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Abstract

We present Multitask Soft Option Learning
(MSOL), a hierarchical multitask framework
based on Planning as Inference. MSOL extends
the concept of options, using separate varia-
tional posteriors for each task, regularized by
a shared prior. This “soft” version of options
avoids several instabilities during training in a
multitask setting, and provides a natural way
to learn both intra-option policies and their ter-
minations. Furthermore, it allows fine-tuning
of options for new tasks without forgetting
their learned policies, leading to faster training
without reducing the expressiveness of the hi-
erarchical policy. We demonstrate empirically
that MSOL significantly outperforms both hier-
archical and flat transfer-learning baselines.

1 INTRODUCTION
A key challenge in Deep Reinforcement Learning is to
scale current approaches to complex tasks without re-
quiring a prohibitive number of environmental interac-
tions. One promising approach is to construct or learn
efficient exploration priors to focus on more relevant
parts of the state-action space, reducing the number of
required interactions. This includes, for example, reward
shaping (Ng et al., 1999), curriculum learning (Bengio
et al., 2009), meta-learning (Wang et al., 2016) and trans-
fer learning (Teh et al., 2017).

In particular, transfer learning does not require human
designed rewards or curricula, instead allowing the net-
work to learn what and how to transfer knowledge be-
tween tasks. One promising way to capture such knowl-
edge is to decompose policies into a hierarchy of sub-
policies (or skills) that can be reused and combined in
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novel ways to solve new tasks (Sutton et al., 1999). This
idea of Hierarchical RL (HRL) is also supported by find-
ings that humans appear to employ a hierarchical men-
tal structure when solving tasks (Botvinick et al., 2009).
In such a hierarchical policy, lower-level, temporally ex-
tended skills yield directed behavior over multiple time
steps. This has two advantages: i) it allows efficient ex-
ploration, as the target states of skills can be reached
without having to explore much of the state space in be-
tween, and ii) directed behavior also reduces the variance
of the future reward, which accelerates convergence of
estimates thereof. On the other hand, while a hierarchi-
cal approach can significantly speed up exploration and
training, it can also severely limit the expressiveness of
the final policy and lead to suboptimal performance when
the temporally extended skills are not able to express the
required policy for the task at hand.

Many methods exist for learning such hierarchical skills,
(e.g. Sutton et al., 1999; Bacon et al., 2017; Gregor et al.,
2016). The key challenge is to learn skills which are
diverse, and relevant for future tasks. One widely used
approach is to rely on additional human-designed input,
often in the form of manually specified subgoals (Vezhn-
evets et al., 2017; Nachum et al., 2018) or a fixed tempo-
ral extension of learned skills (Frans et al., 2018). While
this can lead to impressive results, it is only applicable in
situations where relevant subgoals or temporal extension
can be easily identified a priori.

This paper proposes Multitask Soft Option Learning
(MSOL), an algorithm to learn hierarchical skills from a
given distribution of tasks without any additional human
specified knowledge. MSOL trains simultaneously on
multiple tasks from this distribution and autonomously
extracts sub-policies which are reusable across them.

Importantly, unlike prior work (Frans et al., 2018), our
proposed soft option framework avoids several pitfalls of
learning options from multiple tasks, which arise when
skills are jointly optimized with a higher-level policy that



determines when each skill is used. Generally, as each
skill must be used for similar purposes across all tasks,
to learn consistent behavior, a complex training sched-
ules is required to assure a nearly converged higher-level
policy before skills can be updated (Frans et al., 2018).
However, once a skill has converged it can be hard to
change its behavior without hurting the performance of
higher-level policies that rely it. Training is therefore
prone to end up in local optima: even if changing a skill
on one task could increase the return, it would likely lead
to lower returns on other tasks in which it is currently
used. This is particularly an issue when multiple skills
have learned similar behavior, preventing the learning of
a diverse set of skills.

MSOL alleviates both difficulties. The core idea is to
learn a “prototypical” – or prior – behavior for each skill,
while allowing the actually-executed skill on each task –
the posterior – to deviate from it if the specific task re-
wards require it. Penalizing deviations between the prior
and posteriors from different tasks gives rise to skills
that are consistent across tasks, and can be elegantly for-
mulated in the Planning as Inference (PAI) framework
(Levine, 2018). This distinction between prior and task-
dependent posterior obviates the need for complex train-
ing schedules: every task can change their posterior in-
dependently of each other and discover new skills with-
out direct interference in other tasks. Nevertheless, the
penalization term encourages skills to be similar across
tasks and rewards higher-level policies for preferring
such more specialised skills. We discuss in more detail in
Section 3.5 how this helps to prevent the aforementioned
local optima.

In addition to these optimization pitfalls, the idea of soft
options also alleviates the restrictiveness of hierarchical
policies. New tasks can make use of learned skills, by
initializing their posterior skills from the priors, but are
not restricted by them. The penalization term between
prior and posterior acts here as learned shaping reward,
guiding the exploration on new tasks towards previously
relevant behavior, without requiring the new policy to
exactly match previous behavior. In difference to prior
work, MSOL can thus even learn tasks that are not solv-
able with previously learned skills alone. Finally, we
show how the soft option framework gives rise to a nat-
ural solution to the challenging task of learning option-
termination policies.

Our experiments demonstrate that MSOL outperforms
previous hierarchical and transfer-learning algorithms
during transfer tasks in a multitask setting. Unlike prior
work, MSOL only modifies the regularized reward and
loss function. and does not require specialized architec-
tures, or artificial restrictions on the expressiveness of ei-
ther the higher-level or intra-option policies.

2 PRELIMINARIES

An agent’s task is formalized as a MDP (S,A, ρ, P, r, γ),
consisting of the state space S, action space A, initial
state distribution ρ, transition probability P (st+1|st, at)
of reaching state st+1 by executing action at in state
st, reward r(st, at) ∈ R that an agent receives for this
transition, and discount factor γ ∈ [0, 1]. An optimal
agent chooses actions that maximize the return Rt(st) =∑
k γ

krt+k consisting of discounted future rewards.

2.1 PLANNING AS INFERENCE

Planning as inference (PAI) (Todorov, 2008; Levine,
2018) frames Reinforcement Learning (RL) as a prob-
abilistic inference problem. The agent learns a dis-
tribution qφ(a|s) over actions a given states s, i.e.,
a policy, parameterized by φ, which induces a dis-
tribution over trajectories τ of length T , i.e., τ =
(s1, a1, s2, . . . , aT , sT+1):

qφ(τ) = ρ(s1)
T∏
t=1

qφ(at|st)P (st+1|st, at) . (1)

This can be seen as a structured variational approxima-
tion of the optimal trajectory distribution. Note that the
true initial state probability ρ(s1) and transition proba-
bility P (st+1|st, at) are used in the variational posterior,
as we can only control the policy, not the environment.

A significant advantage of this formulation is that it
is straightforward to incorporate information both from
prior knowledge, in the form of a prior policy distribu-
tion, and the task at hand through a likelihood function
that is defined in terms of the achieved reward. The prior
policy p(at|st) can be specified by hand or, as in our
case, learned (see Section 3). To incorporate the reward,
we introduce a binary optimality variable Ot (Levine,
2018), whose likelihood is highest along the optimal
trajectory that maximizes return: p(Ot = 1|st, at) =
exp

(
r(st, at)/β

)
, where for β → 0 we recover the orig-

inal RL problem. The constraint r ∈ (−∞, 0] can be re-
laxed without changing the inference procedure (Levine,
2018). For brevity, we denoteOt = 1 asOt ≡ (Ot = 1).
If a given prior policy p(at|st) explores the state-action
space sufficiently, then p(τ,O1:T) is the distribution of
desirable trajectories. PAI aims to find a policy such that
the variational posterior in (1) approximates this distri-
bution by minimizing the Kullback-Leibler (KL) diver-
gence:

L(φ) = DKL(qφ(τ) ‖ p(τ,O1:T )) , where

p(τ,O1:T) = ρ(s1)
T∏
t=1

p(at|st)P (st+1|st, at)p(Ot|st, at).
(2)



2.2 MULTI-TASK LEARNING

In a multi-task setting, we have a set of different tasks
i ∈ T , drawn from a task distribution with probabil-
ity ξ(i). All tasks share state space S and action space
A, but each task has its own initial-state distribution ρi,
transition probability Pi(st+1|st, at), and reward func-
tion ri. Our goal is to learn n tasks concurrently, distill-
ing common information that can be leveraged to learn
faster on new tasks from T . In this setting, the prior pol-
icy pθ(at|st) can be learned jointly with the task-specific
posterior policies qφi(at|st) (Teh et al., 2017). To do so,
we simply extend (2) to

L({φi}, θ) = Ei∼ξ
[
DKL(qφi(τ) ‖ pθ(τ,O1:T ))

]
= − 1

β
Ei∼ξ,τ∼q

[
T∑
t=1

Rreg
i,t

]
,

(3)

where Rreg
i,t := ri(st, at) − β ln

qφi (at|st)
pθ(at|st) is a regu-

larised reward. Minimizing the loss in (3) is equiv-
alent to maximizing the regularized reward Rreg

i,t .

Moreover, minimizing the term Eτ∼q
[

ln
qφi (at|st)
pθ(at|st)

]
implicitly minimizes the expected KL-divergence
Est∼q

[
DKL[qφi(·|st)‖pθ(·|st)]

]
. In practise (see Ap-

pendix B.1) we will also make use of a discount factor
γ ∈ [0, 1]. For details on how γ arises in the PAI
framework we refer to Levine (2018).

2.3 OPTIONS

Options (Sutton et al., 1999) are skills that generalize
primitive actions and consist of three components: i) an
intra-option policy p(at|st, zt) that selects primitive ac-
tions according to the currently active option zt, ii) a
probability p(bt|st, zt−1) of terminating the previously
active option zt−1, and iii) an initiation set I ⊆ S , which
we simply assume to be S. Note that by construction,
the higher-level (or master-) policy p(zt|zt−1, st, bt) can
only select a new option zt if the previous option zt−1
has terminated.

3 METHOD
We aim to learn a reusable set of options that allow for
faster training on new tasks from a given distribution.
To differentiate ourselves from classical ‘hard’ options,
which, once learned, do not change during new tasks, we
call our novel approach soft-options. Each soft-option
consists of an option prior, denoted by pθ, which is
shared across all tasks, and a task-specific option pos-
terior, denoted by qφi for task i. Unlike most previous
work, e.g. (Frans et al., 2018), we learn both intra-option
and termination policies. The priors of both the intra-
option policy pLθ and the termination policy pTθ capture
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Figure 1: Two hierarchical posterior policies (left and right)
with common priors (middle). For each task i, the policy con-
ditions on the current state sit and the last selected option zit−1.
It samples, in order, whether to terminate the last option (bit),
which option to execute next (zit) and what primitive action (ait)
to execute in the environment.

how an option typically behaves and remain fixed once
they are fully learned. At the beginning of training on
a new task, they are used to initialize the task-specific
posterior distributions qLφi and qTφi . During training, the
posterior is then regularized against the prior to prevent
inadvertent unlearning. However, if maximizing the re-
ward on certain tasks is not achievable with the prior pol-
icy, the posterior is free to deviate from it. We can thus
speed up training using options, while remaining flexible
enough to solve more tasks. Additionally, this soft option
framework also allows for learning good priors in a mul-
titask setting while avoiding complex training schedules
and local optima (see Section 3.5). In this work, we also
learn the higher-level posterior qHφi within the framework
of PAI, but assume a fixed, uniform prior distribution pH ,
i.e. we assume there is no shared higher-level structure
between tasks. Figure 1 shows an overview over this ar-
chitecture which we explain further below.

3.1 HIERARCHICAL POSTERIOR POLICIES

To express options in the PAI framework, we intro-
duce two additional variables at each time step t: op-
tion selections zt, representing the currently selected op-
tion, and decisions bt to terminate them and allow the
higher-level (master) policy to choose a new option. The
agent’s behavior depends on the currently selected op-
tion zt, by drawing actions at from the intra-option pos-
terior policy qLφi(at|st, zt). The selection zt itself is



drawn from a master policy qHφi(zt|st, zt−1, bt) = (1 −
bt) δ(zt − zt−1) + bt q

H
φi

(zt|st), which conditions on
bt ∈ {0, 1}, drawn by the termination posterior policy
qTφi(bt|st, zt−1). The master policy either continues with
the previous zt−1 or draws a new option, where we set
b1 = 1 at the beginning of each episode. We slightly
abuse notation by referring by δ(zt − zt−1) to the Kro-
necker delta δzt,zt−1

for discrete and the Dirac delta dis-
tribution for continuous zt. The joint posterior policy is

qφi(at, zt, bt|st, zt−1) =

qTφi(bt|st, zt−1) qHφi(zt|st, zt−1, bt) qLφi(at|st, zt) .
(4)

While zt can be a continuous variable, we consider only
zt ∈ {1 . . .m}, where m is the number of available op-
tions. The induced distribution qφi(τ) over trajectories of
task i, τ = (s1, b1, z1, a1, s2, . . . , sT , bT , zT , aT , sT+1),
is then

qφi(τ)=ρi(s1)
T∏
t=1

qφi(at,zt,bt|st,zt−1)Pi(st+1|st,at). (5)

3.2 HIERARCHICAL PRIOR POLICY

Our framework transfers knowledge between tasks by a
shared prior pθ(at,zt,bt|st,zt−1) over all joint policies (4):

pθ(at, zt, bt|st, zt−1) =

pTθ(bt|st, zt−1) pH(zt|zt−1, bt) p
L
θ(at|st, zt).

(6)

By choosing pTθ , pH , and pLθ correctly, we can learn
useful temporally extended options. The parameterized
priors pTθ (bt|st, zt−1) and pLθ (at|st, zt) are structurally
equivalent to the posterior policies qTφi and qLφi so that
they can be used as initialization for the latter on new
tasks. Optimizing the regularized return (see next sec-
tion) w.r.t. θ distills the common behavior into the prior
policy and softly enforces similarity across posterior dis-
tributions of each option amongst all tasks i.

The prior pH(zt|zt−1, bt) = (1−bt) δ(zt−zt−1) + bt
1
m

selects the previous option zt−1 if bt = 0, and otherwise
draws options uniformly to ensure exploration. Because
the posterior master policy is different on each task, there
is no need to distill common behavior into a joint prior.

3.3 OBJECTIVE

We extend the multitask objective in (3) by substituting
pθ(τ,O1:T ) and pφi(τ) with those induced by our hierar-
chical posterior policy in (4) and the corresponding prior.
The resulting objective has the same form but with a new

regularized reward that is maximized:

Rreg
i,t =ri(st, at)− β ln

qHφi
(zt|st,zt−1,bt)

pH(zt|zt−1,bt)︸ ︷︷ ︸
1

− β ln
qLφi

(at|st,zt)
pLθ(at|st,zt)︸ ︷︷ ︸

2

−β ln
qTφi

(bt|st,zt−1)

pTθ(bt|st,zt−1)︸ ︷︷ ︸
3

.
(7)

As we maximize Eq[Rreg
i,t ], this corresponds to maximiz-

ing the expectation over

ri(st,at)−β
[
DKL(qHφi‖pH)+DKL(qLφi‖pLθ )+DKL(qTφi‖pTθ )

]
,

(8)
along the on-policy trajectories drawn from qφi(τ). In
the following, we will discuss the effects of all three reg-
ularization terms on the optimization.

Term 1 of the regularization encourages exploration in
the space of options since we chose a uniform prior for
pH when the previous option was terminated. It can also
be seen as a form of deliberation cost (Harb et al., 2017)
as it is only nonzero whenever we terminate an option
and the master policy needs to select another to execute:
if the option is not terminated, we have zt = zt−1 with
probability 1 for both prior and posterior by construction
and DKL(qHφi‖pH) = 0.

Because (7) is optimized across all tasks i, term 2 up-
dates the prior towards the ‘average’ posterior. It also
regularizes each posterior towards this prior. This en-
forces similarity between option posteriors across tasks.
Importantly, it also encourages the master policy to pick
the most specialized option that still maximizes the re-
turn, i.e the option for which the posteriors qLφi are most
similar across tasks as this will minimize term 2 . Con-
sequently, if multiple options have learned the desired
behavior, the master policy will only pick the most spe-
cialized option consistently. As discussed in Section 3.5,
this allows us to escape the local optima that hard op-
tions face in multitask learning, while still having fully
specialized options after training.

Lastly, we can use 3 to also encourage temporal abstrac-
tion of options. To do so, during option learning, we
fix the termination prior pT to a Bernoulli distribution
pT (b) = (1 − α)bα1−b. Choosing a large α encourages
prolonged execution of one option, but allows switching
whenever necessary. This is similar to deliberation costs
(Harb et al., 2017) but with a more flexible cost model.

We can still distill a termination prior pTθ which can be
used on future tasks. Instead of learning pTθ by minimiz-
ing the KL against the posterior termination policies, we
can get more decisive terminations by minimizing

min
θ

n∑
i=1

Eτ∼qi
[
DKL

(
q̂φi(·|st,zt−1)‖pTθ (·|st,zt−1)

)]
, (9)



(a) Hard options (b) Soft options (c) After training

Figure 2: Hierarchical learning of two concurrent tasks (a and
b) using two options (z1 and z2) to reach two relevant targets
(A and B). a) Local optimum when simply sharing options
across tasks. b) Escaping the local optimum by using prior (z̄i)
and posterior (z(j)i ) policies. c) Learned options after training.
Details are given in the text in Section 3.5.

and q̂φi(b= 1|st, zt−1)=
∑
zt6=zt−1

qHφi(zt|st, zt−1, bt= 1)
i.e., the learned termination prior distills the probability
that the tasks’ master policies would change the active
option if they had the opportunity. Details on how we
optimized the MSOL objective are given in Appendix B.

3.4 MSOL VS. CLASSICAL OPTIONS

Assume we are faced with a new task and are given some
prior knowledge in the form of a set of skills that we
can use. Using the skills’ policies and termination prob-
abilities as prior policies pT and pL in the soft option
framework, we can interpret β as a temperature param-
eter determining how closely we are required to follow
them. For β →∞ we recover the classical “hard” option
case and our posterior option policies are restricted to the
prior.1 For β = 0 the priors only initialize the other-
wise unconstrained policy, quickly unlearning behavior
that may be useful down the line. Only for 0 < β < ∞
MSOL can keep prior information to guide long-term ex-
ploration but can also explore policies “close” to them.

3.5 LOCAL OPTIMA OPTION LEARNING

In this section our aim is to provide an intuitive explana-
tion of why learning hard options in a multitask setting
can lead to local optima and how soft options can over-
come this. In this local optimum, multiple options have
learned the same behavior and are unable to change it,
even if doing so would ultimately lead to a higher re-
ward. We use the Moving Bandits experiment schemat-
ically depicted in Figure 2 as an example. The agent
(black dot) observes two target locations A and B but
does not know which one is the correct one that has to
be reached in order to generate a reward. The state- and
action-spaces are continuous, requiring multiple actions
to reach either A or B from the starting position. Conse-
quently, having access to two options, one for each loca-

1However, in this limiting case optimization using the reg-
ularized reward is not possible.

tion, can accelerate learning. Experimental results com-
paring MSOL against a recently proposed ‘hard option’
method (Meta Learning of Shared Hierarchies (MLSH),
(Frans et al., 2018)) are discussed in Section 5.1.

Let us denote the options we are learning as z1 and z2
and further assume that due to random initialization or
late discovery of target B, both skills currently reach A.
In this situation, the master policies on tasks in which the
correct goal is A are indifferent between using z1 and z2
and will consequently use both with equal probability.

In the case of hard options, changing one skill, e.g. z2,
towards B in order to solve tasks in which B is the cor-
rect target, decreases the performance on all tasks that
currently use z2 to reach target A, because for hard op-
tions the skills are shared exactly across tasks. Averaged
across all tasks, this would at first decrease the over-
all average return, preventing any option from changing
away from A, leaving B unreachable and training stuck
in a local optimum.

To “free up” z2 and learn a new skill reachingB, all mas-
ter policies need to refrain from using z2 to reach A and
instead use the equally useful skill z1 exclusively. Im-
portantly, using soft options makes this possible. In Fig-
ures 2(b) and 2(c) we depict this schematically. The key
difference is that in MSOL we have separate task-specific
posteriors z(a)i and z(b)i for tasks a and b and soft options
i ∈ {1, 2} (for simplicity, we assume that the correct tar-
get is A for task a and B for task b). This allows us, in
a first step, to solve all tasks (Figure 2(b)): despite mas-
ter policies on tasks a still using posterior z(a)2 to reach
A, the other posterior z(b)2 can learn to reach B. How-
ever, this now makes option z2 less specialized across
tasks, i.e. the prior z̄2 does not agree with either poste-
rior z(a)/(b)2 . Consequently, for tasks a, the master poli-
cies will now strictly prefer option z1 to reach A, allow-
ing option z2 to specialize on only reachingB, leading to
the situation shown in Figure 2(c) in which both options
specialize to reach different targets.

4 RELATED WORK

Most hierarchical approaches rely on proxy rewards to
train the lower level components and their terminations.
Some of them aim to reach pre-specified subgoals (Sut-
ton et al., 1999), which are often found by analyzing
the structure of the MDP (McGovern and Barto, 2001),
previously learned policies (Tessler et al., 2017) or pre-
dictability (Harutyunyan et al., 2019). Those methods
typically require knowledge, or a sufficient approxima-
tion, of the transition model, both of which are often in-
feasible.

Recently, several authors have proposed unsupervised



training objectives for learning diverse skills based on
their distinctiveness (Gregor et al., 2016). However,
those approaches don’t learn termination functions and
cannot guarantee that the required behavior on the down-
stream task is included in the set of learned skills. Haus-
man et al. (2018) also incorporate reward information,
but do not learn termination policies and are therefore
restricted to learning multiple solutions to the provided
task instead of learning a decomposition of the task solu-
tions which can be re-composed to solve new tasks.

A third usage of proxy rewards is by training lower level
policies to move towards goals defined by the higher lev-
els. When those goals are set in the original state space
(Nachum et al., 2018), this approach has difficulty scal-
ing to high dimensional state spaces like images. Set-
ting the goals in a learned embedding space (Vezhnevets
et al., 2017) can be difficult to train, though. In both
cases, the temporal extension of the learned skills are set
manually. On the other hand, Goyal et al. (2019) also
learn a hierarchical agent, but not to transfer skills, but to
find decisions states based on how much information is
encoded in the latent layer.

HiREPS Daniel et al. (2012) also take an inference moti-
vated approach to learning options. In particular Daniel
et al. (2016) propose a similarly structured hierarchical
policy, albeit in a single task setting. However, they do
not utilize learned prior and posterior distributions, but
instead use expectation maximization to iteratively in-
fer a hierarchical policy to explain the current reward-
weighted trajectory distribution.

Several previous works try to overcome the restrictive
nature of options that can lead to sub-optimal solutions
by allowing the higher-level actions to modulate the be-
havior of the lower-level policies Heess et al. (2016);
Haarnoja et al. (2018). However, this significantly in-
creases the required complexity of the higher-level pol-
icy and therefore the learning time.

The multitask- and transfer-learning setup used in this
work is inspired by Thrun and Schwartz (1995) who sug-
gests extracting options by using commonalities between
solutions to multiple tasks. Prior multitask approaches
often rely on additional human supervision like policy
sketches (Andreas et al., 2017) or desirable sub-goals
(Tessler et al., 2017) in order to learn skills which trans-
fer well between tasks. In contrast, our work aims at
finding good termination states without such supervision.
Tirumala et al. (2019) investigate the use of different pri-
ors for the higher-level policy while we are focussing on
learning transferrable option priors. Closest to our work
is MLSH (Frans et al., 2018) which, however, shares the
lower-level policies across all tasks without distinguish-
ing between prior and posterior and does not learn termi-

nation policies. As discussed, this leads to local minima
and insufficient diversity in the learned options. Simi-
larly to us, Fox et al. (2016) differentiate between prior
and posterior policies on multiple tasks and utilize a KL-
divergence between them for training. However, they do
not consider termination probabilities and instead only
choose one option per task.

Our approach is closely related to DISTRAL (Teh et al.,
2017) with which we share the multitask learning of prior
and posterior policies. However, DISTRAL has no hier-
archical structure and applies the same prior distribution
over primitive actions, independent of the task. As a nec-
essary hierarchical heuristic, the authors propose to also
condition on the last primitive action taken. This works
well when the last action is indicative of future behav-
ior; however, in Section 5 we show several failure cases
where a learned hierarchy is needed.

5 EXPERIMENTS

We conduct a series of experiments to show: i) MSOL
trains successfully without complex training schedules
like in MLSH (Frans et al., 2018), ii) MSOL can learn use-
ful termination policies, iii) when learning hierarchies in
a multitask setting, unlike other methods, MSOL success-
fully overcomes the local minimum of insufficient op-
tion diversity, as described in Section 3.5, iv) using soft
options yields fast transfer learning while still reaching
optimal performance, even on new, out-of-distribution
tasks.

All architectural details and hyper-parameters can be
found in the appendix. For all experiments, we first train
the exploration priors and options on n tasks from the
available task distribution T (training phase is plotted in
Appendix D). Subsequently, we test how quickly we can
learn new tasks from T (or another distribution T ′).
We compare the following algorithms: MSOL is our
proposed method that utilizes soft options both during
option learning and transfer. MSOL(frozen) uses the
soft options framework during learning to find more di-
verse skills, but does not allow fine-tuning the posterior
sub-policies after transfer. DISTRAL (Teh et al., 2017)
is a strong non-hierarchical transfer learning algorithm
that also utilizes prior and posterior distributions. DIS-
TRAL(+action) utilizes the last action as option-heuristic,
that is, as additional input to the policy and prior, which
works well in some tasks but fails when the last action
is not sufficiently informative. Conditioning on an infor-
mative last action allows the DISTRAL prior to learn tem-
porally correlated exploration strategies. MLSH (Frans
et al., 2018) is a multitask option learning algorithm like
MSOL, but utilizes ‘hard’ options for both learning and
transfer, i.e., sub-policies that are shared exactly across
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Figure 3: Performance of applying the learned options and exploration priors to new tasks. Each line is the median over 5 random
seeds (2 for MLSH) and shaded areas indicated standard deviations. Performance during the training phase is shown in Figure 6.
Moving Bandits (a) is a simple environment capturing the effects described in Section 3.5. The results show that MLSH, which uses
hard options, struggles with local minima during the learning phase, whereas MSOL is able to learn a diverse set of options. Taxi (b)
and Directional Taxi (c) additionally require good termination policies, which MLSH cannot learn as it uses a fixed option duration.
See Figure 4 for a visualization of the options and terminations learned by MSOL. DISTRAL(+action) is a strong non-hierarchical
baseline which uses the last action as option-heuristic, but suffers when that action is not very informative, for example in (c).

tasks. It relies on fixed option durations and requires
a complex training schedule between master and intra-
option policies to stabilize training. We use the author’s
MLSH implementation. We also compare against Option
Critic (OC) (Bacon et al., 2017), which takes the task-id
as additional input in order to apply it to multiple tasks.

Note that, during test time, MLSH and MSOL(frozen) can
be fairly compared as each uses one fixed policy per
skill. On the other hand, DISTRAL, DISTRAL(+action)
and MSOL use adaptive posterior policies for each task
and are consequently more expressive.

5.1 MOVING BANDITS

We start with the 2D Moving Bandits environment pro-
posed and implemented by Frans et al. (2018), which is
similar to the example in Section 3.5. There are two ran-
domly sampled, distinguishable, marked positions in the
environment. In each episode, the agent receives a re-
ward of 1 for each time step it is sufficiently close to the
correct one of both positions, and 0 otherwise. Which
location is rewarded is not signaled in the observation.
The agent can take actions that move it in one of the four
cardinal directions. Each episode lasts 50 steps.

We compare against MLSH and DISTRAL to highlight
challenges that arise in multitask training. We allow
MLSH and MSOL to learn two options. During transfer,
optimal performance can only be achieved with diverse
options that have successfully learned to reach different
marked locations. In Figure 3(a) we can see that MSOL
is able to do so but the hard options learned by MLSH

both learned to reach the same goal location, resulting in
only approximately half the optimal return during trans-
fer. This is exactly the situation outlined in Section 3.5
in which learning hard options can lead to local optima.

DISTRAL, even with the last action provided as addi-
tional input, is not able to quickly utilize the prior knowl-
edge. The last action only conveys meaningful informa-
tion when taking the goal locations into account: DIS-
TRAL agents need to infer the intention based on the last
action and the relative goal positions. While this is possi-
ble, in practice the agent was not able to do so, even with
a much larger network. Much longer training ultimately
allows DISTRAL to perform as well as MSOL, denoted by
“DISTRAL(+action) limit”. This is not surprising since
its posterior is flexible and will therefore eventually be
able to learn any task. However, it is not able to learn
transferrable prior knowledge which allows fast training
on the new task. Lastly, MSOL(frozen) also outperforms
DISTRAL(+action) and MLSH, but performs worse that
MSOL. This highlights the utility of making options soft,
i.e. adaptable, during transfer to new tasks. It also shows
that the advantage of MSOL over the other methods lies
not only in its flexibility during transfer, but also during
the original learning phase.

5.2 TAXI

Next, we use a slightly modified version of the original
Taxi domain (Dietterich, 1998) to show learning of ter-
mination functions as well as transfer- and generalization
capabilities. To solve the task, the agent must pick up a
passenger on one of four possible locations by moving



Figure 4: Options learned with MSOL on the taxi domain, before (top) and after pickup (bottom). The light gray area indicates
walls. The left plots show the intra-option policies: arrows and colors indicated direction of most likely action, the size indicates
its probability. A square indicates the pickup/dropoff action. The right plots show the termination policies: intensity and size of the
circles indicate termination probability.

to their location and executing a special ‘pickup/drop-
off’ action. Then, the passenger must be dropped off at
one of the other three locations, again using the same ac-
tion executed at the corresponding location. The domain
has a discrete state space with 30 locations arranged on
a grid and a flag indicating whether the passenger was
already picked up. The observation is a one-hot encod-
ing of the discrete state, excluding passenger- and goal
location. This introduces an information-asymmetry be-
tween the task-specific master policy, and the shared op-
tions, allowing them to generalize well (Galashov et al.,
2019). Walls (see Figure 4) limit the movement of the
agent and invalid actions.

We investigate two versions of Taxi. In the original, just
called Taxi, the action space consists of one no-op, one
‘pickup/drop-off’ action and four actions to move in all
cardinal directions. In Directional Taxi, we extend this
setup: the agent faces in one of the cardinal directions
and the available movements are to move forward or ro-
tate either clockwise or counter-clockwise. In both envi-
ronments the set of tasks T are the 12 different combina-
tions of pickup/drop-off locations. Episodes last at most
50 steps and there is a reward of 2 for delivering the pas-
senger to its goal and a penalty of -0.1 for each time step.
During training, the agent is initialized to any valid state.
During testing, the agent is always initialized without the
passenger on board.

We allow four learnable options in MLSH and MSOL.
This necessitates the options to be diverse, i.e., one op-
tion to reach each of the four pickup/drop-off locations.
Importantly, it also requires the options to learn to ter-
minate when a passenger is picked up. As one can
see in Figure 3(b), MLSH struggles both with option-
diversity and due to its fixed option duration: because
the starting position is random, the duration until the op-
tion needs to terminate is different between episodes and
cannot be captured by one hyperparameter. Furthermore,
even without correct terminations, one could still learn

to solve (at least) four out of the twelve tasks, leading
to an average reward of approximately −3.22. However,
MLSH is not able to learn diverse enough policies, result-
ing in worse performance.

DISTRAL(+action) performs well in the original Taxi en-
vironment, as seen in Figure 3(b). This is expected
since here the last action, moving in a compass direc-
tion, is a good indicator for the agent’s intention, effec-
tively acting as an optimal “option” and inducing tempo-
rally extended exploration. However, in the directional
case shown in Figure 3(c), actions rarely indicate inten-
tions, which makes it much harder for DISTRAL(+action)
to use prior knowledge. By contrast, MSOL performs
well in both taxi environments. In the directional case,
learned MSOL options capture temporally correlated be-
havior much better than the last action in DISTRAL.

Figure 4 demonstrates that the options learned by MSOL
learn movement and termination policies that make intu-
itive sense. Note that the same soft option represents dif-
ferent behavior depending on whether it already picked
up the passenger, as this behavior does not need to termi-
nate the current option on three of the 12 tasks.

5.3 OUT-OF-DISTRIBUTION TASKS

In this section, we show how learning soft options can
help with transfer to unseen tasks. In Figure 5(a) we
show learning on four tasks from T using options that
were trained on the remaining eight, comparing against
Advantage Actor-critic (A2C) (Mnih et al., 2016) and
Option Critic (OC) (Bacon et al., 2017). Note that in OC,
there is no information-asymmetry: the same networks
are shared across all tasks and provided with a task-id as
additional input, including to the option-policies. This
prevents OC from generalizing well to unseen tasks. On
the other hand, withholding the task-information would

2The optimal policy for a task achieves approximate a return
of 0.5 on average whereas the worst possible return is −5.
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Figure 5: We compare MSOL against Option Critic (OC), hard options and flat policies trained from scratch or with a pre-trained
encoder. For a fair comparison, the soft option prior is identical to the hard option in these experiments. Left: Since the options in
OC are not task-agnostic, they fail to generalize to previously unseen tasks. Middle and right: Transfer performance of options to
environments in which the pickup and dropoff locations where shifted, making the options misspecified. Only soft options provide
utility over flat policies in this setting. The middle figure shows results on a small grid in which exploration is simple, whereas the
right figure shows that transfer learning can accelerate exploration especially on larger tasks.

be similar to MLSH, which we already showed to strug-
gle with local minima. The strong performance of MSOL
shows that information-asymmetric options help to gen-
eralize to previously unseen tasks.

We also investigate the utility of flexible soft options
under a shift of the task distribution: in Figures 5(b)
and 5(c) we show learning performance on twelve mod-
ified tasks in which the pickup/dropoff locations where
moved by one cell while the options were trained with
the original locations. While the results in Figure 5(b)
use a smaller grid, Figure 5(c) shows the results for a
larger grid in which exploration is more difficult. As ex-
pected, hard options are not able to solve this task for ei-
ther grid-size. Moreover, while combining hard options
with primitive actions allows the tasks to be solved even-
tually, it performs worse than training a new, flat policy
from scratch. The finding that access to misspecified,
hard options can actually hurt exploration is consistent
with previous literature (Jong et al., 2008). On the other
hand, MSOL is able to quickly learn on this new task by
adapting the previously learned options.

Note that on the small grid in which exploration is easy,
our hierarchical method performs similar to a flat policy.
On the larger grid exploration becomes more challenging
and MSOL learns significantly faster, highlighting how
transfer learning can improve exploration. More results
can be found in Appendix D.2.

6 DISCUSSION

Multitask Soft Option Learning (MSOL) proposes refor-
mulating options using the perspective of prior and pos-
terior distributions. This offers several key advantages.

First, during transfer, it allows us to distinguish between
fixed, and therefore knowledge-preserving option priors,
and flexible option posteriors that can adjust to the re-
ward structure of the task at hand. This effects a similar
speed-up in learning as the original options framework,
while avoiding sub-optimal performance when the avail-
able options are not perfectly aligned to the task. Sec-
ond, utilizing this ‘soft’ version of options in a multi-
task learning setup increases optimization stability and
removes the need for complex training schedules. Fur-
thermore, this framework naturally allows master poli-
cies to coordinate across tasks and avoid local minima
of insufficient option diversity. It also allows for au-
tonomously learning option-termination policies, a very
challenging task which is often avoided by fixing option
durations manually.

Lastly, using this formulation also allows inclusion of
prior information in a principled manner without impos-
ing too rigid a structure on the resulting hierarchy. We
utilize this advantage to explicitly incorporate the bias
that good options should be temporally extended. In fu-
ture research, other types of information can be explored.
As an example, one could investigate sets of tasks which
would benefit from a learned master prior, like walking
on different types of terrain.
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APPENDIX
A PSEUDO CODE

Algorithm 1: Pseudo-Code for MSOL

1 Input Number m of options to learn, ni different training tasks envi, fixed termination prior
pT (bt) = (1− α)btα1−bt and fixed master prior pH(zt|zt−1, bt) = (1− bt) δ(zt − zt−1) + bt

1
m

2 Initialize once: Learnable termination prior pTθ (bt|st, zt−1), intra-option prior pLθ (at|st, zt)
3 Initialize for each task i: Lernable termination posterior qTφi(bt|st, zt−1), master policy qHφi(zt|st, zt−1, bt),

intra-option policy qLφi(at|st, zt)
4 // Note that this leads to a total of m intra option priors for the m different values of z ∈ {1 . . .m}
5 // and a total of m× ni intra option posteriors.

6 while not converged do
7 // Collect data
8 for each task i do
9 if beginning of episode then

10 s0 ← env.reset()

11 b0 ← 1 // This allows qH to sample a new option z0.
12 else
13 bt ∼ qTφi(bt|st, zt−1)

14 zt ∼ qHφi(zt|st, zt−1, bt)
15 at ∼ qLφi(at|st, zt)
16 st+1, rt ∼ envi(at)

17 // Compute regularized reward (eq. (7)); note that we use the fixed priors here

Rreg
t ← ri(st, at)− β ln

qHφi
(zt|st,zt−1,bt)

pH(zt|zt−1,bt)
− β ln

qLφi
(at|st,zt)

pLθ (at|st,zt)
− β ln

qTφi
(bt|st,zt−1)

pT (bt)

18 Add st, st+1, rt, R
reg
t to Di

19 // Update parameters φi
20 for each task i do
21 Update φi using A2C or PPO on Di as desribed in Appendix B.1. Note that for PPO, Rreg

t needs to be
re-computed and updated between gradient updates to φi as the regularization terms change.

22 // Update parameters θ
23 Update θ to minimize∑

i EDi
[
DKL

(
qLφi(at|st, zt) ‖ pLθ (at|st, zt)

)
+ DKL

(
q̂φi(b = 1|st, zt−1) ‖ pTθ (bt|st, zt−1)

)]
24 Here, q̂φi(b = 1|st, zt−1) =

∑
zt 6=zt−1

qHφi(zt|st, zt−1, bt = 1), i.e. instead of distilling the average of qTφi into
pTθ , we distill whether the master policy qHφi would have changed the option zt if it had the chance (i.e. if
bt = 1). Since qTφi is regularized to be similar to the fixed pT , this approach allows us to learn a termination
prior pTθ which is less influenced by our manually specified prior pT , and more by what is needed for the
task.



B MSOL TRAINING DETAILS

B.1 OPTIMIZATION

Even though Rreg
i depends on φi, its gradient w.r.t. φi vanishes.3 Consequently, we can treat the regularized reward as

a classical RL reward and use any RL algorithm to find the optimal hierarchical policy parameters φi. In the following,
we explain how to adapt A2C (Mnih et al., 2016) to soft options. The extension to PPO (Schulman et al., 2017) is
straightforward.4

The joint posterior policy in (4) depends on the current state st and the previously selected option zt−1. The expected
sum of regularized future rewards of task i, the value function Vi, must therefore also condition on this pair:

Vi(st, zt−1) := Eτ∼q
[ T∑
t′=t

γt
′−tRreg

i,t′

∣∣∣ st, zt−1] . (10)

As Vi(st, zt−1) cannot be directly observed, we approximate it with a parametrized model Vφi(st, zt−1). The k-step
advantage estimation at time t of trajectory τ is given by

Aφi(τt:(t+k)) :=
k−1∑
j=0

γjRreg
t+j + γkV −φi (st+k, zt+k−1)− Vφi(st, zt−1) , (11)

where the superscript ‘−’ indicates treating the term as a constant. The approximate value function Vφi can be
optimized towards its bootstrapped k-step target by minimizing LV (φi, τ1:T ) :=

∑T
t=1(Aφi(τt:(t+k)))

2. As per A2C,
k ∈ [1 . . . ns] depending on the state (Mnih et al., 2016). The corresponding policy gradient loss is

LA(φi, τ1:T ) :=
T∑
t=1

A−φi(τt:(t+k)) ln qφi(at, zt, bt|st, zt−1) .

The gradient w.r.t. the prior parameters θ is5

∇θLP (θ, τ1:T , b̃1:T ) := −
T∑
t=1

(
∇θ ln pLθ (at|st, zt) +∇θ ln pTθ (b̃t|st, zt−1)

)
, (12)

where b̃t = δzt−1(z′t) and z′t ∼ qH(z′t|st, zt−1, bt = 1). To encourage exploration in all policies of the hierarchy, we
also include an entropy maximization loss:

LH(φi, τ1:T ) :=

T∑
t=1

(
ln qHφi(zt|st, zt−1, bt) + ln qLφi(at|st, zt) + ln qTφi(bt|st, zt−1)

)
. (13)

Note that term 1 in (7) already encourages maximizing LH(φi, τ) for the master policy, since we chose a uniform
prior pH(zt|bt = 1). As both terms serve the same purpose, we are free to drop either one of them. In our experiments,
we chose to drop the term for qH in Rreg

t , which proved slightly more stable to optimize that the alternative.

We can optimize all parameters jointly with a combined loss over all tasks i, based on sampled trajectories τ i :=
τ i1:T ∼ qφi and corresponding sampled values of b̃i := b̃i1:T :

L({φi}, θ, {τ i}, {b̃i}) =

n∑
i=1

(
LA(φi, τ

i) + λV LV (φi, τ
i) + λPLP (θ, τ i, b̃i) + λHLH(φi, τ

i)
)
.

B.2 TRAINING SCHEDULE

For faster training, it is important to prevent the master policies qH from converging too quickly to allow sufficient
updating of all options. On the other hand, a lower exploration rate leads to more clearly defined options. We
consequently anneal the exploration bonus λH with a linear schedule during training.

Similarly, a high value of β leads to better options but can prevent finding the extrinsic reward ri(st, at) early on in
training. Consequently, we increase β over the course of training, also using a linear schedule.

3∫ p(x)∇ ln p(x) dx =
∫
∇p(x) dx = ∇

∫
p(x) dx = 0.

4However, for PAI frameworks like ours, unlike in the original PPO implementation, the advantage function must be updated
after each epoch.

5Here we ignore β as it is folded into λP later.



C ARCHITECTURE

All policies and value functions share the same encoder network with two fully connected hidden layers of size 64
for the Moving Bandits environment and three hidden layers of sizes 512, 256, and 512 for the Taxi environments.
Distral was tested with both model sizes on the Moving Bandits task to make sure that limited capacity is not the
problem. Both models resulted in similar performance, the results shown in the paper are for the larger model. Master-
policies, as well as all prior- and posterior policies and value functions consist of only one layer which takes the latent
embedding produced by the encoder as input. Furthermore, the encoder is shared across tasks, allowing for much
faster training since observations can be batched together.

Options are specified as an additional one-hot encoded input to the corresponding network that is passed through a
single 128 dimensional fully connected layer and concatenated to the state embedding before the last hidden layer. We
implement the single-column architecture of Distral as a hierarchical policy with just one option and with a modified
loss function that does not include terms for the master and termination policies. Our implementation builds on the
A2C/PPO implementation by, and we use the implementation for MLSH that is provided by the authors (https:
//github.com/openai/mlsh).

D HYPER-PARAMETERS AND ADDITIONAL ENVIRONMENT DETAILS

We use 2λV = λA = λP = 1 in all experiments. Furthermore, we train on all tasks from the task distribution,
regularly resetting individual tasks by resetting the corresponding master and re-initializing the posterior policies.
Optimizing β for MSOL and Distral was done over {0.01, 0.02, 0.04, 0.1, 0.2, 0.4}. We use γ = 0.95 for Moving
Bandits and Taxi.

D.1 MOVING BANDITS

For MLSH, we use the original hyper-parameters (Frans et al., 2018). The duration of each option is fixed to 10. The
required warm-up duration is set to 9 and the training duration set to 1. We also use 30 parallel environments split
between 10 tasks. This and the training duration are the main differences to the original paper. Originally, MLSH was
trained on 120 parallel environments which we were unable to do due to hardware constraints. Training is done over
6 million frames per task.

For MSOL and Distral we use the same number of 10 tasks and 30 processes. The duration of options are learned and
we do not require a warm-up period. We set the learning rate to 0.01 and β = 0.2, α = 0.95, λH = 0.05. Training is
done over 0.6 million frames per task. For Distral we use β = 0.04, λH = 0.05 and also 0.6 million frames per task.
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(a) Moving Bandits
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(b) Taxi
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(c) Directional Taxi

Figure 6: Performance during training phase. Note that MSOL and MSOL(frozen) share the same training as they only
differ during testing. Further, note that the highest achievable performance for Taxi and Directional Taxi is higher
during training as they can be initialized closer to the final goal (i.e. with the passenger on board).

https://github.com/openai/mlsh
https://github.com/openai/mlsh


Figure 7: Results on a ‘further modified’ taxi environment in which the goal locations at test time were shifted compared to
training, making the learned options misspecified, similar to Figures 5(b) and 5(c). Here, the goal locations were shifted further,
making the options more misspecified. Left: Results on a ‘small’ 8x8 grid. Right: Results on a ‘large’ 10x10 grid.

D.2 TAXI

For MSOL we anneal β from 0.02 to 0.1 and λH from 0.1 to 0.05. For Distral we use β = 0.04. We use 3 processes
per task to collect experience for a batch size of 15 per task. Training is done over 1.4 million frames per task for Taxi
and 4 million frames per task for Directional Taxi. MLSH was trained on 0.6 million frames for Taxi as due to it’s
long runtime of several days, using more frames was infeasible. Training was already converged.

Tasks further out of distribution In Figure 7 we provided additional results for Section 5.3. We show the perfor-
mance on further modified environments, for which the goal locations were moved by a second block from the original
location for which the options were trained. We only compare soft options with flat policies trained from scratch, as
we already showed in Section 5.3 that hard options are unable to cope well with goal modifications.

As expected, the flat policy trained from scratch performs similarly as before, as the moved goal location does not
impact it much. On the other hand, using a pre-trained encoder performs slightly worse. On the smaller task (left
figure) the options are too misspecified to be competitive, despite being soft. For the larger grid (right figure) and for
a sufficienlty small value of β (‘KLC’), the options, despite misspecification, are still competitive.

Consequently, while there is no hard limitation of our approach for appropriately chosen β, if the target task is too
different from the source task, it will be faster to learn a new policy from scratch. Which algorithm trains faster depends
mainly on the difficulty of exploration in the target task. Hard exploration makes options more useful compared to a
new, flat policy, even if the options are misspecified. However, the more misspecified the options are, the smaller the
advantage. If target and source task are too different, very little positive transfer can be expected, and learning a new
(flat) policy becomes more efficient.
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