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A PROOF OF LEMMA 1

We prove that go(0, ) = 7(B). Recall that here B =
B1Bs --- By is a fixed M-layering.

LetT € D C Bjand U = By.j—1 U D. We show that

k
9;(UT) =Y [[fUURi 1, Ry, R), (D)

R i=2

where R = Ry R; - -- Ry, runs through all ordered parti-
tions of TU (V' \ U) such that Ry = T and that R is
compatible with the layering B. Then the claim follows
by Equation (2) of the main paper.

We proceed by induction on |U|. If [U| = n, then D =
By, and by definition, g5 (U, T) = 1. This equals (1) as
the sum has a single term (R = R; = T') and the empty
product evaluates to 1.

Suppose then that |[U| < n and that the claim holds for
all larger sets. We branch into two cases.

Case D = B; with j < (. Now, if |Bj ;1| > M,
then by definition and the induction hypothesis, ¢, (U, T')
equals

k

fU,T, Bjt1) Z H f(Bij1 URi—1, Ric1, Ry),
R i=2

where R = R1Rs - -- Ry, runs through all ordered parti-
tions of Bj 1 U (V' \ Bi.j+1) such that Ry = B, and
that R is compatible with B. By writing R := B, and
renaming R;,, := R; for i > 2, we get that g;(U,T)
equals

Y I[fW VR . Ry R,

R’ 1=2

where R’ = R{ R} --- R} runs through all ordered par-
titions of T"U (V' \ U) such that R{ = T and that R’
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is compatible with the layering B (since we must have
R/Q - Bj+1).

Otherwise, | Bj4+1| < M and by definition and the induc-
tion hypothesis, g; (U, T') equals

> f(UT,S)
0CSCBjt1
j=0or |S|>M—|Bj|
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where R = R Ry - - - Ry, runs through all ordered parti-
tions of SU(V'\ (UUS)) such that Ry = S and that R is
compatible with the layering B. By renaming R/, := S
and R}, := R; fori > 2, we get that g;(U, T') equals

ZHf(U U R/lzifla ;,hR;) ’

R/ 1=2

where R’ = R|R)--- R), runs through all ordered par-
titions of U (V' \ U) such that Rf = T and that R’ is
compatible with the layering B: indeed, if j = 0, there
is no contraint on the size of the first part R} in layer
Bj 1, whereas if j > 0, it follows from the properties of
M -layerings that R/, must not fit the previous layer, i.e.,
|Ro > M — |By].

Case D C B; with j < {. By definition and the induc-
tion hypothesis, g; (U, T) equals

> fU.T,S8)
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where R = R1Rs - - - Ry, runs through all ordered parti-
tions of SU(V'\ (UUS)) such that R; = S and that R is
compatible with the layering B. By renaming R}, := S



and R} | := R, fori > 2, we get that g;(U, T') equals

Z H f(U U Rll:iflv R;,l, R;) ’

R’ i=2

where R = R/ R} --- R} runs through all ordered par-
titions of 77U (V' \ U) such that R} = T and that R’ is
compatible with the layering B: indeed, since D C B,
any nonempty Ry C B; \ D is a valid part in an M-
layering, for Ry is not the first part in B;.

This completes the proof of Lemma 1.

B GENERATING A ROOT-PARTITION

Given an M-layering B, we can generate a partition
R € R(B) with probability proportional to m(R) by

GENERATE-PARTITION(B1 B; - - - By)

// We assume the arrays 7; and g; are available

j =j+1LD =0
else j’ = j; D' =D

1 j=0:D=0;T=190

2 k=0

3 whilej < ¢

4 if D ==B; // i and D’
5

6

7 ifDC Bjorj==Lor|Bjqi|<M //Sand A
8 S={SCTB\D :0CS}A=0
9 else S = {Bj+1}; A= Bj+1 \minB]-_,_l

10 for each v € B\ D' // Construct p|.]
11 if T ==

2 plo] = m.(0)

13 elseif 7' == B; // Special case
14 plo] = 7 [{0}]

15 else p[v] = 7,[D] — 7,[D\T]

16 fl4 =1 // Construct f[A]
17 for eachv € A

18 multiply f[A] by p[v]

19 draw r from Unif(0, g,;[D, T1)

20 s=0

21 for each S € S in increasing order by |.S|

22 v = min S

23 f18] = F1S\{v}] - p[v]

24 it D+ Bjorj==0o0r|S| > M — |Bj|

25 add f[S]-g;/[D'US, S]tos

26 ifs>r // The next partition element is S
27 k=k+1,R,=8,T=8,D=D'US
28 break

29 i=J

30 return R1Rs--- Ry

Figure B.1: Pseudo code for generating a random parti-
tion R from the conditional posterior (R|B) given an
M -layering B. Note: By = Byy1 = 0.

stochastic backtracking of the dynamic programming al-
gorithm that computes 7(B). The pseudo code given in
Figure B.1 gives one way to organize the computations.

C EXPERIMENTS FOR LYMPH AND
HEPATITIS DATASET
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Figure C.1: Comparison of layering-MCMC and partition-MCMC on benchmark data sets. Left: The posterior prob-
ability of the sampled DAG (a logarithm of the unnormalized posterior) per simulation step, in nine independent runs.
Right: The largest absolute error in the arc posterior probability estimate as a function of the length of the simulation
(median over nine independent runs). Note that the x-axis is logarithmic and that, per run, shown are only 200 evenly
spaced points out of the 60 000 steps.



