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A PROOF OF LEMMA 1

We prove that g0(∅, ∅) = π(B). Recall that here B =
B1B2 · · ·B` is a fixed M -layering.

Let T ⊆ D ⊆ Bj and U = B1:j−1 ∪D. We show that

gj(U, T ) =
∑
R

k∏
i=2

f(U ∪R1:i−1, Ri−1, Ri) , (1)

where R = R1R2 · · ·Rk runs through all ordered parti-
tions of T ∪ (V \ U) such that R1 = T and that R is
compatible with the layering B. Then the claim follows
by Equation (2) of the main paper.

We proceed by induction on |U |. If |U | = n, then D =
Bk, and by definition, gk(U, T ) = 1. This equals (1) as
the sum has a single term (R = R1 = T ) and the empty
product evaluates to 1.

Suppose then that |U | < n and that the claim holds for
all larger sets. We branch into two cases.

Case D = Bj with j < `. Now, if |Bj+1| > M ,
then by definition and the induction hypothesis, gj(U, T )
equals

f(U, T,Bj+1)
∑
R

k∏
i=2

f(B1:j+1 ∪R1:i−1, Ri−1, Ri) ,

where R = R1R2 · · ·Rk runs through all ordered parti-
tions of Bj+1 ∪ (V \ B1:j+1) such that R1 = Bj+1 and
thatR is compatible withB. By writingR′2 := Bj+1 and
renaming R′i+1 := Ri for i ≥ 2, we get that gj(U, T )
equals ∑

R′

∏
i=2

f(U ∪R′1:i−1, R′i−1, R′i) ,

where R′ = R′1R
′
2 · · ·R′k runs through all ordered par-

titions of T ∪ (V \ U) such that R′1 = T and that R′

is compatible with the layering B (since we must have
R′2 = Bj+1).

Otherwise, |Bj+1| ≤M and by definition and the induc-
tion hypothesis, gj(U, T ) equals∑

∅⊂S⊆Bj+1

j=0 or |S|>M−|Bj |

f(U, T, S)

×
∑
R

k∏
i=2

f(U ∪ S ∪R1:i−1, Ri−1, Ri) ,

where R = R1R2 · · ·Rk runs through all ordered parti-
tions of S∪(V \(U ∪S)) such thatR1 = S and thatR is
compatible with the layering B. By renaming R′2 := S
and R′i+1 := Ri for i ≥ 2, we get that gj(U, T ) equals∑

R′

∏
i=2

f(U ∪R′1:i−1, R′i−1, R′i) ,

where R′ = R′1R
′
2 · · ·R′k runs through all ordered par-

titions of T ∪ (V \ U) such that R′1 = T and that R′ is
compatible with the layering B: indeed, if j = 0, there
is no contraint on the size of the first part R′2 in layer
Bj+1, whereas if j > 0, it follows from the properties of
M -layerings that R′2 must not fit the previous layer, i.e.,
|R2| > M − |Bj |.

Case D ⊂ Bj with j ≤ `. By definition and the induc-
tion hypothesis, gj(U, T ) equals∑
∅⊂S⊆Bj\U

f(U, T, S)

×
∑
R

k∏
i=2

f(U ∪ S ∪R1:i−1, Ri−1, Ri) ,

where R = R1R2 · · ·Rk runs through all ordered parti-
tions of S∪(V \(U ∪S)) such thatR1 = S and thatR is
compatible with the layering B. By renaming R′2 := S



and R′i+1 := Ri for i ≥ 2, we get that gj(U, T ) equals∑
R′

∏
i=2

f(U ∪R′1:i−1, R′i−1, R′i) ,

where R′ = R′1R
′
2 · · ·R′k runs through all ordered par-

titions of T ∪ (V \ U) such that R′1 = T and that R′ is
compatible with the layering B: indeed, since D ⊂ Bj ,
any nonempty R′2 ⊆ Bj \ D is a valid part in an M -
layering, for R′2 is not the first part in Bj .

This completes the proof of Lemma 1.

B GENERATING A ROOT-PARTITION

Given an M -layering B, we can generate a partition
R ∈ R(B) with probability proportional to π(R) by

GENERATE-PARTITION(B1B2 · · ·B`)

// We assume the arrays τ̂j and gj are available
1 j = 0; D = ∅; T = ∅
2 k = 0;
3 while j ≤ `
4 if D = = Bj // j′ and D′

5 j′ = j + 1; D′ = ∅
6 else j′ = j; D′ = D

7 if D ⊂ Bj or j = = ` or |Bj+1| ≤M // S and A
8 S = {S ⊆ Bj′ \D′ : ∅ ⊂ S}; A = ∅
9 else S = {Bj+1}; A = Bj+1 \minBj+1

10 for each v ∈ Bj′ \D′ // Construct p[.]
11 if T = = ∅
12 p[v] = πv(∅)
13 else if T = = Bj // Special case
14 p[v] = τ̂v[{v}]
15 else p[v] = τ̂v[D]− τ̂v[D\T ]

16 f [A] = 1 // Construct f [A]
17 for each v ∈ A
18 multiply f [A] by p[v]

19 draw r from Unif(0, gj [D,T ])
20 s = 0
21 for each S ∈ S in increasing order by |S|
22 v = minS
23 f [S] = f [S\{v}] · p[v]
24 if D 6= Bj or j = = 0 or |S| > M − |Bj |
25 add f [S] · gj′ [D′ ∪ S, S] to s
26 if s > r // The next partition element is S
27 k = k + 1; Rk = S; T = S; D = D′ ∪ S
28 break
29 j = j′

30 return R1R2 · · ·Rk

Figure B.1: Pseudo code for generating a random parti-
tion R from the conditional posterior π(R|B) given an
M -layering B. Note: B0 = B`+1 = ∅.

stochastic backtracking of the dynamic programming al-
gorithm that computes π(B). The pseudo code given in
Figure B.1 gives one way to organize the computations.

C EXPERIMENTS FOR LYMPH AND
HEPATITIS DATASET
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Figure C.1: Comparison of layering-MCMC and partition-MCMC on benchmark data sets. Left: The posterior prob-
ability of the sampled DAG (a logarithm of the unnormalized posterior) per simulation step, in nine independent runs.
Right: The largest absolute error in the arc posterior probability estimate as a function of the length of the simulation
(median over nine independent runs). Note that the x-axis is logarithmic and that, per run, shown are only 200 evenly
spaced points out of the 60 000 steps.


