transitions we
output our final policy �̂. Intuitively, this setting allows
for more varied observations in the target domain. But
without an expert oracle to demonstrate the correct state
distribution, an agent in this setting may be deceived by
near-symmetry in the dynamics and predict the wrong
alignment. We further highlight this difficulty in Section
5.

2.3 Imitation Objective

In either setting, through observations from the target
domain we output a policy �̂. The corresponding oc-
cupancy measure we denote as ⇢�̂,⇧⇤

2 RŜ⇥A, where
the subscript ⇧⇤ reflects the dependence on the dynam-
ics and initial distribution in M̂, namely ⇧T

⇤ P (I ⌦ ⇧⇤)
and ⇧T

⇤ p0.

We measure imitation by comparing the correctly trans-
ferred policy �⇤ against the guessed policy �̂. Explicitly,
our objective is

inf
�̂

G(�,⇧⇤, �̂) := inf
�̂

TV
⇣
(I ⌦⇧T

⇤ )⇢�, ⇢�̂,⇧⇤

⌘
(3)

As a sanity check, we confirm that if we play �̂ = �⇤ =

(I⌦⇧T
⇤ )�⇧⇤, then indeed ⇢̂�̂,⇧⇤

= (I⌦⇧T
⇤ )⇢� and the

occupancies are equal.

The total variation belongs to a larger family of distribu-
tional distances called integral probability metrics (IPM).
A form of this objective with a more general IPM was
introduced in (Ho and Ermon, 2016). To justify using
this loss, note the objective can be equivalently written
supkck11 Es⇠⇧T

⇤ p0
[V�⇤,c(s)�V�̂,c(s)]. In other words,

minimizing imitation objective guarantees �⇤ and �̂ per-
form nearly as well for any reward function with a bound
on maximum magnitude.

3 RELATED WORK

The theory of imitation learning depends crucially on
what interaction is available to the agent. Behavior
cloning (Bain, 1995) learns a policy offline from super-
vised expert data. With online data, imitation learning
can be cast as a measure matching problem on occu-
pancy measures (Ho and Ermon, 2016). With an expert
oracle, imitation learning has no-regret guarantees (Ross
et al., 2011). Numerous of these algorithms for imitation
learning can be adapted to the observation setting (Torabi
et al., 2018a,b; Yang et al., 2019).

General domain adaptation for imitation learning has a
rich applied literature (Ammar et al., 2015; Pastor et al.,
2009; Tobin et al., 2017). Third-person imitation specif-
ically was formalized in Stadie et al. (2017), extending
the method of Ho and Ermon (2016) by learning domain-
agnostic features. Other deep algorithms explicitly learn
an alignment between the state spaces, based on multi-
ple tasks in the same environments (Kim et al., 2019) or
unsupervised image alignment (Gamrian and Goldberg,
2019).

The closest work to ours is Sun et al. (2019), which



shares the focus on imitation learning without access to
actions, but differs in studying the first-person setting pri-
marily with online feedback. This work also takes in-
spiration from literature on friendly graphs (Aflalo et al.,
2015), which characterize robustly asymmetric structure.

4 OFFLINE IMITATION

4.1 Markov Chain Alignment

Because the offline setting only runs policy �⇤, and re-
veals no actions, it is equivalent to observing a trajectory
of the state-only Markov chain induced by �⇤ in M̂. Let
us elaborate on this fact.

Define the Markov chain M := �T ((1��)p01T+�P )T ,
which is ergodic when restricted to the strongly con-
nected components that intersect the initial distribution.
In M̂, the dynamics are ⇧T

⇤ P (I ⌦ ⇧⇤), the oracle pol-
icy is (I⌦⇧⇤)T�⇧⇤, and the initial distribution is ⇧T

⇤ p0.
We also assume the oracle agent following �⇤ has a 1��
reset probability.

All together, this implies our observations in the offline
setting are drawn from a trajectory of ⇧T

⇤ M⇧⇤. In sum-
mary, given full knowledge of M and a trajectory sam-
pled from ⇧T

⇤ M⇧⇤, our algorithm will seek to learn
the alignment ⇧⇤ in order to approximate �⇤, hopefully
leading to low imitation loss.

4.2 Symmetry without approximation

As a warmup, we consider the setting with no approx-
imation where we observe ⇧T

⇤ M⇧⇤ exactly. To relate
this chain to M , we can try to find symmetries, i.e. the
minimizers of

argmin
⇧2P

k⇧TM⇧�⇧T
⇤ M⇧⇤kF . (4)

We can equivalently consider finding automorphisms of
M , which may be posed as a minimization over permu-
tation matrices ⇧ : S ! S:

argmin
⇧

k⇧TM⇧�MkF . (5)

Clearly both these objectives are minimized at 0. Intu-
itively, to recover ⇧⇤ we’d like ⇧⇤ to be the unique mini-
mizer of (4), or equivalently I to be the unique minimizer
of (5). Hence, in order to make third-person imitation
tractable, we will seek to bound (5) away from 0 when
⇧ 6= I , or in other words focus on Markov chains which
are robustly asymmetric.

We introduce notation:

Definition 4.1 (Rescaled transition matrix). For an er-
godic Markov chain M with stationary distribution µ,
let D = diag(µ) and define L = D1/2MD�1/2 as the
rescaled transition matrix of M .

Definition 4.2 (Friendly matrix). A matrix A is friendly
if, given the singular value decomposition A = U⌃V T ,
⌃ has distinct diagonal elements and V T1 has all non-
zero elements. Similarly, a matrix A is (↵,�)-friendly
if �? := mini �i(A) � �i+1(A) > ↵ and V T1 > �1
elementwise. An ergodic Markov chain M is friendly if
its rescaled transition matrix L is friendly.

The significance of friendliness in graphs was studied
in Aflalo et al. (2015), to characterize relaxations of the
graph isomorphism problem. We first confirm several
friendliness properties for Markov chains still hold.

Proposition 4.3. For a permutation matrix ⇧, M =
⇧TM⇧ if and only if D = ⇧TD⇧ and L = ⇧TL⇧.

Proof. Suppose M = ⇧TM⇧. If µ is the stationary dis-
tribution of M , then (µT⇧)(⇧TM⇧) = µT⇧. So by
uniqueness of the stationary distribution in an ergodic
chain, µ = ⇧Tµ and therefore D = ⇧TD⇧. Then
clearly D1/2 = ⇧TD1/2⇧ and therefore L = ⇧TL⇧.

For the reverse implication, ⇧TM⇧ =
⇧TD�1/2LD1/2⇧ = D�1/2LD1/2 = M .

Proposition 4.4. If M is friendly, then it has a trivial
automorphism group.

Proof. Suppose M = ⇧TM⇧. Then by Proposition 4.3,
⇧TLTL⇧ = LTL = V ⌃2V T . In particular, choosing
v as a column of V , LTLv = �2v implies LTL⇧v =
�2⇧v. By friendliness, every eigenspace of LTL is one-
dimensional, so ⇧v = ±v. And 1T⇧v = 1T v > 0, so
⇧v = v and therefore ⇧ = I .

In what follows, for any SVD, we will always choose to
orient V such that V T1 � 0 elementwise.

4.3 Exact Symmetry Algorithm

By Proposition 4.3, the automorphism group of M is
contained in the automorphism group of the rescaled
transition matrix L. Interpreting L as a weighted graph,
determining its automorphisms is at least as computa-
tionally hard as the graph isomorphism problem (Aflalo
et al., 2015).

In general, algorithms for graph isomorphisms optimize
time complexity, whereas we are more interested in con-
trolling sample complexity. Nevertheless, we have the
following result:



Theorem 4.5. Given M and ⇧T
⇤ M⇧⇤, if M is a friendly

Markov chain, there is an algorithm to exactly recover
⇧⇤ in O(|S|3) time.

This result is a simple extension of the main result
in Umeyama (1988), applying the friendliness property
to Markov chains rather than adjacency matrices. But
the characterization of automorphisms will be used again
later to control sample complexity, when we only ob-
serve ⇧T

⇤ M⇧⇤ through sampled trajectories.

We begin with the following:

Proposition 4.6. Given two friendly matrices decom-
posed as L1 = U1⌃V T

1 and L2 = U2⌃V T
2 , suppose

L2 = ⇧T
⇤ L1⇧⇤. Then ⇧⇤ is the unique permutation

which satisfies V2 = ⇧TV1.

Proof. Clearly LT
2 L2 = ⇧T

⇤ L
T
1 L1⇧⇤. Rewriting with

the SVD gives V2⌃2V T
2 = ⇧T

⇤ V1⌃2V T
1 ⇧⇤.

Rearranging, this implies V T
2 ⇧T

⇤ V1 commutes with ⌃2.
Commuting with a diagonal matrix with distinct ele-
ments implies V T

2 ⇧T
⇤ V1 is diagonal. As this product

is also unitary and real, it must be that V T
2 ⇧T

⇤ V1 = S
where S is diagonal and S2 = I .

Again rearranging, this implies 1TV1 = 1T⇧T
⇤ V1 =

1TV2S. By the assumption on the SVD orientation, S
must preserve signs, therefore S = I , and V2 = ⇧T

⇤ V1.

Now, suppose V2 = ⇧TV1. Then LT
2 L2 = ⇧TLT

1 L1⇧,
so ⇧T

⇤ ⇧ is an automorphism of LT
2 L2 and therefore ⇧ =

⇧⇤.

Proof of Theorem 4.5. Let L1 and L2 be the rescaled
transition matrices of M and ⇧T

⇤ M⇧⇤ respectively.
Reusing the same SVD notation, by Proposition 4.3
and 4.6, V2 = ⇧T

⇤ V1. Consider the linear assignment
problem min⇧2P kV2 � ⇧TV1kF , which may be solved
in O(|S|3) time using the Hungarian algorithm (Kuhn,
1955). Again by Proposition 4.6, this linear program
is minimized at 0 and recovers ⇧⇤ as the unique mini-
mizer.

4.4 Symmetry with approximation

With finite sample complexity, we still know the base
chain M exactly, but we get empirical estimates of
the permuted chain ⇧T

⇤ M⇧⇤ by running trajectories.
Specifically, m samples (X1, . . . , Xm) are drawn from
⇧T

⇤ M⇧⇤, with X1 ⇠ ⇧T
⇤ p0.

Call the empirical estimate M̂ , i.e. M̂ij = Nij

Ni
where

Nij counts the number of observed i ! j transitions
and Ni =

P
j Nij . And the empirical stationary dis-

tribution is µ̂ where µ̂i = NiP
j Nj

and D̂ = diag(µ̂).

We can characterize the approximation error of the chain
and stationary distribution as E := ⇧⇤M̂⇧T

⇤ �M and
� = ⇧⇤D̂⇧T

⇤ � D respectively. Note these error terms
are defined in the original state space S.

Our goal is to use M̂ to produce a good policy in the
target space. Say we predict the bijection is ⇧, and play
the policy �̂ = (I ⌦⇧T )�⇧, whereas the correct policy
in the target space is �⇤ = (I ⌦ ⇧T

⇤ )�⇧⇤. We’d like
to be able to control the imitation distance between these
two policies when ⇧ ⇡ ⇧⇤.

For that purpose, define It(M) = {i 2 S : µi � t, µT =
µTM}, where µ is the stationary distribution of M , so
these states will be visited “sufficiently” often. We first
show correctness of the bijection on these states suffices
for good imitation.

Lemma 4.7 (Policy Difference Lemma (Kakade and
Langford, 2002)). For two policies �1,�2 in the MDP
defined by {S,A, P,R, p0},

Es⇠p0 [V�1,R(s)� V�2,R(s)]. = E⌧⇠�1,p0

"
X

t=0

�tAR
�1,�2

(st)

#

=
1

1� �
hµ�1 , A

R
�1,�2

i ,

where AR
�1,�2

(s) = Ea⇠�1(·|s)[Es0⇠P [R(s, a) +
�V�2,R(s

0) � V�2,R(s)]] is the average advantage func-
tion.

Theorem 4.8. Suppose ⇡�1(si) = ⇡�1
⇤ (si) for i 2

It(M). Then G(�,⇧⇤, �̂)  2t|S|
(1��)2 .

Proof. First we decompose the objective

G(�,⇧⇤, �̂) = TV ((I ⌦⇧T
⇤ )⇢�, ⇢�̂,⇧⇤

)

= sup
kck11

h⇢�⇤,⇧⇤ � ⇢�̂,⇧⇤
, ci

= sup
kck11

Eŝ⇠⇧T
⇤ p0

[V�⇤,c(ŝ)� V�̂,c(ŝ)] .

From the assumption and the definition of �⇤ and �̂,
we have �⇤(·|ŝi) = �̂(·|ŝi) whenever i 2 ⇡�1

⇤ (It(M)).
Equivalently, since µ� is the stationary distribution of
M in the original space, and µ�⇤ = ⇧T

⇤ µ�, we have
�⇤(·|ŝ) = �̂(·|ŝ) whenever µ�⇤(ŝ) � t.

Note that �⇤(·|ŝ) = �̂(·|ŝ) implies AR
�⇤,�̂

(ŝ) = 0 for any
R. Hence,



(1� �)Eŝ⇠⇧T
⇤ p0

[V�⇤,c(ŝ)� V�̂,c(ŝ)]

=
X

i2⇡�1
⇤ (It(M))

µ�⇤(ŝi)A
c
�⇤,�̂

(ŝi)

+
X

i/2⇡�1
⇤ (It(M))

µ�⇤(ŝi)A
c
�⇤,�̂

(ŝi)


X

i/2⇡�1
⇤ (It(M))

t|Ac
�⇤,�̂

(ŝi)|

 2t|S|
1� �

,

following from the simple bound maxs |Ac
�1,�2

(s)| 
2

1�� .

The bound in Theorem 4.8 depends on ⇧ in a very dis-
crete sense, controlled by the states where ⇧ and ⇧⇤
agree. Say ⇧ contains a single error, ŝ = ⇡�1(s) =
⇡�1
⇤ (s0) for s 6= s0. Then at ŝ we mistakenly play the ac-

tion distribution �̂(·|ŝ) = �(·|s), rather than the correct
distribution �⇤(·|ŝ) = �(·|s0). Because we never observe
actions from the oracle, � could be arbitrarily different at
s and s0, yielding a very suboptimal occupancy measure.

Finally, we also remark on an approximate version of
our setting, where the source and target MDPs are nearly
isomorphic. We measure nearness via TV distance of
the dynamics distributions, informed by the Simulation
Lemma:
Lemma 4.9 (Lemma 4 in Kearns and Singh (2002)).
Consider MDPs M1 := {S,A, P1, p0, R, �}
and M2 := {S,A, P2, p0, R, �}. If
sups,a TV (P1(·|s, a), P2(·|s, a))  ✏, then for any
policy �:

kV�,M1 � V�,M2k1 
�✏Rmax

2(1� �)2

Let ⇡]
⇤ be the pushforward of ⇡⇤. Then the following is

immediate, granting a bound on the imitation objective
that additively depends on the closeness of the source
and target domains:
Corollary 4.10. Suppose the target MDP M̂ only obeys
the bound sups,a TV (P (·|⇡⇤(s), a),⇡

]
⇤P̂ (·|s, a))  ✏.

Then under the same assumptions as Theorem 4.8,
G(�,⇧⇤, �̂)  2t|S|

(1��)2 + �✏
2(1��)2

4.5 Approximate Symmetry Algorithm

In light of Theorem 4.8, an algorithm could either seek
to recover ⇧⇤ exactly, or find a ⇧ which agrees with ⇧⇤

Algorithm 1: Permuted Policy Learning
Input: P , �, �, p0, t, (X1, . . . , Xm)
Output: A policy �̂ : Ŝ ! Ŝ ⇥A
M  �T ((1� �)p01T + �P )T

µ STATIONARY(M)
for (i, j) 2 [|S|]⇥ [|S|] do

Nij  0
end

for t 2 [m� 1] do

NXt,Xt+1  NXt,Xt+1 + 1
end

µ̂ 0

M̂  0
for i 2 [|S|] do

µ̂i  
P

j Nij/(m� 1)

for j 2 [|S|] do

M̂ij  Nij/
P

k Nik

end

end

D  DIAG(µ)

D̂  DIAG(µ̂)
It  {i 2 [|S|] : µi � t}
Ît  {i 2 [|S|] : µ̂i � t}
M  SUBMATRIX(M, It, It)

M̂  SUBMATRIX(M, Ît, Ît)
D  SUBMATRIX(D, It, It)

D̂  SUBMATRIX(D̂, Ît, Ît)

U,⌃, V  SVD(D1/2MD�1/2)

Û , ⌃̂, V̂  SVD(D̂1/2M̂D̂�1/2)

⇧0  HUNGARIAN(V, V̂ )

Choose any ⇧ 2 P such that 8i 2 Ît, ⇡(i) = ⇡0(i)
return (I ⌦⇧)T�⇧

on high occupancy states. We consider a learning algo-
rithm for both objectives, and bound its sample complex-
ity. The trick will be carefully setting the threshold t that
defines what constitutes high occupancy.

To state the theorem, we introduce the subscript t no-
tation to denote the principle submatrix defined by the
indices of It, and g := mini |µi � t| is the gap between
the threshold and stationary values. Lastly, we define:

Definition 4.11 (Pseudospectral gap). The pseudospec-
tral gap of an ergodic Markov chain M is �ps(M) =

maxk�1
1��2((D

�1MTD)kMk)
k , where �2 denotes the

second largest eigenvalue.

If M is not ergodic, we will take �ps(M) to mean the
pseudospectral gap of M restricted to the strongly con-
nected components that intersect p0.



Theorem 4.12. The policy learning algorithm in
Algorithm 1 satisfies the following: for 1 � � � 0,
t > 0, if D1/2

t MtD
�1/2
t is (↵,�)-friendly and m =

poly
⇣

1
↵ ,

1
� ,

1
t , |It|,

1
g ,

1
�ps(M) , log

1
1�� , log |S|, log

1
�

⌘

then with probability at least 1 � �, the output policy
�̂ satisfies G(�,⇧⇤, �̂)  2t|S|

(1��)2 . In particular, if
mini µi > t, �̂ = �⇤.

The most important feature of this bound is the depen-
dence on |S|. In the sample complexity it only appears
through a log term, and all other terms can be indepen-
dent of |S| depending on the choice of t and the structural
properties of M . The error is still linear in |S|, but this
term appears necessary. If some occupancy mass leaves
the well-supported states ⇡�1

⇤ (It), it could cover all the
negligible states, and either incur error linear in |S|, or
require exploration of every state and therefore sample
complexity linear in |S|.

Proof sketch. Here we give the main ideas of the proof,
full details are provided in the Appendix.

Remind that M̂ = ⇧T
⇤ (M + E)⇧⇤ and D̂ = ⇧T

⇤ (D +
�)⇧⇤. We also define M̃ = M + E as the empirical
chain permuted back into the original MDP. Likewise de-
fine D̃ = D +�, and µ̃ to be the diagonal of D̃.

Given M̂ and D̂, the immediate choice for an es-
timator of the rescaled transition matrix would be
D̂1/2M̂D̂�1/2. However, this will not be well-defined if
our samples don’t visit every state of Ŝ. Furthermore, if
M is only ergodic when restricted to a subset of S, then
D̂�1 won’t be defined even with infinite sample com-
plexity. Similarly, if µ⇤ := mini µi is vanishingly small,
m will become prohibitively large in order to guarantee
that D̂�1 is well-defined.

Our primary technical novelty addresses both these is-
sues by setting a threshold t on stationary mass, and dis-
carding states below the threshold. Define It = {i 2
[|S|] : µi � t} and Ît = {i 2 [|S|] : µ̂i � t}. We restate
the notation that a subscript t denotes taking the princi-
ple submatrix corresponding to It or Ît depending on the
matrix’s domain. So for example, Mt is M restricted to
rows and columns given by It, and likewise M̂t is M̂
restricted to Ît.

Several concentration results for empirical Markov chain
transitions and stationary distributions control the con-
vergence of our estimators (Wolfer and Kontorovich,
2019a,b). Our main assumption is that the gap g =
mini |µi � t| is non-negligible. Then with high prob-
ability and sample complexity depending on g but not
mini µi, µi � t iff µ̃i � t. In other words, no empiri-
cal stationary estimates will “cross” the threshold, or put

m = 103 m = 104 m = 105

Garnet MDP .88± .03 .78± .11 .23± .18
Planted MDP .15± .30 .07± .22 3 ⇤ 10�4 ± 10�4

Table 1: Mean and standard deviation of imitation loss
of permuted policy learning on synthetic data

another way ⇡�1
⇤ (It) = Ît. We can then restrict our at-

tention to the states above the threshold, such that the
sample complexity necessary for concentration M̃ ⇡M
depends on t but not mini µi (and only logarithmically
on |S|).

For t > 0, the restricted rescaled transition matrix Lt =
D1/2

t MtD
�1/2
t is well-defined. And with high proba-

bility we can define our estimator L̂t = D̂1/2
t M̂tD̂

�1/2
t .

Appealing to a strong friendliness assumption on Lt, sin-
gular value perturbation inequalities imply that L̂t is also
friendly.

Finally, the asymmetric properties of friendly matrices
given in Proposition 4.6 enable exact recovery of the sub-
matrix of ⇧⇤ restricted to the indices It and Ît. And
by Theorem 4.8, determining the alignment on all high-
occupancy states still yields a bound on the imitation
loss.

4.6 Experiments

To confirm the efficacy of Algorithm 1, we consider
some simple experiments on a synthetic dataset. We con-
sider Garnet MDPs (Bhatnagar et al., 2009), a model for
generating small random environments, as well as a mod-
ified “planted” setting that specifically enforces concen-
tration of the occupancy mass under the expert policy to
a small set of states. We give complete details for these
models in the Appendix.

The results are given in Table 1. Crucially, we observe
this algorithm performs poorly if the underlying MDP is
not friendly or has a large gap in the stationary values. In-
deed, on the Garnet MDPs, the algorithm may fail if the
sample complexity isn’t sufficient to cover all state tran-
sitions. The planted MDPs ensure the desired properties
and as expected yield much improved imitation loss.

5 ONLINE IMITATION

5.1 MDP Alignment

In the online setting, we’re still seeking to imitate �, or
equivalently ⇢�. However, we no longer observe trajec-
tories of the correct policy (I ⌦⇧⇤)T�⇧⇤ played in M̂.



Instead, we are in a setting similar to a bandit, but with-
out reward. At time t, we play a policy �̂t defined on M̂
and observe a transition. We allow resets to the initial
distribution. After T plays, where T may be a random
variable, we choose a final policy �̂ and receive instan-
taneous regret given by G(�,⇧⇤, �̂).

One simple algorithm might treat each possible bijection
as an arm, where pulling ⇧ is akin to running a trajectory
using the policy ⇧T�⇧, and then infer which alignment
best matches the behavior policy. Or one could consider
algorithms which don’t play policies of the form ⇧T�⇧
but simply explore the target space in a principled way.

Nevertheless, we derive a lower bound on the imitation
loss of any algorithm in the online setting, demonstrating
even complete knowledge of the source domain doesn’t
trivialize third-person imitation.

5.2 Lower Bound Counterexample

Consider a small bandit-like MDP (Figure 2a). Red cor-
responds to action r, blue corresponds to action b, and
purple corresponds to both. The numbers on the edges
give transition probabilities when taking the associated
action. Let the initial distribution be p0(x0) = p0(y0) =
1/2. In other words, the initial state is either x0 or y0.
Starting at x0, the initial action is deterministic: playing
r leads to x1, playing b leads to y1. Starting at y the
actions lead to the opposite states. Then the choice of
action is irrelevant, and the transition to a terminal state
is determined by ↵ at x1 and � at y1.

This characterizes M. To introduce M̂, let’s consider
two possible bijections ⇧1 and ⇧2, which correspond
to the possible target MDPs in Figure 2b and Figure
2c (note the values of ↵ and � are swapped given ⇧2).
These correspond to two possible dynamics on our tar-
get space. ⇧1 is essentially the identity map, preserving
states up to hats. Whereas ⇧2(x̂i) = yi and ⇧2(ŷi) = xi.

Finally, suppose the behavior policy we want to imitate
in M is defined by �(r|x0) = 1 and �(b|y0) = 1. In
other words, the agent always travels in the first step to
x1. That means, under ⇧1 we want to travel to x̂1, and
under ⇧2 we want to travel to ŷ1. Intuitively, because ⇢�
is highly asymmetric, but the MDP is nearly symmetric,
one cannot choose a policy that performs well in multi-
ple permutations of the MDP. We formalize this intuition
below.

Theorem 5.1. Choose any positive values ✏ < ✏0 and
� < �0, where ✏0 and �0 are universal constants, and let
↵ = 1/2 + ✏ and � = 1/2 � ✏. Consider any algorithm
A that achieves �/4-optimal imitation loss on the above
MDP with probability at least 1 � �. Then E[T |⇧⇤ =
⇧i] = ⌦

�
1
✏2 log

1
�

�
for some i 2 {1, 2}.

Proof. Fix a policy �̂, and we will write ⇢�̂,⇧ as simply
⇢⇧.

Again use the variational form of total variation to say
TV (⇢1, ⇢2) = supkck11h⇢1 � ⇢2, ci. Choose c so that
c(x̂i, a) = 1 for i 2 {1, 2, 3} and a 2 A, and 0 else-
where. Then a direct calculation gives G(�,⇧1, �̂) =
TV ((I ⌦⇧T

1 )⇢�, ⇢⇧1) � � � �(�̂(r|x̂0) + �̂(b|ŷ0))/2.

Now we proceed by a reduction to multi-armed bandits
with known biases. Consider a two-armed bandit with
Bernoulli rewards, where the hypotheses for arm biases
are H1 = {↵,�} and H2 = {�,↵}. We define the fol-
lowing algorithm B for the two-armed bandit. First run
algorithm A on our MDP, where we couple pulls from
arm 1 with transitions from x̂1 and pulls from arm 2 with
transitions from ŷ1. Call �̂ the policy output by A. Then
output arm 1 if �̂(r|x̂0) > 1/2, otherwise arm 2.

Under hypothesis H1, ⇧⇤ = ⇧1, so by our assumptions
on A, with probability at least 1 � � we have �/4 >
� � �(�̂(r|x̂0) + �̂(b|ŷ0))/2, which implies �̂(r|x̂0) >
1/2. Similar reasoning implies �̂(r|x̂0)  1/2 under
H2, hence B outputs the optimal arm with probability at
least 1� �. Because (↵,�) = (1/2+ ✏, 1/2� ✏), and the
sample complexity of A is lower bounded by that of B,
the result then follows from Theorem 13 in Mannor and
Tsitsiklis (2004).

This bound illustrates why imitation is substantially
more challenging than seeking high reward. In a regular
RL problem with reward at the terminal states, if ↵ ⇡ �
then the expected reward changes very slightly depend-
ing on the policy. But in the imitation setting, the value
of ↵ and � are essentially features of the states, which
the agent must (very inefficiently) distinguish in order to
achieve error lower than �/4. Likewise, this counterex-
ample captures why the online setting is the more chal-
lenging one studied in this work. In the offline regime,
an oracle would only visit states on one half of the MDP
and easily break the symmetry.

One may attribute this pessimistic bound to the choice
of total variation distance. Indeed, among IPMs, total
variation has very poor generalization properties (Sun
et al., 2019). However, an alternative choice of IPM
corresponds to a non-uniform prior over reward func-
tions that the behavior policy is truly optimizing. If the
prior strongly favored reward functions that smoothly de-
pend on the local dynamics, then c(x̂i, a) ⇡ c(ŷi, a) and
this counterexample would no longer hold. But this is
a somewhat unnatural assumption, precluding for exam-
ple a 2D gridworld with positive reward only at one state
(since the gridworld would have many symmetries).
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Figure 2: The bandit-like MDP, where (a) is the source domain, (b) is the target domain given ⇧1 and (c) is the target
domain given ⇧2.

6 CONCLUSION AND FUTURE WORK

In this paper, we introduced a theoretical analysis of
third-person imitation, as an initial step in more fully un-
derstanding generalization in RL. We demonstrated up-
per bounds for imitation learning across isomorphic do-
mains under offline and state-only assumptions, and a
lower bound for the online setting. These bounds depend
heavily on the structural properties of the dynamics and
behavior policy, as well as the setting of third-person im-
itation where the domain adaptation is across isomorphic
environments.

The upper bound dependence on structural and spectral
properties is likely not optimal, although the dependence
on |S| in the error likely cannot be improved. The lower
bound is somewhat more robust, and any MDP with sym-
metry such that this bandit-like MDP can be embedded
will suffer a similar lower bound on sample complexity.

The isomorphism assumption is certainly too strict in
general. However, weakening the assumption requires
a characterization of MDP similarity, in order to decide
when one should expect policy transfer through imita-
tion to be feasible. MDPs with features (Krishnamurthy
et al., 2016) could better characterize similarity, where
the spectral features studied in this work could be com-
bined with observed state features for more effective
alignment through linear assignment. Future work may
include studying third-person imitation in the online set-
ting for upper bounds, or exploiting MDP asymmetry in
deep imitation.

Acknowledgements

We are extremely grateful to David Brandfonbrener, Min
Jae Song, and Raghav Singhal, who gave feedback and
insightful suggestions throughout the work.

This work partially supported by the Alfred P. Sloan
Foundation, NSF RI-1816753, NSF CAREER CIF
1845360, NSF CHS-1901091, Samsung Electronics, and

the Institute for Advanced Study.

References

Yonathan Aflalo, Alexander Bronstein, and Ron Kim-
mel. On convex relaxation of graph isomorphism.
Proceedings of the National Academy of Sciences, 112
(10):2942–2947, 2015.

Haitham Bou Ammar, Eric Eaton, Paul Ruvolo, and
Matthew E Taylor. Unsupervised cross-domain trans-
fer in policy gradient reinforcement learning via man-
ifold alignment. In Twenty-Ninth AAAI Conference on
Artificial Intelligence, 2015.

Michael Bain. A framework for behavioural cloning. In
Machine Intelligence 15, pages 103–129, 1995.

Shalabh Bhatnagar, Richard S Sutton, Mohammad
Ghavamzadeh, and Mark Lee. Natural actor–critic al-
gorithms. Automatica, 45(11):2471–2482, 2009.

Yan Duan, Marcin Andrychowicz, Bradly Stadie, Ope-
nAI Jonathan Ho, Jonas Schneider, Ilya Sutskever,
Pieter Abbeel, and Wojciech Zaremba. One-shot im-
itation learning. In Advances in neural information
processing systems, pages 1087–1098, 2017.

Shani Gamrian and Yoav Goldberg. Transfer learning
for related reinforcement learning tasks via image-to-
image translation. In International Conference on Ma-
chine Learning, pages 2063–2072, 2019.

Irina Higgins, Arka Pal, Andrei Rusu, Loic Matthey,
Christopher Burgess, Alexander Pritzel, Matthew
Botvinick, Charles Blundell, and Alexander Lerchner.
Darla: Improving zero-shot transfer in reinforcement
learning. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages
1480–1490, 2017.

Jonathan Ho and Stefano Ermon. Generative adversarial
imitation learning. In Advances in neural information
processing systems, pages 4565–4573, 2016.



Alan J Hoffman and Helmut W Wielandt. The variation
of the spectrum of a normal matrix. In Selected Papers
Of Alan J Hoffman: With Commentary, pages 118–
120. World Scientific, 2003.

Sham Kakade and John Langford. Approximately op-
timal approximate reinforcement learning. In Pro-
ceedings of the Nineteenth International Conference
on Machine Learning, pages 267–274, 2002.

Michael Kearns and Satinder Singh. Near-optimal re-
inforcement learning in polynomial time. Machine
learning, 49(2-3):209–232, 2002.

Kun Ho Kim, Yihong Gu, Jiaming Song, Shengjia Zhao,
and Stefano Ermon. Cross domain imitation learning.
arXiv preprint arXiv:1910.00105, 2019.

Akshay Krishnamurthy, Alekh Agarwal, and John Lang-
ford. Pac reinforcement learning with rich observa-
tions. In Advances in Neural Information Processing
Systems, pages 1840–1848, 2016.

Harold W Kuhn. The hungarian method for the assign-
ment problem. Naval research logistics quarterly, 2
(1-2):83–97, 1955.

YuXuan Liu, Abhishek Gupta, Pieter Abbeel, and Sergey
Levine. Imitation from observation: Learning to
imitate behaviors from raw video via context trans-
lation. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 1118–1125.
IEEE, 2018.

Shie Mannor and John N Tsitsiklis. The sample com-
plexity of exploration in the multi-armed bandit prob-
lem. Journal of Machine Learning Research, 5(Jun):
623–648, 2004.

Peter Pastor, Heiko Hoffmann, Tamim Asfour, and Ste-
fan Schaal. Learning and generalization of motor
skills by learning from demonstration. In IEEE In-
ternational Conference on Robotics and Automation,
pages 763–768, 2009.

Daniel Paulin et al. Concentration inequalities for
markov chains by marton couplings and spectral meth-
ods. Electronic Journal of Probability, 20, 2015.

Martin L Puterman. Markov decision processes: Dis-
crete stochastic dynamic programming, 1994.
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A Proof of Theorem 4.12

We define Dp0 =
P

i(p0)
2
i /µi, where we interpret 0/0 = 0. Note that p0 is absolutely continuous with respect to µ,

so this term is well-defined.

We now state the necessary concentration results. Note the theorems are slightly altered from their statements in the
literature, but follow immediately from their original proofs. The first has a better dependence on |S| by considering
L2 norm rather than L1, and with slightly loose sample complexity. The second is exactly an intermediate statement
made in the theorem’s original proof.

Theorem A.1 (Theorem 1 in Wolfer and Kontorovich (2019b)). If m = O

✓
1

�ps✏2µi
log

✓
|S|
p

Dp0

�

◆◆
then with prob-

ability at least 1� �/2, kM(i, ·)� M̃(i, ·)k2  ✏.

Theorem A.2 (Theorem 5.1 in Wolfer and Kontorovich (2019a)). If m = O

✓
1

�ps✏2µi
log

✓
|S|
p

Dp0

�

◆◆
then with

probability at least 1� �/2, |µi � µ̃i|  ✏µi.

We observe a simple consequence of the definition of the rescaled transition matrix:

Proposition A.3. For an ergodic Markov chain M with rescaled transition matrix L, �1(L) = 1 and �ps(M) �
1� �2(L)2.

Proof. Choosing k = 1 in the definition of �ps gives the product D�1MTDM = D�1/2LTLD1/2. The first term
itself is a Markov chain called the multiplicative reversiblization (Paulin et al., 2015). Because the chain has maximum
eigenvalue 1 and the eigenvalues of LTL are the squares of the singular values, it follows �1(L) = 1 and �ps �
1� �2(L)2.

We set the occupancy threshold via t, and consider properties of the empirical estimators:

Lemma A.4. Let g := mini |µi � t|. Assume g > 0, t > 0, and 1/4 > ✏ > 0. If m =

O

✓
max

⇣
1
✏2t ,

1
g2

⌘
1

�ps
log

✓
|S|
p

Dp0

�

◆◆
, then with probability at least 1� �, we have the following:

(a) ⇡�1
⇤ (It) = Ît

(b) D̂�1
t is well-defined

(c) kEtkF  ✏
p
|It|

(d) kf+(�t)1/2kF 
p
✏ where f+(·) is the elementwise absolute value.

(e) k(Dt +�t)�1/2 �D�1/2
t kF  2

q
✏|It|
t

Proof. Note that for all i 2 It, µi � t. So choosing precision ✏ and confidence �
2|It| in Theorem A.1 and Theorem

A.2, taking a union bound over all i 2 It, and noting |It|  |S|, we have that when m = O

✓
1

�ps✏2t
log

✓
|S|
p

Dp0

�

◆◆
,

with probability at least 1� �/2, kM(i, ·)� M̃(i, ·)k2  ✏ and |µi � µ̃i|  ✏µi.

Additionally, choosing precision g
2µi

and confidence �
2|S| in Theorem A.2, and taking a union bound over all i 2 [|S|],

when m = O

✓
1

�psg2 log

✓
|S|
p

Dp0

�

◆◆
, with probability at least 1� �/2 we have |µi � µ̃i|  g/2.

By the second application of the concentration results, for all i 2 [|S|], |µi � µ̂⇡�1
⇤ (i)| = |µi � µ̃i|  g/2 < g. So

from the definition of g it’s clear that µi � t iff µ̂⇡�1
⇤

(i) � t. Hence, i 2 It iff ⇡�1
⇤ (i) 2 Ît.

If i 2 It, µi � t. Hence µ̂⇡�1
⇤ (i) � µi � g/2 > µi � g � t > 0. This means each diagonal element of D̂t is positive,

hence it’s invertible.



By part (a), if we define ⇧t⇤ to be the restriction of ⇧⇤ to the indices It and Ît, then ⇧t⇤ is still a permutation matrix.
Furthermore, Et = (⇧⇤M̂⇧T

⇤ �M)t = ⇧t⇤M̂t⇧T
t⇤ �Mt = M̃t �Mt.

Then kEtk2F =
P

i2It
kM̃t(i, ·)�Mt(i, ·)k22 

P
i2It
kM̃(i, ·)�M(i, ·)k22  ✏2|It|.

Similarly, kf+(�t)1/2k2F =
P

i2It
|µi � µ̃i| 

P
i2It

✏µi  ✏.

To derive the last inequality, note that |µi � µ̃i|  ✏µi implies (1� ✏)µi  µ̃i  (1 + ✏)µi. Therefore

k(Dt +�t)
�1/2 �D�1/2

t k2F =
X

i2It

✓
1p
µ̃i
� 1
p
µi

◆2

=
X

i2It

µ̃i + µi � 2
p
µ̃iµi

µ̃iµi


X

i2It

(1 + ✏)µi + µi � 2
p
(1� ✏)µiµi

(1� ✏)µiµi

 |It|
t
⇤ 2 + ✏� 2

p
1� ✏

1� ✏

 |It|
t
⇤ 3✏

1� ✏

 4✏|It|
t

where the second last inequality uses
p
1� ✏ � 1� ✏ for 1 > ✏ > 0.

Lemma A.5. If Lt is (↵,�)-friendly for sufficiently large ↵ and �, the matrix L̂t is friendly if it is well-defined.

Proof. Observe that L̃t := ⇧t⇤L̂t⇧T
t⇤ = (Dt +�t)1/2(Mt + Et)(Dt +�t)�1/2, so it suffices to show this matrix is

friendly.

We need the following bounds, utilizing the inequality
p
a+ b�

p
a 

p
|b|:

k(Dt +�t)
1/2 �D1/2

t kF  kf+(�t)
1/2kF 

p
✏

kD�1/2
t kF 

r
|It|
t

k(Dt +�t)
1/2kF  kD1/2

t kF + kf+(�t)
1/2kF  1 +

p
✏

kMtkF 
p
|It|

kMt + EtkF  (1 + ✏)
p
|It|

Decompose the perturbation of Lt as

L̃t � Lt = (Dt +�t)
1/2(Mt + ET )((Dt +�t)

�1/2 �D�1/2
t )

+ (Dt +�t)
1/2(Mt + Et �Mt)D

�1/2
t

+ ((Dt +�t)
1/2 �D1/2

t )MtD
�1/2
t



Then we apply the inequalities above, using the triangle inequality and submultiplicativity to obtain

kL̃t � LtkF 
16
p
✏|It|p
t

+
2✏|It|p

t
+

p
✏|It|p
t

 19
p
✏|It|p
t

Now decompose Lt = U⌃V T and L̃t = Ũ ⌃̃Ṽ T .

By the Wielandt-Hoffman inequality (Hoffman and Wielandt, 2003),
P

i(�i(L̃t)��i(Lt))2  kL̃t�Ltk2F . Therefore,
if ↵ = mini �i(Lt)� �i+1(Lt) > 2kL̃t � LtkF , then �i(L̃t)� �i+1(L̃t) > 0.

By the Cauchy interlacing theorem and Propostion A.3, �1(Lt)  �1(L) = 1. And mini �i(Lt)2 � �i+1(Lt)2 � ↵2.

Therefore, we can apply the Davis-Kahn theorem (Yu et al., 2015) to conclude 1� |ṽTi vi|  ⇣ where

⇣ :=

0

@
2
⇣
2 + 19

p
✏|It|p
t

⌘
19

p
✏|It|p
t

↵2

1

A

Orienting Ṽ so that Ṽ T1 � 0, it follows |ṽTi vi| = ṽTi vi.

If � >
p
2|It|⇣, then the friendliness assumption implies vTi 1 >

p
2|It|⇣ and therefore

ṽTi 1 � vTi 1� |vTi 1� ṽTi 1|

>
p
2|It|⇣ � k1k2kvi � ṽik2

=
p
2|It|⇣ �

p
|It|

q
1 + 1� 2ṽTi v

>
p
2|It|⇣ �

p
2|It|⇣

> 0

Now we can recover ⇧t⇤ , using the decomposition L̂t = Û ⌃̃V̂ T .
Lemma A.6. Under the same assumptions as Lemma A.5, if |It|⇣ < 1

2 , the unique permutation matrix ⇧ such that
k⇧TV � V̂ kF 

p
2|It|⇣ is ⇧t⇤ .

Proof. By Proposition 4.6, and the friendliness of L̂t and L̃t, we have that ⇧T
t⇤ Ṽ = V̂ . It follows that

k⇧T
t⇤V � V̂ kF  k⇧T

t⇤V �⇧T
t⇤ Ṽ kF + k⇧T

t⇤ Ṽ � V̂ kF
= kV � Ṽ kF

And note that kV � Ṽ k2F =
P

i kvi � ṽik22 =
P

i 2� 2vTi ṽi  2|It|⇣.

Conversely,

k⇧�⇧t⇤kF = k⇧T Ṽ �⇧T
t⇤ Ṽ kF

 k⇧T Ṽ �⇧TV kF + k⇧TV � V̂ kF + kV̂ �⇧T
t⇤ Ṽ kF


p
2|It|⇣ +

p
2|It|⇣

<
p
2



Because distinct permutation matrices differ in Frobenius norm by at least
p
2, this guarantees ⇧ = ⇧t⇤ .

Proof of Theorem 4.12. For a given t, suppose D1/2
t MtD

�1/2
t is (↵,�)-friendly. Then we choose ✏ to satisfy the

following:

1. ↵ > 2kL̃t � LtkF

2. � >
p
2|It|⇣

3. |It|⇣ < 1/2

We observe these are all satisfied at
p
✏ = O

⇣
↵2�2

p
t

|It|2

⌘

If m = poly
⇣

1
↵ ,

1
� ,

1
t , |It|,

1
g ,

1
�ps(M) , logDp0 , log |S|, log 1

�

⌘
, then Lemma A.4 and A.5 imply the estimator L̂t is

friendly with probability at least 1 � �. So by Lemma A.6, we conclude the permutation ⇧0 recovered from the
Hungarian algorithm in Algorithm 1 agrees with ⇧⇤ on It and Ît. Finally, Theorem 4.8 bounds the imitation objective.

Lastly, we rewrite the sample complexity, using the fact that Dp0  1
1�� from the definition of µ. We also note that

from Proposition A.3, in the exact recovery setting mini µi > t, we may replace �ps in the sample complexity with
1� �2(Lt)2.

B Experimental Details

For all trials we consider an MDP with |S| = 100, |A| = 5, � = 0.95. To sample Garnet MDPs (Bhatnagar et al.,
2009) we set the branching parameter, which dictates the support of the next-state distribution at each state-action pair,
as b = 5. Given the support, the next-state distribution is uniform over the b states.

The planted MDPs are determined by setting 5 “alive” states which are chosen to have almost all the occupancy mass.
Explicitly, we first sample a deterministic policy � to be the expert policy. The initial distribution is restricted to the
alive states. For sampling the dynamics distributions P (·|s, a), if �(a|s) = 0, we sample according to the Garnet MDP
branching. If �(a|s) = 1, we sample a distribution b alive states with 1� ✏ total mass, and a distribution on b “dead”
states with ✏ total mass, where ✏ = 0.0001.


