
Amortized variance reduction for doubly stochastic objectives

Ayman Boustati∗
University of Warwick

Coventry, UK

Sattar Vakili
PROWLER.io

Cambridge, UK

James Hensman†
Amazon

Cambridge, UK

ST John
PROWLER.io

Cambridge, UK

Abstract

Approximate inference in complex probabilis-
tic models such as Deep Gaussian Processes re-
quires the optimisation of doubly stochastic ob-
jective functions. These objectives incorporate
randomness both from mini-batch subsampling
of the data and from Monte Carlo estimation of
expectations. If the gradient variance is high,
the stochastic optimisation problem becomes
difficult with a slow rate of convergence. Con-
trol variates can be used to reduce the variance,
but past approaches do not take into account
how mini-batch stochasticity affects sampling
stochasticity, resulting in sub-optimal variance
reduction. We propose a new approach in which
we use a recognition network to cheaply ap-
proximate the optimal control variate for each
mini-batch, with no additional model gradient
computations. We illustrate the properties of
this proposal and test its performance on logis-
tic regression and Deep Gaussian Processes.

1 INTRODUCTION

Many machine learning tasks can be formulated as an
optimisation problem, where the model parameters θ
are inferred by optimising an objective function L =∑N
n=1 `n(θ) which is a sum over contributions from

individual data points n. We focus on objectives con-
taining an analytically intractable expectation, `n(θ) =
Ep(ε)[fn(ε,θ)], e.g., Black Box Variational Inference
(Ranganath et al., 2014), Variational Auto-Encoders
(Kingma and Welling, 2014), or Deep Gaussian Processes
(Salimbeni and Deisenroth, 2017).
∗Research conducted while at PROWLER.io. Correspond-

ing author: a.boustati@warwick.ac.uk.
†Completed work at PROWLER.io before joining Amazon.

Proceedings of the 36th Conference on Uncertainty in Artificial
Intelligence (UAI), PMLR volume 124, 2020.

Figure 1: In reparameterized variational inference, the
gradient is a function of the randomness sample ε ∼ p(ε).
This relationship gB(ε) (solid lines) depends on the mini-
batch B (orange vs blue). Here we show linear control
variates with batch-dependent coefficients cBε (dashed
lines) and the best batch-independent control variate c̄ε
(dotted grey line). The right-hand plot shows the distribu-
tion of the expectation estimators for each mini-batch: no
control variate (outline), batch-independent control vari-
ate (shaded), and batch-dependent control variate (filled).
The batch-dependent control variate significantly reduces
the variance, whereas here the batch-independent control
variate increases the variance for the blue mini-batch.

In practice, such objectives are treated using Monte Carlo
(MC) sampling. We obtain an unbiased stochastic esti-
mate of the expectation, ˆ̀

n = 1
S

∑S
s=1 fn(ε

(s)
n ,θ), from

S samples ε(s)n ∼ p(ε). We can then use Stochastic Gradi-
ent Descent (SGD) or other optimisers based on the noisy
gradients (Robbins and Monro, 1951). For large N , the
evaluation of the full sum in L is often computationally
intractable. This can be addressed by subsampling mini-
batches B ⊂ {1, . . . , N} of size |B| from the full data
set, introducing additional noise and leading to a doubly
stochastic objective function of the form:

L̂ :=
N

|B|S
∑
b∈B

∑S

s=1
fb(ε

(s)
b ,θ), (1)

with E[L̂] = L.

The variance of the gradients of L affects both the con-
vergence rate of the optimisation and how close the op-
timiser can get to the optimum. This motivates various
approaches for reducing either mini-batch variance (e.g.,
Johnson and Zhang (2013)) or the variance due to MC esti-
mation of the expectation (Ranganath et al., 2014; Roeder
et al., 2017). A common approach for variance reduction
are control variates (see Section 2.1), which have recently
been adopted in the literature (see Section 4 for details).
The focus of these works is on deriving and applying con-
trol variate schemes to MC objectives, specifically in the
context of Variational Inference (VI).

When mini-batching as in Eq. (1), the way each term
ĝb(ε) = ∂fb/∂θ in the stochastic gradient evaluation de-
pends on the randomness ε can vary between data points,
and so ĝB =

∑
b∈B ĝb varies between batches. Thus a

control variate for this stochasticity is affected by the con-
text points (e.g., for a regression problem, input and out-
put for the data points in a mini-batch). This dependence
is illustrated in Fig. 1 for a Bayesian logistic regression
example. The gradient ĝB(ε) of a doubly stochastic ob-
jective is shown for two different mini-batches B. In this
simplified case, each batch consists of a single context
point. The different context points induce different re-
lationships between randomness and the gradient. This
means the two gradients correlate differently with the ran-
domness, yielding different optimal control variates. For
comparison, we include a batch-independent control vari-
ate which has to average over all contexts. As shown in
the right-hand panel in Fig. 1, adapting the control variate
to the batch significantly reduces the variance. To the best
of our knowledge, this context dependence is not taken
into account by the schemes in the literature.

In this work we propose a novel idea for computing con-
trol variates that adapt to the context (mini-batch) of the
controlled estimators (the gradient). The new formulation
takes into account the dependence of the MC estimate on
the data by using a recognition network to learn an adap-
tive control variate coefficient. We derive a low-variance
objective to train the network to approximate the optimal
control variate coefficient per batch. Additionally, we
propose two computationally cheaper, higher-variance
alternatives to the network objective. All control variate
objectives re-use the already computed model gradients,
and hence do not require extra back-propagation steps.

We describe our formulation in the next section, followed
in Section 3 by the concrete example of linear and poly-
nomial control variates for Gaussian base randomness.
We put our proposal into the context of previous work
in Section 4. We empirically test the properties of our
proposed method in Section 5.

2 METHODOLOGY

We start by reviewing control variates and highlight the
importance of computing the optimal control variate coef-
ficient to maximise variance reduction. In Section 2.2 we
introduce the mini-batch dependence of the gradients and
the control variates and propose learning context-aware
control variate coefficients. Finally, in Section 2.3 we
derive objectives for the control variate coefficients that
allow amortisation through a recognition network.

2.1 CONTROL VARIATES

Control variates aim to reduce the variance of an unbiased
stochastic estimator∗ ĝθ(ε) for an intractable expecta-
tion E[g(ε)], where ε ∼ p(ε) is a random variable. We
consider a different function w(ε) whose expectation is
known analytically, E[w(ε)] = W . Then c(w(ε) −W)
has zero expectation for any c, and its unbiased estima-
tor, c(ŵ(ε) −W), can be subtracted from the original
estimator,

g̃(ε) := ĝ(ε)− c(ŵ(ε)−W). (2)

This new estimator is unbiased, i.e., it has the same expec-
tation as the original estimator. Minimising its variance
Var[g̃] gives the optimal c∗ = Cov[ĝ, ŵ]/Var[ŵ], and
g̃ will have lower variance than ĝ if g(ε) and w(ε) are
correlated. With the optimal c∗, the variance reduces to

Var[g̃] = (1− ρg,w) Var[ĝ], (3)

where ρg,w is the Pearson correlation coefficient between
g and w. In practice, computing c∗ is not possible, as
Cov[ĝ, ŵ] and Var[ŵ] cannot be evaluated exactly, and
are usually estimated from the optimisation statistics, e.g.
running averages (Paisley et al., 2012). Another option
is to pre-specify a fixed c (Miller et al., 2017; Grathwohl
et al., 2018).

Neither option is convincing for the doubly stochastic
case. The first option has very high variance due to the
presence of mini-batch stochasticity in addition to sam-
pling stochasticity. The second option is sub-optimal
as fixing an arbitrary value for c does not guarantee the
optimal variance reduction of Eq. (3).

In the next section we introduce c as a context-dependent
adaptive parameter that is learned throughout the optimi-
sation.

∗We use the ˆ symbol (as well as ˜) on top of functions of
random variables to denote the estimate of this function obtained
by evaluating the relevant estimator. In the following we drop
the dependence on θ to lighten the notation.

2.2 CONTROLLING MINI-BATCH GRADIENTS

Gradient-based optimisation requires the derivatives of
the objective (1) with respect to the model parameters
{θp}Pp=1. The estimated gradient contains a sum over
mini-batch elements b,

∂L̂
∂θp
∝
∑
b∈B

∂fb
∂θp

(εb,θ) =
∑
b∈B

ĝbp(εb) =: Ĝp, (4)

where we chose S = 1 to simplify the equations (the
extension to multiple MC samples is straightforward).
Note that B is a random subset of {1, . . . , N}, i.e., b are
indices into the full data set, and each term gets its own
realisation εb of the randomness. We want to improve the
optimisation performance by reducing the variance of this
gradient. As demonstrated in Fig. 1, each partial gradient
estimator ĝbp(εb) may have a different dependence on the
randomness. To account for this, we introduce separate
control variates for each term (data point within a batch)
in the sum in (4). For a single partial gradient, we define
the controlled gradient estimator

g̃bp(εb) := ĝbp(εb)− c>bpŵ(εb). (5)

Here and in the following section we subsume the analytic
expectation into the definition of the control variate such
that ŵ(ε) already has zero mean. We use the same type of
control variates for all parameters; however, in principle,
we could have a different ŵp per parameter θp. In both
cases, the coefficients cbp are per-parameter. In general,
the output dimensionality of the mapping ŵ(ε) may be
different from that of the randomness ε itself; for sim-
plicity, we assume both ε and ŵ(ε) are D-dimensional.
Note that ŵ(·) does not depend on the batch element b;
the dependence is captured in the coefficients cbp, which
is a vector of length D for each index pair b, p.

Specifying the problem this way allows us to explicitly
model each control variate coefficient per data point. Un-
der this setting, the new estimator for the gradient is

G̃p =
∑
b∈B

g̃bp(εb) =
∑
b∈B

(ĝbp(εb)− c>bpŵ(εb)). (6)

The control variate coefficients cbp can be set to optimally
reduce the variance of G̃p by solving

min
C

Tr(Cov[G̃]), (7)

whereC is the collection of cbp and has shapeN×P×D,
as separate coefficients are needed for all N data points.

Computing and storing these can be computationally pro-
hibitive for large data sets, hence we propose to amortise
the cost of this computation by using a recognition net-
work rφ : Y → RP×D that outputs the coefficients for

each batch element throughout the optimisation, where

cbp = [rφ(yb)]p (8)

is a vector of dimension D and yb ∈ Y are context points
(e.g., feature vector and target for the bth data point in a
supervised learning problem) and φ are the recognition
network parameters.

In practice, the recognition network outputs the control
variate coefficients per data point, which are then aggre-
gated per batch. This ensures permutation invariance to
the order of data points in the batch and allows for the ran-
domisation of batch elements throughout the optimisation
procedure.

As the control variate only adds zero-expectation terms
to the gradients of the optimisation objective, the minima
of the objective remain unchanged. This means that the
extra parameters of the recognition network will not lead
to overfitting. We provide theoretical analysis of the con-
vergence in Appendix B. In the next section we discuss
objectives for training the network parameters.

2.3 TRAINING THE RECOGNITION
NETWORK

Intuitively, we require the recognition network rφ(·) to
output coefficients that minimise the variance of the con-
trolled gradient estimator (6). This gives the training
objective for the parameters φ:

min
φ

Tr (Cov[G̃]) = min
φ

P∑
p=1

Var[G̃p]. (9)

The pth term in the sum in (9) is

Var[G̃p] = Var
[∑
b∈B

(
ĝbp(εb)− c>bpŵ(εb)

)]
=
∑
b∈B

Var
[
ĝbp(εb)− c>bpŵ(εb)

]
=
∑
b∈B

(
Var

[
ĝbp(εb)] + Var

[
c>bpŵ(εb)

]
− 2 Cov

[
ĝbp(εb), c

>
bpŵ(εb)

])
= const +

∑
b∈B

(
E
[
(c>bpŵ(εb))

2
]

− 2E
[
(ĝbp(εb))(c

>
bpŵ(εb))

])
, (10)

using E[ŵ(εb)] = 0. We discard the terms that do not con-
tain cbp and hence do not give gradients for φ. For most
problems, the expectations are intractable; we estimate

these with MC sampling (here S = 1) and define

Ṽp :=
∑
b∈B

(
(c>bpŵ(εb))

2 − 2(ĝbp(εb))(c
>
bpŵ(εb))

)
.

(11)

We can now learn the optimal recognition network param-
eters φ using SGD (or variants) on

min
φ

P∑
p=1

Ṽp. (12)

To learn the parameters φ, we need to compute gradients
of
∑
p Ṽp. Examining the chain rule around the outputs of

the recognition network, ∂Ṽp

∂cbpd

∂cbpd
∂φ , the second term is

computed by backpropagation through the network, and
the cost of computing the first term depends on the form
of the estimator Ṽp.

The network objective in (11) depends on the individual
partial gradients ĝbp(εb) of the model objective for each
data point; we call this the partial gradients estima-
tor. In common reverse-mode automatic differentiation
libraries such as TensorFlow and PyTorch, this requires
|B| additional backward passes on the model objective,
each at least O(|B|).† This becomes prohibitively expen-
sive for large mini-batches. To overcome this limitation
in current implementations, we derive two additional es-
timators for the recognition network objective that are
computationally cheaper, albeit with higher variance.

2.3.1 The Gradient Sum Estimator

To avoid the partial gradients in (11), we return to the pth
term of the sum in (9). Instead of taking the sum out of
the variance, we separate the sum over partial gradients
from the control variates:

Var[G̃p] = Var
[∑
b∈B

ĝbp(εb)−
∑
b∈B

c>bpŵ(εb)
]

= Var
[
Ĝp −

∑
b∈B

c>bpŵ(εb)
]
. (13)

We can expand the variance of a sum of two terms as

Var[G̃p] = Var[Ĝp] + Var
[∑
b∈B

c>bpŵ(εb)
]

− 2 Cov
[
Ĝp,

∑
b∈B

c>bpŵ(εb)
]

= const +
∑
b∈B

(
E[(c>bpŵ(εb))

2]

− 2E[(Ĝp)(c
>
bpŵ(εb))]

)
, (14)

†During the review process, a new PyTorch library, Back-
PACK (Dangel et al., 2020), was released, which can compute
partial gradients with a low computational overhead.

and by replacing the expectations with MC estimates, we
arrive at a new estimator

Ṽ GS
p :=

∑
b∈B

(
(c>bpŵ(εb))

2 − 2(Ĝp)(c
>
bpŵ(εb))

)
. (15)

This estimator is similar in form to the partial gradients
estimator, replacing the gradient per data point with the
sum over the whole mini-batch; we call this the gradi-
ent sum estimator. As it does not require any additional
backward passes, it is much cheaper to compute. One
can intuitively see that this estimator has a higher vari-
ance than the partial gradients estimator as it additionally
includes cross terms that would be zero in expectation.

2.3.2 The Squared Difference Estimator

Alternatively, we can continue from (13) by expanding
the variance into moment expectations:

Var[G̃p] = E
[(
Ĝp −

∑
b∈B

c>bpŵ(εb)
)2]

−
(
E
[
Ĝp −

∑
b∈B

c>bpŵ(εb)
])2

, (16)

where the control variate term has no contribution inside
the second expectation by definition, and E[Ĝp] is a con-
stant with respect to the recognition network parameters
φ. Evaluating the remaining expectation using MC gives
us the squared difference estimator:

Ṽ SD
p :=

(
Ĝp −

∑
b∈B

c>bpŵ(εb)
)2
, (17)

which is also cheap to compute. In contrast to Ṽ GS
p , it

includes the second moment of Ĝp. This is similar to a
regression problem that uses ŵd(εb) as basis functions to
approximate the gradient Ĝp.

Both the gradient sum objective (14) and the squared dif-
ference objective (17) are unbiased estimators and not
approximations of the recognition network objective in
(7). Compared to the partial gradients objective (11),
they have higher variance; we empirically assess this in
Appendix E.2.3. We lay out pseudocode for joint optimi-
sation of model and recognition network in Algorithm 1
in Appendix A.

3 ILLUSTRATIVE EXAMPLE:
CONTROL VARIATES FOR
GAUSSIAN BASE RANDOMNESS

To implement a control variate, we need to specify both
the distribution of the base randomness ε and the func-
tional form of the control variate w(εn). In principle, any

functional form for control variates from the literature can
be used with this method, e.g. Paisley et al. (2012); Ran-
ganath et al. (2014); Miller et al. (2017). For the sake of
simplicity, we illustrate our proposal on a simpler control
variate form for the special case of Gaussian base random-
ness, which is of direct interest to many applications in
VI.

We assume ε ∼ N (0, ID) without loss of generality.‡

In this section we introduce explicit forms for w(εn) for
this case, starting with linear control variates, and then
extending the discussion to higher-order polynomials.

3.1 LINEAR GAUSSIAN CONTROL VARIATES

The simplest control variate is an element-wise linear
function of εn,

w(εn) = α + β ◦ εn, εn ∼ N (0, ID), (18)

with ◦ representing the element-wise product. Its expec-
tation is W = E[w(εn)] = α, and the control variate
simplifies to β ◦ εn. We can also absorb β into the con-
trol variate coefficient cnp, which results in the following
controlled version of the gradient component p, for data
point n:

g̃np(εn) = ĝnp(εn)− c>npεn. (19)

Intuitively, one can think of control variates of this form
as injecting the estimator with information on the linear
dependence of the gradient on the noise. To understand
this further, we take a look at the first-order Taylor expan-
sion of the gradient component gnp(εn) around εn = 0,

gnp(εn) = gnp(0) +∇gnp(0)>εn +O(ε2n). (20)

If the gradient is sufficiently linear with respect to εn (i.e.,
the O(ε2n) terms are negligible), and when cnp is a good
approximation to the Jacobian at 0, the estimator in (19)
will have low variance.

3.2 HIGHER-ORDER POLYNOMIALS

In general, the gradient is unlikely to be linear with re-
spect to the noise, especially for complicated models and
objectives. To overcome this, we can use higher-order
polynomials to capture some of the non-linear dependence
of the gradient on the noise. Consider

w(εn) =

K∑
k=1

αk ◦ εkn, (21)

where the kth power is evaluated element-wise. W can
be easily computed and would correspond to the sum
‡In the general case where ε ∼ N (µ,Σ), we can sim-

ply apply the location-scale reparameterisation ε = µ +
Cholesky(Σ)ε0 with ε0 ∼ N (0, ID).

of diagonal parts of the first K moment tensors of the
multivariate Gaussian distribution, scaled by αk. For
instance, for K = 2 the control variate is given by

α1 ◦ εn + α2 ◦ (ε2n − diag(ID)). (22)

We can again simplify by absorbing the αk into the con-
trol variate coefficient, with slight adjustments to the con-
trolled gradient estimator.We make the following obser-
vation:

Remark 1: A linear combination of control variates is
also a valid control variate, i.e., g̃np(εn) = ĝnp(εn) −∑K
k=1(c

(k)
np)>(ŵk(ε)−Wk) is unbiased. By considering

each term in (22) as a separate control variate, we can
write the pth component of the controlled gradient at n as

g̃np(εn) = ĝnp(εn)−(c(1)np)>εn−(c(2)np)>(ε2n−diag(ID)).
(23)

The same construction trivially extends to K > 2.

3.3 BRIEF DISCUSSION

The simple examples of the linear and polynomial con-
trol variates presented above illustrate the importance
of choosing a good control variate coefficient. For in-
stance, in the linear case in (19) the control variate func-
tion w(εn) = εn does not provide any extra information
on the estimator on its own, as it essentially just adds
noise to the MC estimate. However, with the selection
of a good control variate coefficient cn for data point n,
we introduce structure to the noise that contains informa-
tion about the behaviour of the controlled quantity with
respect to the Gaussian noise in the form of the Jacobian
in (20). Indeed the optimal coefficient c∗n for the linear
control variate contains the Jacobian term.

4 RELATED WORK

Control variates are widely used to reduce the gradient
variance of stochastic objectives, mainly motivated by
VI. A comprehensive review can be found in Geffner and
Domke (2018). Here, we highlight some relevant work
and compare it to our contribution.

Paisley et al. (2012) first introduce the idea of using con-
trol variates to reduce the gradient variance in VI. They
propose using a bound on the objective or an approxima-
tion of the model as control variates. Ranganath et al.
(2014) build on this work, using the score function of the
approximate posterior to control the gradient of Black
Box Variational Inference objectives.

Inspiration for our work comes from Grathwohl et al.
(2018), where they use a recognition network to approxi-
mate the model and its gradient as a control variate. Miller

et al. (2017) approximate the reparameterisation gradi-
ent for Gaussian variational distributions by its first-order
Taylor expansion, using this approximation as a control
variate. Our work is related to this construction where the
recognition network can be viewed as a cheap approxi-
mation to the linear term in the Taylor expansion of the
gradient (i.e., the Hessian of the model objective) in the
case of the linear construction in Section 3.

The unifying work of Geffner and Domke (2018) cate-
gorises different control variate schemes for VI objectives.
Additionally, they propose combining them to achieve
greater variance reduction. They derive an optimal rule
for this combination based on Bayesian risk minimisation.

These related works do not consider the effect of mini-
batching on the proposed control variates; therefore, our
work complements the methods mentioned above. Indeed,
Geffner and Domke (2018) show that a combination of
control variates is usually more desirable that a single
scheme. The method we proposed can be considered
an extra addition to the control variate toolkit for dou-
bly stochastic objectives, to take the effect of mini-batch
stochasticity on the control variates into account. Our
method can also be combined with other variance reduc-
tion methods such as extra sampling.

5 EXPERIMENTS

Our discussion thus far applied to the general class of dou-
bly stochastic objectives. For our experiments we focus
on objectives from VI problems. Amortising the compu-
tation of the control variate coefficients in this setting is
advantageous since context arises naturally from the data
in the underlying models.

In this section, we aim to answer three questions: a) To
what extent can amortisation with a recognition network
reduce the variance compared to a fixed context-free con-
trol variate coefficient? b) How well can we train the
recognition network in an online setting? c) What differ-
ence can an amortised control variate make in practice?

5.1 SETUP

We investigate (a), (b) and (c) on a classification task
on the titanic dataset using a Bayesian logistic regres-
sion model and on a regression task on the airfoil dataset
using a Deep Gaussian Process (DGP) (Salimbeni and
Deisenroth, 2017). Detailed description of the models
and datasets can be found in Appendix C.

Throughout, we use Adam (Kingma and Ba, 2015) for
optimising both the model objective function and the
recognition network objective. We use a single-sample
MC estimate of the gradients and control these when

stated, applying the linear and quadratic control variates
introduced in Section 3. We initialise the recognition
network with Xavier initialisation (Glorot and Bengio,
2010) and use ReLU activations in the hidden layers.

We compare our proposal to a context-free control variate.
In this instance, this is implemented as an optimisable
quantity that does not depend on data and uses the same
optimisation objectives ((14) & (17)) as the recognition
network, i.e., c is independent of the mini-batch B in
these objectives. This is equivalent to approximating
the coefficient with an exponentially weighted moving
average of the empirical covariance of the gradient and
the control variate estimates.

5.2 VERIFICATION OF VARIANCE
REDUCTION

We first consider whether the recognition network has
the capacity to amortise the control variate coefficients
and how well it can learn these versus a context-free
coefficient. To test this, we freeze the model parame-
ters at three points in the optimisation – early (10 steps),
mid (200 steps), and late (1000 steps) – then optimise
the control variate coefficients only. For each setting of
model parameters, we optimise the recognition network
for 1000 steps and record the variance reduction at differ-
ent steps. The variance reduction is measured by the ratio
Var[‖G̃N‖]/Var[‖ĜN‖], where G̃N and ĜN are the con-
trolled and uncontrolled gradients, respectively, over the
mini-batch (size 10), and ‖ · ‖ is the gradient norm. We
compare different network sizes to see the effect this has
on variance reduction.

Fig. 2 shows that amortising the control variate coeffi-
cients induces greater variance reduction than context-free
coefficients (labelled as None in the figure). The variance
reduction does not occur immediately, as the control vari-
ate coefficients need to be optimised in all cases to reduce
the variance. Also notable is that the amount of variance
reduction depends on the optimisation stage of the model;
at later stages of the model optimisation, the variance
reduction is more pronounced. This is likely a property
of both the model and the control variate where the gra-
dients in the beginning of the optimisation have more
pronounced non-linearity with respect to the noise. This
can also be seen in the amount of variance reduction in
logistic regression compared to the DGP. The gradients
in the logistic regression models are approximately lin-
ear with respect to the noise, while the DGP gradients
have more complex dependency on the noise. Finally,
we can see that the variance reduction potential depends
on the capacity of the network, where wider and deeper
networks learn better control variate coefficients. Deeper
networks reduce the variance more strongly than wider

(a) Logistic regression on titanic.

(b) DGP on airfoil.

Figure 2: Variance reduction at different points in the objective optimisation (lower is better); early: 10 steps, mid:
200 steps, late: 1000 steps. The results are shown for the linear control variate from Section 3. Recognition network
training uses the squared difference objective optimised with Adam with learning rate of 10−2 for the logistic regression
and 10−3 for the DGP. For a small number of iterations on the recognition network, it struggles to learn a good
control variate coefficient. Continuing the network optimisation, it is able to learn good control variate coefficients
that significantly reduce the variance in comparison to the context-free coefficient. Also notable is that the variance
reduction is more pronounced at the later stages of the model optimisation.

networks, corresponding to a highly non-linear mapping
from the context points to the control variate coefficient.

5.3 SIMULTANEOUS OPTIMISATION OF
OBJECTIVE FUNCTION AND CONTROL
VARIATE COEFFICIENT

In practice, the recognition network must be able to learn
the control variate coefficients while the model is being
optimised, resulting in a moving target. In this section,
we investigate the viability of chasing this target by simul-
taneously optimising the model objective and recognition
network. We use a recognition network with three layers
of size 128 each, as this architecture showed the largest
variance reduction in Section 5.2. In each step in the opti-
misation procedure, we compute one gradient estimate of
the model objective for a mini-batch of size 10. We take
one Adam step on the recognition network, then we apply
the control variate correction to the sampled gradient and
take an Adam step on the model parameters. We measure

the variance of the gradient at different periods in the op-
timisation by sampling 100 gradient values at each period
and taking the empirical variance of their norm.

The recognition network is able to learn good control
variate coefficients in this dynamic regime, see Fig. 3.
The variance reduction improves later on in the optimi-
sation as observed in Section 5.2. We again observe that
the amortised control variate results in greater variance
reduction than the context-free one.

5.4 PRACTICAL EFFECTIVENESS

To show how our approach works in practice, we use it
for training the logistic regression and DGP models. We
apply the alternating optimisation procedure described in
Section 5.3 on each for 2000 iterations with mini-batches
of size 10. We record the mean value of the Negative
Evidence Lower Bound (NELBO) from 100 MC samples
for the logistic regression and 10 MC samples for the

(a) Logistic regression on titanic.

(b) DGP on airfoil.

Figure 3: Gradient variance ratio at three different points in the joint optimisation of the model and control variate
parameters (lower is better); the vertical line corresponds to a ratio of 1 (i.e. no reduction). Both the model and the
control variate objectives are optimised with Adam with learning rate of 10−2 for the model and 10−2 and 10−3 for the
logistic regression and DGP control variate coefficients respectively. The recognition network learns a good control
variate coefficient and continues to improve throughout the optimisation, outperforming the context-free control variate.

DGP at every iteration computed on the full data sets.

The resulting traces are shown in Fig. 4; in both cases
we see that the optimisation with controlled gradients
starts off in a worse regime than the uncontrolled gra-
dients (curves on or above the dashed line); however, it
improves as better control variate coefficients are learned.
The gap between the one-sample MC estimator and the
controlled estimators widens later for logistic regression,
and fluctuates for the DGP with some instability in the
end. This is because the linear control variate sufficiently
approximates the dependence of the gradient on the ran-
domness in the case of logistic regression, whereas for the
DGP this dependence is more complex. This can be veri-
fied in Fig. 3b, where the variance reduction diminishes
later on in the optimisation.

For both models, amortising the control variate coeffi-
cients results in lower NELBO values on average in com-
parison to the uncontrolled and the context-free controlled
cases. We also see that the optimisation of the control
variate coefficients is insensitive to the choice of objective
function, with similar behaviour for the gradient sum and
squared difference objectives for both the amortised and
context-free cases.

Table 1 shows the average cost for the controlled optimi-
sation steps for the two problems. Amortising the control
variate coefficients with a recognition network of size

[128, 128, 128] has an additional overhead of around 25%
on the context-free coefficient on the CPU, which is a
good investment for high-variance objectives. The over-
head depends on many factors such as the recognition
network size, control variate formulation, mini-batch size
and number of gradient components. These should all be
taken into account when implementing this scheme.

Table 1: Average optimisation step time in milliseconds
(on the CPU) for logistic regression and DGP for different
linear control variate objective functions. Mean figures
are presented with the standard error in parentheses. The
statistics are computed based on 100 repetitions of 10
runs. The implementation uses TensorFlow 2.0 (Abadi
et al., 2016) and GPflow (Matthews et al., 2017; van der
Wilk et al., 2020).

Method Logistic DGP

Squared diff. - amortised 1.20(0.06) 3.77(0.22)
Grad. sum - amortised 1.25(0.11) 3.78(0.19)
Squared diff. - context-free 0.87(0.09) 3.17(0.13)
Grad. sum - context-free 0.84(0.08) 3.07(0.08)

(a) Logistic regression on titanic.

(b) DGP on airfoil.

Figure 4: Difference between optimisation traces for different control variate objectives, using the uncontrolled one-
sample MC estimate of the gradient as a baseline (lower is better). Linear control variates are used in this experiment.
The gap between the baseline and controlled models widens throughout the optimisation. Amortised control variate
coefficients result in wider gaps indicating better optimisation performance.

6 CONCLUSIONS

We introduced a control variate formulation that exploits
the structure of doubly stochastic objectives to reduce
Monte Carlo sampling variance from mini-batch gradient
estimators. We proposed three objectives for an amor-
tising recognition network that can learn context aware
control variate coefficients. Training the network re-uses
the gradients of the model objective and does not require
additional passes through the model.

Empirical assessment showed that an approximation to
the optimal control variate per mini-batch can be per-
formed during optimisation and reduces the gradient vari-
ance in practice compared to a context-free global ap-
proach. In our experiments we used linear and quadratic
control variates for Gaussian base randomness, but our
approach is general and can be applied to other control
variate formulae and randomness schemes. This is partic-
ularly important for complex objectives such as in DGP

models, where the simple linear and quadratic control vari-
ates show some instability. This opens up a new avenue of
research into combining our method with adaptive control
variates, e.g. Radial Basis Network control variates.

While our method aims to reduce Monte Carlo sampling
variance in doubly stochastic objectives, a promising re-
search direction is to combine it with other variance reduc-
tion methods that target the variance due to mini-batching,
e.g. Stochastic Variance Reduced Gradient (SVRG) (John-
son and Zhang, 2013) and Stochastic Gradient Recursive
Algorithm (SARAH) (Nguyen et al., 2017).

The computational overhead of our proposed control vari-
ate could be further reduced with the right compute ar-
chitecture. Although evaluating the target objective may
not benefit from additional compute nodes, one can use
a dedicated node for efficiently evaluating the recogni-
tion network in parallel. This proposal is detailed in
Appendix A.

References

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kud-
lur, J. Levenberg, R. Monga, S. Moore, D. G. Mur-
ray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng. TensorFlow: A sys-
tem for large-scale machine learning. In 12th USENIX
Symposium on Operating Systems Design and Imple-
mentation, 2016.

F. Dangel, F. Kunstner, and P. Hennig. BackPACK: Pack-
ing more into backprop. In 8th International Confer-
ence on Learning Representations, 2020.

T. Geffner and J. Domke. Using large ensembles of con-
trol variates for variational inference. In Advances in
Neural Information Processing Systems 31, 2018.

X. Glorot and Y. Bengio. Understanding the difficulty of
training deep feedforward neural networks. In Proceed-
ings of the 13th International Conference on Artificial
Intelligence and Statistics, 2010.

W. Grathwohl, D. Choi, Y. Wu, G. Roeder, and D. Duve-
naud. Backpropagation through the void: Optimizing
control variates for black-box gradient estimation. In
6th International Conference on Learning Representa-
tions, 2018.

R. Johnson and T. Zhang. Accelerating stochastic gra-
dient descent using predictive variance reduction. In
Advances in Neural Information Processing Systems
26, 2013.

D. P. Kingma and J. Ba. Adam: A method for stochas-
tic optimization. In 3rd International Conference on
Learning Representations, 2015.

D. P. Kingma and M. Welling. Auto-encoding variational
Bayes. In 2nd International Conference on Learning
Representations, 2014.

A. G. d. G. Matthews, M. van der Wilk, T. Nickson, K. Fu-
jii, A. Boukouvalas, P. León-Villagrá, Z. Ghahramani,
and J. Hensman. GPflow: A Gaussian process library
using TensorFlow. Journal of Machine Learning Re-
search, 18(40), 2017.

A. Miller, N. Foti, A. D’ Amour, and R. P. Adams. Reduc-
ing reparameterization gradient variance. In Advances
in Neural Information Processing Systems 30, 2017.

L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takáč.
SARAH: A novel method for machine learning prob-
lems using stochastic recursive gradient. In Proceed-
ings of the 34th International Conference on Machine
Learning, 2017.

J. Paisley, D. Blei, and M. Jordan. Variational Bayesian
inference with stochastic search. In Proceedings of the
29th International Conference on Machine Learning,
2012.

R. Ranganath, S. Gerrish, and D. Blei. Black Box Vari-
ational Inference. In Proceedings of the 17th Interna-
tional Conference on Artificial Intelligence and Statis-
tics, 2014.

H. Robbins and S. Monro. A stochastic approximation
method. The Annals of Mathematical Statistics, 1951.

G. Roeder, Y. Wu, and D. Duvenaud. Sticking the landing:
Simple, lower-variance gradient estimators for varia-
tional inference. In Advances in Neural Information
Processing Systems 30, 2017.

H. Salimbeni and M. Deisenroth. Doubly stochastic vari-
ational inference for deep Gaussian processes. In Ad-
vances in Neural Information Processing Systems 30,
2017.

M. van der Wilk, V. Dutordoir, S. John, A. Arte-
mev, V. Adam, and J. Hensman. A framework
for interdomain and multioutput Gaussian processes.
arXiv:2003.01115, 2020.

Supplementary Material
A PSEUDO-CODE

Algorithm 1 describes our proposed amortised control variate scheme in pseudo-code. For simplicity, we illustrate the
method on Stochastic Gradient Descent (SGD) (Robbins and Monro, 1951); however, any other gradient-based optimiser
could be used instead. The procedure in Algorithm 1 is written in a functional style and represents a single update step
for the parameters θ = (θ1, . . . , θP) of a generic doubly stochastic objective (1), objective(θ,B, ε), where B is a
set of mini-batch indices and ε is a base randomness. The algorithm also updates the parameters φ = (φ1, . . . , φQ) of
the recognition network rφ(·) that amortises the coefficients of the control variate ŵ(·).

This algorithm can be efficiently executed on two separate compute nodes by interleaving the evaluation of the target
objective and its gradients on one node with the evaluation of the recognition network and its gradients on another, as
suggested below with (O) and (R). The two nodes only need to sync in line 7. The update of the recognition network
parameters can still run in parallel with the next evaluation of the target objective gradients.

Algorithm 1 Stochastic Gradient Descent step with amortised control variate gradients

1: function AMORTIZEDCVUPDATE({yn}, objective(θ,B, ε), θ, ŵ(·), rφ(·), φ, learning rates α & β)
2: B ∼ p(B) . draw mini-batch
3: εb ∼ p(ε) ∀b ∈ B . draw base randomness

4: (O) Ĝp ← ∂
∂θp

(objective)(θ,B, {εb}) ∀p . uncontrolled model gradients

5: (R) cbp ← [rφ(yb)]p ∀b, p . evaluate recognition network on context yb for batch element b
6: (R) Ĥp ←

∑
b∈B c

>
bpŵ(εb) ∀p . control variate

7: (O+R) G̃p ← Ĝp − Ĥp ∀p . controlled model gradients

8: (O) θp ← θp − αG̃p ∀p . SGD updates for the model objective parameters ∗

9: (R) Ṽp ← (Ĝp − Ĥp)
2 ∀p . recognition network objective †

10: (R) δφq ← ∂
∂φq

∑P
p=1 Ṽp ∀q . recognition network gradients

11: (R) φq ← φq − βδφq
∀q . SGD updates for recognition network parameters ∗

12: return model objective parameters θ, recognition network parameters φ
13: end function

∗For simplicity we show the SGD updates, but in principle any other gradient-based optimiser can be used. The same holds for
the recognition network updates.
†We use the squared difference objective (17) for illustrative purposes, but this can also be substituted with the partial gradients

objective (11) or the gradient sum objective (14).

B THEORETICAL ANALYSIS

B.1 CONVERGENCE RESULTS

Control variates are introduced to reduce the gradient variance and thereby improve the optimisation behaviour. In this
section we show how controlling the gradient can improve the convergence behaviour of Stochastic Gradient Descent
(SGD) (Robbins and Monro, 1951), in an idealised scenario.

Consider the function f(ε,θ) : RD × RP → R, where ε is a random variable distributed according to p(ε). We want
to solve the following optimisation problem using SGD,

min
θ

Ep(ε)[f(ε,θ)]. (24)

We assume Ep(ε)[f(ε,θ)] is strongly convex and smooth as defined below. SGD starts with an initial guess for the
optimal parameter θ0. The parameter is then sequentially updated according to

θt+1 = θt − ηtĝ(εt,θt), (25)

where εt is an independent realisation (over t) of ε at time t, ĝ(εt,θt) = ∇θf(εt,θt), and ηt ∈ R is a constant. We
want to reduce the variance in the update direction by setting

g̃(ε,θ) = ĝ(ε,θ)− c(ε,θ), (26)

where c(ε,θ) : RD × RP → RP is a control term designed to reduce the randomness in ĝ(ε,θ). This gives a new
update rule

θt+1 = θt − ηtg̃(εt,θt). (27)

We show that adding a control term as in (26) yields a better convergence rate for SGD under the following assumptions:

Assumption 1 (Smoothness). f(ε,θ) is L smooth in θ (for some L > 0), i.e.

f(ε,θ′)− f(ε,θ) ≤ (θ′ − θ)>∇f(ε,θ) +
1

2
L‖θ′ − θ‖22,

Assumption 2 (Strong Convexity). f(ε,θ) is H strongly convex in θ (for some H > 0), i.e.

f(ε,θ′)− f(ε,θ) ≥ (θ′ − θ)>∇f(ε,θ) +
1

2
H‖θ′ − θ‖22,

Assumption 3 (Efficient Control Variate). The norm of the controlled gradient is bounded by a constant M as

E
[
‖∇f(ε,θ∗)− c(ε,θ)‖22

]
≤ME[f(ε,θ)− f(ε,θ∗)].

Theorem 1 (Convergence Rate). Under assumptions 1, 2 and 3, with ηt = η ≤ 1
2L+M for all t, the update rule given

by (27) offers a linear convergence rate. Specifically, there exists 0 < c < 1 (depending on H , L and M as specified in
Appendix B.2) such that

E
[
‖θt − θ∗‖22

]
≤ ct‖θ0 − θ∗‖22. (28)

Proof. See Appendix B.2.

Although the above assumptions do not necessarily hold in practice, Theorem 1 is useful in giving intuition into the
convergence speed of our proposed method. This theorem gives a sufficient condition for the control variate which
guarantees the fast convergence rate similar to that of (non-stochastic) gradient descent and stochastic variance reduced
gradient descent (SVRG) (Johnson and Zhang, 2013). Specifically, if Assumption 3 holds, our method offers the so
called linear convergence rate.

We can relax Assumption 3 as the following assumption.

Assumption 4. The norm of the controlled gradient is bounded as

E
[
‖∇f(ε,θ∗)− c(ε,θ)‖22

]
≤ M̄.

Under assumptions 1, 2 and 4, with ηt = η ≤ 1
2L for all t, for the update rule given by (27), there exists 0 < c̄ < 1

(depending on H and L as specified in Appendix B.2) such that

E
[
‖θt − θ∗‖22

]
≤ c̄t‖θ0 − θ∗‖22 +

2η2M̄(1− c̄t)
1− c̄

. (29)

This result shows that the more efficient the control variate (the smaller M̄), the smaller the error in optimisation
(||θt − θ∗||22). For the detail on the proof of (29) see Appendix B.2.

B.2 PROOFS FOR CONVERGENCE RESULTS

Proof of Theorem 1. We first establish the following lemma based on the smoothness and strong convexity of f(ε,θ).

Lemma 1. By smoothness (Assumption 1) and strong convexity (Assumption 2) of f(ε,θ), we have

E[f(ε,θ)− f(ε,θ∗)] ≥ 1

2L
E
[
‖∇f(ε,θ)−∇f(ε,θ∗)‖22

]
. (30)

Let h(ε,θ) = f(ε,θ) − f(ε,θ∗) − ∇f(ε,θ∗)>(θ − θ∗). By convexity of f(ε,θ) we know that h(ε,θ) ≥ 0. Let
θ′ = θ − η∇h(ε,θ)). Notice that∇h(ε,θ) = ∇f(ε,θ)−∇f(ε,θ∗).

h(ε,θ′)− h(ε,θ) ≤ −η∇h(ε,θ)>∇h(ε,θ) +
1

2
Lη2‖∇h(ε,θ))‖22

=
(1

2
Lη2 − η

)
‖∇h(w, ε))‖22.

With the choice of η = 1
L and noticing h(ε,θ′) ≥ 0:

−h(ε,θ) ≤ − 1

2L
‖∇h(ε,θ))‖22.

Taking expectations, we have

1

2L
E[‖∇h(ε,θ))‖22] ≤ E[h(ε,θ)]

= E[f(ε,θ)− f(ε,θ∗)−∇f(ε,θ∗)>(θ − θ∗)]

≤ E[f(ε,θ)− f(ε,θ∗)],

which completes the proof of this lemma.

Now, let vt = ∇f(εt−1,θt−1)− c(εt−1,θt−1). Then

E[‖θt − θ∗‖22]

= ‖θt−1 − θ∗‖22 − 2η(θt−1 − θ∗)>E[vt] + η2E[‖vt‖22]

= ‖θt−1 − θ∗‖22 − 2η(θt−1 − θ∗)>E[∇f(εt−1,θt−1)] + η2E[‖vt‖22]

≤ ‖θt−1 − θ∗‖22 − 2ηE[[f(ε,θt−1)− f(ε,θ∗)] + η2E[‖vt‖22]. (31)

For the last term E[‖vt‖22], we have

E[‖vt‖22]

= E
[
‖∇f(εt−1,θt−1)−∇f(εt−1,θ

∗) +∇f(εt−1,θ
∗)− c(εt−1,θt−1)‖2

]
≤ 2E

[
‖∇f(εt−1,θt−1)−∇f(εt−1,θ

∗)‖22
]

+ 2E
[
‖∇f(εt−1,θ

∗)− c(εt−1,θt−1)‖22
]

≤ (4L+ 2M)E[f(εt−1,θt−1)− f(εt−1,θ
∗)], (32)

where the last inequality holds by Assumption 3.

By strong convexity of f(ε,θ), we have

‖θt−1 − θ∗‖22 ≤
2

H
f(ε,θt−1)− f(ε,θ∗). (33)

Combining the last 3 inequalities we get

E[‖θt − θ∗‖22]

≤ E[‖θt−1 − θ∗‖22]− 2η(1− η(2L+M))E[f(ε,θt−1)− f(ε,θ∗)]

≤
(

1− ηH(1− η(2L+M))
)
E[‖θt−1 − θ∗‖22].

For η ≤ 1
2L+M and c = (1− ηH(1− η(2L+M)), we have

E[‖θt − θ∗‖22] ≤ ct‖θ0 − θ∗‖22,

which completes the proof of Theorem 1.

When Assumption 3 does not hold and Assumption 4 holds, following the same line of reasoning and replacing the

upper bound on E
[
‖∇f(εt−1,θ

∗)− c(εt−1,θt−1)‖22
]

with M̄ , we have

E[‖vt‖22]

= E
[
‖∇f(εt−1,θt−1)−∇f(εt−1,θ

∗) +∇f(εt−1,θ
∗)− c(εt−1,θt−1)‖2

]
≤ 2E

[
‖∇f(εt−1,θt−1)−∇f(εt−1,θ

∗)‖22
]

+ 2E
[
‖∇f(εt−1,θ

∗)− c(εt−1,θt−1)‖22
]

≤ 4LE[f(εt−1,θt−1)− f(εt−1,θ
∗)] + 2M̄. (34)

Combining inequalities (31), (33) and (34), we have

E[‖θt − θ∗‖22]

≤
(

1− ηH(1− 2Lη)

)
E[‖θt−1 − θ∗‖22] + 2η2M̄.

For η ≤ 1
2L and c̄ = (1− ηH(1− 2Lη)), we have

E[‖θt − θ∗‖22] ≤ c̄E[‖θt−1 − θ∗‖22] + 2η2M̄.

Equivalently,

E[‖θt − θ∗‖22] +
2η2M̄

c̄− 1
≤ c̄
(
E[‖θt−1 − θ∗‖22] +

2η2M̄

c̄− 1

)
,

which shows

E[‖θt − θ∗‖22] +
2η2M̄

c̄− 1
≤ c̄t

(
‖θ0 − θ∗‖22 +

2η2M̄

c̄− 1

)
.

Thus, for the E[‖θt − θ∗‖22], we have

E[‖θt − θ∗‖22] ≤ c̄t‖θ0 − θ∗‖22 +
2η2M̄(c̄t − 1)

c̄− 1
.

C DESCRIPTION OF EXPERIMENT MODELS

In this section we give detailed descriptions of the models used in the experiments in Section 5.

C.1 LOGISTIC REGRESSION

Summary A classification task on the titanic dataset with a Bayesian logistic regression model. We perform inference
using the reparameterisation gradient formulation of Variantional Inference, where we select a Gaussian approximate
posterior and learn its mean vector and full covariance matrix. We place a unit Gaussian prior on the weights.

Dataset The titanic dataset consists of 2201 training examples. Each data point comprises a binary class label and a
feature vector of length 4. We perform standard normalisation on the features, i.e., subtracting the mean and dividing by
the standard deviation. The dataset can be obtained from the following URL: http://persoal.citius.usc.
es/manuel.fernandez.delgado/papers/jmlr/data.tar.gz.

Model description In the Bayesian logistic regression model, the output log-odds are modelled as a linear transfor-
mation of the inputs, i.e., logit(t) = ωtx ⇐⇒ t = s(ωtx), where t is the target output, x is a feature vector (with
a leading element with value 1 to represent the bias), ω is a weight vector and s(z) = 1

1+e−z is the logistic sigmoid
function. This model can be treated probabilistically by setting a prior on the weights ω and a likelihood model on the
targets t. We set the following model:

p(ω) = N (0,Σ), Gaussian prior on the weight vector,

p(t|ω) = Bernoulli(s(ω>x)), Bernoulli likelihood model.

Inference problem We aim to find the posterior distribution of the weight given the targets T = (t1, . . . , tN),

p(ω|T) =

∏N
n=1 p(tn|ω)p(ω)∫ ∏N
n=1 p(tn|ω)p(ω)dω

.

For this inference task we use Variational Inference where we approximate p(ω|T) with another distribution q(ω) =
N (m,S), which can be obtained by minimising the following objective function, known as the Negative Evidence
Lower Bound (NELBO):

L(θ) = −
N∑
n=1

Eq(ω)[log p(tn|ω)] + KL(q(ω)||p(ω))

≈ −
N∑
n=1

1

S

S∑
s=1

log p(tn|ω(ε(s)n)) + KL(q(ω)||p(ω)), ε(s)n ∼ N (0, I), (29)

where θ = (m,L) with S = LL> and ω(ε) = m + Lε is overloaded to represent the location-scale transformation
(reparameterisation trick).

Instantiation For the experiments in Section 5, we instantiate the model by setting the prior covariance to Σ = I . For
the doubly stochastic objective function in (29), we set the number of Monte Carlo samples to S = 1 and sub-sample
the N data points to mini-batches of size |B| = 10 (some results for |B| = 100 are also shown in Appendix E.1).

C.2 DEEP GAUSSIAN PROCESSES

Summary A regression task on the airfoil dataset using a Deep Gaussian Process (DGP). We use a 2-layer model
with an inner-layer dimension of 5, and a Squared Exponential kernel for the GP priors. We use the doubly stochastic
formulation of the Variational Inference problem (Salimbeni and Deisenroth, 2017). We learn the parameters of the
approximate Gaussian posterior, keeping the hyperparameters fixed. The inducing locations are fixed and selected as
the centroids of k-means clusters from the data.

Dataset The airfoil dataset consists of 1500 training examples. Each data point comprises a target label in R and a
feature vector of length 5. We perform standard normalisation on the features, i.e., subtracting the mean and dividing
by the standard deviation. The dataset can be obtained from the following URL: https://drive.google.com/
file/d/0BxWe_IuTnMFcYXhxdUNwRHBKTlU/view.

Model description Deep Gaussian processes model the outputs as a non-parametric function of the inputs. Since
in our experiments we use a 2-layer model, we will restrict the description to this case. For a target t ∈ R with
corresponding inputs x ∈ F , we can model the input-to-output relationship as follows:

t = f2(f1(x)) + η, η ∼ N (0, σ2),

i.e., the outputs are noisy perturbations of a function composition of the inputs. f1 and f2 are not explicitly defined,
instead we set Gaussian process priors on their values. Hence, the full probabilistic model is given by:

p(u1) = N (0,Ku1u1
), GP prior,

p(f1|u1) = N (id(X) +Kf1u1
K−1u1u1

u1,Kf1f1 −Kf1u1
K−1u1u1

K>f1u1
), GP conditional prior,

p(u2) = N (0,Ku2u2), GP prior,

p(f2|u2) = N (Kf2u2K
−1
u2u2

u2,Kf2f2 −Kf2u2K
−1
u2u2

K>f2u2
), GP conditional prior,

p(t|f1, f2) = N (f2(f1), σ2I), Gaussian likelihood model.

Here, Z1 is a design matrix of M inducing locations, i.e., pseudo-inputs that are introduced for computational
convenience. Ku1,u1 = k1(Z1, Z1) is an M ×M Gram matrix generated by a kernel function k1(·, ·). Similarly
Kf1,f1 = k1(X,X) is an N ×N Gram matrix, where X is the design matrix of N inputs xn, and id(·) is the identity
function. Ku2,u2

= k2(Z2, Z2) is also an M ×M Gram matrix generated by k2(·, ·), where Z2 are the inducing
locations for the second layer, and Kf2,f2 = k2(f1(X), f1(X)) is an N ×N Gram matrix of the transformation of the
inputs by the first layer. Finally, u1 and u2 are auxiliary variables introduced for computational tractability. In-depth
treatment on the DGP model can be found in (Salimbeni and Deisenroth, 2017).

Inference problem We aim to find the posterior distribution f1 and f2 (and by extension u1 and u2) given the targets
T = (t1, . . . , tN),

p(u1, f1, u2, f2|T) =

∏N
n=1 p(tn|f1, f2)p(f2|u2)p(u2)p(f1|u1)p(u1)∫ ∏N

n=1 p(tn|f1, f2)p(f2|u2)p(u2)p(f1|u1)p(u1)df2du2df1du1
.

This inference problem is generally intractable, hence we use the doubly stochastic formulation of Variational Inference
for DGPs (Salimbeni and Deisenroth, 2017). We approximate p(u1, f1, u2, f2|T) ≈ p(f2|u2)q(u2)p(f1|u1)q(u1),
where q(u1) = N (m1, L1L

>
1) and q(u2) = N (m2, L2L

>
2). The parameters θ = (m1, L1,m2, L2) of the approxima-

tion can be learned by optimising the following NELBO:

L(θ) = −
N∑
n=1

Eq(f2|f1)q(f1)[log p(tn|f1, f2)] + KL(q(u1)‖p(u1)) + KL(q(u2)‖p(u2))

≈ −
N∑
n=1

1

S

S∑
s=1

log p(tn|f1(ε
(s)
1n), f2(ε

(s)
2n)) + KL(q(u1)‖p(u1)) + KL(q(u2)‖p(u2)), ε

(s)
1n , ε

(s)
2n ∼ N (0, I),

(30)

where f1(ε) = m̃1+L̃1ε is overloaded to represent the location-scale transformation, and m̃1 and L̃1 are the parameters
of the marginal q(f1) =

∫
p(f1|u1)q(u1)du1. Similarly for f2(ε).

Instantiation For the experiments in Section 5, we instantiate the model by setting k1(·, ·) and k2(·, ·) as Squared
Exponential kernels, with lengthscales fixed to 2 and signal variances also fixed to 2. We set the number of inducing
locations to M = 10 and their values to the centroids of k-means clusters of the real inputs from the dataset. We set the
likelihood variance to σ2 = 0.01 and the width of the GP inner layer to 5. For the doubly stochastic NELBO in (30),
we set the number of Monte Carlo samples to S = 1 and sub-sample the N data points to mini-batches of size |B| = 10
(some results for |B| = 100 are also shown in Appendix E.1).

D VERIFICATION OF VARIANCE REDUCTION

In this section, we provide extra results for the experiment in Section 5.2 for different recognition network objectives
and different Adam learning rates on these objectives. The corresponding configurations are in the figure captions.

D.1 LOGISTIC REGRESSION RESULTS ON THE TITANIC DATASET

Figure 5: Logistic regression. Squared difference objective. Recognition network learning rate = 10−3.

Figure 6: Logistic regression. Gradient sum objective. Recognition network learning rate = 10−3.

Figure 7: Logistic regression. Squared difference objective. Recognition network learning rate = 10−2.

Figure 8: Logistic regression. Squared difference objective. Recognition network learning rate = 10−2.

D.2 DEEP GAUSSIAN PROCESS RESULTS ON THE AIRFOIL DATASET

Figure 9: DGP. Squared difference objective. Recognition network learning rate = 10−3.

Figure 10: DGP. Gradient sum objective. Recognition network learning rate = 10−3.

Figure 11: DGP. Squared difference objective. Recognition network learning rate = 10−2.

Figure 12: DGP. Gradient sum objective. Recognition network learning rate = 10−2.

E SIMULTANEOUS OPTIMISATION OF MODEL AND RECOGNITION NETWORK

In this section, we provide extra results for the experiment in Section 5.3 for different recognition network objectives and
different Adam learning rates on these objectives. We also vary the mini-batch size. The corresponding configurations
are in the figure captions.

E.1 LOGISTIC REGRESSION RESULTS ON THE TITANIC DATASET

E.1.1 Small mini-batch size, |B| = 10

Figure 13: Logistic regression. Squared difference objective. |B| = 10. Network of size [128, 128, 128]. Recognition
network learning rate = 10−3.

Figure 14: Logistic regression. Gradient sum objective. |B| = 10. Network of size [128, 128, 128]. Recognition
network learning rate = 10−3.

Figure 15: Logistic regression. Squared difference objective. |B| = 10. Network of size [128, 128, 128]. Recognition
network learning rate = 10−2.

Figure 16: Logistic regression. |B| = 10. Gradient sum objective. Network of size [128, 128, 128]. Recognition
network learning rate = 10−2.

E.1.2 Large mini-batch size, |B| = 100

Figure 17: Logistic regression. Squared difference objective. Network of size [128, 128, 128]. |B| = 100. Recognition
network learning rate = 10−3.

Figure 18: Logistic regression. Gradient sum objective. |B| = 100. Network of size [128, 128, 128]. Recognition
network learning rate = 10−3.

Figure 19: Logistic regression. Squared difference objective. |B| = 100. Network of size [128, 128, 128]. Recognition
network learning rate = 10−2.

Figure 20: Logistic regression. Gradient sum objective. |B| = 100. Network of size [128, 128, 128]. Recognition
network learning rate = 10−2.

E.2 DEEP GAUSIAN PROCESS RESULTS ON THE AIRFOIL DATASET

E.2.1 Small mini-batch size, |B| = 10

Figure 21: DGP. Squared difference objective. |B| = 10. Network of size [128, 128, 128]. Recognition network
learning rate = 10−3.

Figure 22: DGP. Gradient sum objective. |B| = 10. Network of size [128, 128, 128]. Recognition network learning rate
= 10−3.

Figure 23: DGP. Squared difference objective. |B| = 10. Network of size [128, 128, 128]. Recognition network
learning rate = 10−2.

Figure 24: DGP. Gradient sum objective. |B| = 10. Network of size [128, 128, 128]. Recognition network learning rate
= 10−2.

E.2.2 Large mini-batch size, |B| = 100

Figure 25: DGP. Squared difference objective. |B| = 100. Network of size [128, 128, 128]. Recognition network
learning rate = 10−3.

Figure 26: DGP. Gradient sum objective. |B| = 100. Network of size [128, 128, 128]. Recognition network learning
rate = 10−3.

Figure 27: DGP. Squared difference objective. |B| = 100. Network of size [128, 128, 128]. Recognition network
learning rate = 10−2.

Figure 28: DGP. Gradient sum objective. |B| = 100. Network of size [128, 128, 128]. Recognition network learning
rate = 10−2.

E.2.3 VARIANCE REDUCTION COMPARISON WITH THE PARTIAL GRADIENTS OBJECTIVE

In this section, we provide results comparing the partial gradients objective in (11), with the gradient sum (14) and
squared difference (17) objectives. Fig. 29 shows that the partial gradients objective induces further variance reduction
than the alternatives due to its lower variance. However, we note that in practice partial gradients are expensive
to compute with current automatic differentiation libraries, therefore it is not feasible to use this objective from a
computational point-of-view.

Figure 29: DGP. |B| = 10. Network of size [128, 128, 128]. Recognition network learning rate = 10−3.

