
Supplementary Materials For: Faster algorithms for Markov equivalence

Zhongyi Hu
Department of Statistics

University of Oxford
zhongyi.hu@keble.ox.ac.uk

Robin Evans
Department of Statistics

University of Oxford
evans@stats.ox.ac.uk

A Proofs from Section 3

Lemma 3.5. If v, w are connected by a collider path π1
in an ADMG G then they are connected by a collider path
π2 in Gm where π2 uses a subset of the internal vertices
of π1. Also, if π1 starts with v →, so does π2.

Proof. Any adjacent pair in G is also adjacent in Gm as
any edge is a trivial collider path. So the path π1 is still
present in Gm however it may not be a collider path (if
it is then we are done) and we aim to find a collider path
π2.

Suppose a is an internal vertex and is a noncollider in π1
in Gm where a↔ b in G is changed to a→ b in Gm. This
is because a ∈ anG(b). Consider the vertex c on the other
side of a, suppose it is c ↔ a in G. Then b ↔ a ↔ c
is a collider path where a ∈ anG({b, c}) so b, c becomes
adjacent in Gm and we can remove a from the path. If
c → a, i.e. c is one of end vertices, then in the projected
graph we have c → a. We can do this repeatedly until it
terminates and the final path is a collider path in Gm that
connects v, w.

Lemma 3.7. Let v, w be two vertices then (i) v → w in
Gm if and only if v ∈ tailG(w) and (ii) v ↔ w in Gm if
and only if {v, w} ∈ H(G).

Proof. For (i), if v → w in Gm then v ∈ anG(w) and
in G there is an inducing path between v and w (a col-
lider path). If v → w in G then we are done. Otherwise
any intermediate vertex on the path is in anG({v, w}) =
anG(w) hence v ?→ ... ↔ w. Therefore v ∈ tailG(w).
Conversely, v ∈ tailG(w) implies that v ∈ anG(w) and
there is a collider path between v and w with any inter-
mediate vertex in anG(w) hence the path is an inducing
path and v → w in Gm.

For (ii), if v ↔ w in Gm then there is an inducing path
between v and w (a collider path) in G and v, w are not
ancestors to each other. Also any intermediate vertex on

the path is in anG({v, w}) which suggests that the path
is a bidirected path. Therefore, {v, w} forms a head. On
the other hand, if {v, w} is a head in G then they are not
ancestors to each other and there is a bidirected path be-
tween them with any intermediate vertex in anG({v, w})
so this path is an inducing path and v ↔ w in Gm.

Theorem 3.8. For two ADMGs G1 and G2, they are or-
dinary Markov equivalent if and only S(G1) = S(G2).

Proof. This follows from Proposition 3.7 and Theorem
3.2.

Corollary 3.8.1. Two ADMGs G1 and G2 are ordinary
Markov equivalent if and only S3(G1) = S3(G2), and
this occurs if and only if S̃3(G1) = S̃3(G2).

Proof. By Proposition 3.8, S3 are preserved in (G1)m
and (G2)m, and with the new definition of adjacencies,
the outputs of S̃3 are also preserved. Hence the statement
follows from Corollary 3.2.1.

B Extension to Summary Graphs and
MAGs with undirected edges

MAGs defined in Richardson and Spirtes (2002) con-
tain undirected edges which necessitate additional condi-
tions of ancestrality. In addition to the previous condition
(sibG(v) ∩ anG(v) = ∅ and this is referred as condition
1 of ancestrality), one also requires that if an undirected
edge is present between two vertices v and w then there
is no arrow into v or w. We refer to this as condition 2 of
ancestrality.

Definition B.1. A graph G is ancestral if: (1) for every
v ∈ V , sibG(v)∩anG(v) = ∅; (2) if there is an undirected
edge x− y then x, y have no parents and no siblings.

A direct consequence of this definition is that vertices
with undirected edges are ‘at the top’ of the graph G. For
an acyclic graph G with three types of edges and only

1 2

3 4

(i)

1 2

3 4

(ii)

1 2

3 4

(iii)

Figure 1: (i) A graph that satisfies only condition 1 of
ancestrality. (ii) A graph that satisfies only condition 2
of ancestrality. (iii) A graph that does not satisfy either
condition 1 or 2 of ancestrality.

satisfying condition 2 of ancestrality, it can be seen as an
ADMG with an undirected component among vertices
without parents or siblings and therefore the component
is ”at the top” of the graph.

Summary graphs defined in Wermuth (2011) are actually
the same as ADMGs with undirected components at the
top. Graphically, one just needs to change the dashed
lines to bidirected edges and they encode the same con-
ditional independence. For simplicity, we will refer to
this type of graphs as summary graphs. Among the three
graphs in Figure 1, (ii) is the only summary graph.

Definition B.2. For a summary graph G, let U = {v ∈
V : v − w for some w ∈ V} and D = V \ U . Define
Gu = GU and Gd = GD.

It is showed by Richardson and Spirtes (2002) that we
can always split a summary graph into two disjoint sub-
graphs. One is an undirected subgraph Gu and another
one is a subgraph with only directed and bidirected edges
Gd. Note that heads and barren sets are only defined in
Gd, and tails may include vertices in both Gu and Gd.

For example, Figure 1(ii) can be split as Gu = 1− 2 and
Gd = 3 ← 4, 3 ↔ 4. Its heads are {3} and {4} and the
corresponding tails are {2, 4} and {2}.

A vertex a is said to be anterior to b if there is a path
π on which every edge is either undirected or directed
towards b, or if a = b. We denote the collection of all
vertices anterior to b by antG(b).

An undirected graph (UG) is a graph with only undi-
rected edges. A clique in an UG is defined as a complete
subset of vertices, that is: every pair of vertices is con-
nected by an undirected edge.

For summary graphs, including MAGs, a clique is de-
fined in the same manner for vertices in Gu, with com-
pleteness referring only to adjacencies by undirected
edges.

Remark. We extend the definition of parametrizing set
by adding all the cliques to the set.

B.1 Extension to MAGs With Undirected Edges

We only need to add a few line of argument to extend
previous propositions and theorems.

For⇒ of Proposition 3.3: ifW ∈ S(G), then eitherW is
a clique or there is a nonempty subsetW ′ ⊆W such that
W ′ is a head and W ⊆W ′ ∪ tail(W ′). The latter case is
proved in the main paper. For the former case, it clearly
implies that we can not m-separate any two vertices in
W , given the remaining vertices in W .

For ⇐ of Proposition 3.3: For W that does not lie en-
tirely in Gu we can define W ′ = barren(W). For W
lying in Gu, if we cannot m-separate any two vertices in
W then clearly W is a clique and W ∈ S(G).

Proposition 3.4 does not change if we add undirected
edges in MAGs, thus Theorem 3.2 and Corollary 3.2.1
hold for MAGs with undirected edges.

B.2 Extension to Summary Graphs

The projection described in Section 3.3 can be extend
to summary graphs with latent variables L as stated in
Richardson and Spirtes (2002). The modified projection
is: (i) every pair of vertices a, b ∈ V in G that are con-
nected by an inducing path becomes adjacent in Gm; (ii)
an edge connecting a, b in Gm is oriented as follows: if
a ∈ antG(b) then a → b; if b ∈ antG(a) then b → a; if
neither is the case, then a ↔ b; if they are both anterior
to one another then the edge is undirected. An induc-
ing path between a, b is a path such that every collider in
the path is in an({a, b}), and every noncollider is in L.
Again, we only consider projections with no latent vari-
able, so an inducing path is just a collider path with every
collider in an({a, b}). And the projection still preserves
ancestral relations from the original graph. We first show
that undirected edges are preserved through projections.

Lemma B.1. If G is a summary graph and Gm is its
corresponding projected MAG, then Gu = (Gm)u and
(Gd)m = (Gm)d.

Proof. For the first statement, we can prove it by show-
ing that undirected edges are the same. First of all, notice
that all undirected edges in G is preserved in Gm. Sec-
ondly, no additional undirected edges can be added. If a
and b are both in Gu then if they are not adjacent before,
they are still nonadjacent since there is no inducing path
between them (they are already at the top of the graph).
If a and b are both in Gd then they cannot be anterior to
each other, this would violate condition (ii) of ancestral-
ity or the fact that G is acyclic. If a ∈ Gu and b ∈ Gd
then obviously b cannot be anterior to a.

For the second statement, note the two subgraphs have

the same vertices due to the first statement. For vertices
in Gd, ancestral relations are the same in G as there is no
directed path passing Gu. Also when we consider induc-
ing paths, any such path would not contain any vertex in
Gu.

We now show that Proposition 3.6 also holds for sum-
mary graphs, i.e. heads and tails are preserved through
projection.

Proof. So we have proved that for ADMGs, heads and
tails are preserved through the projection. Now heads
are only defined in Gd and (Gm)d, thus by Lemma B.1,
for a summary graph, heads are preserved in Gm. Also
for tails that are in Gd, they are preserved. It remains to
show that the result holds when tails are in Gu. For a head
H , let w ∈ Gu. If w ∈ tailG(H) then we know there is
a path π : w → w1 ↔ · · · ↔ h, for h ∈ H with inter-
mediate vertices in an(H). Although w /∈ Gd, with the
same argument in Lemma 3.5, this path is preserved as a
collider path in an(H) in Gm with↔ h (h is in a head)
hence w ∈ tailGm(H). Suppose now w ∈ tailGm(H),
so there is a path π : w → w1 ↔ · · · ↔ h with
intermediate vertices in an(H), we know every bidi-
rected edge corresponds to a bidirected path in an(H)
in G, and the first directed edge correspond to a path
π′ : w → w1 ↔ · · · ↔ w2 in G with intermediate
vertices in an(w2) ⊆ an(H), thus w ∈ tailG(H).

Since Proposition 3.6 holds for summary graphs, if we
change the definition of adjacencies in summary graphs
in the same manner as ADMGs by referring to m-
separations, Theorem 3.8 and Corollary 3.8.1 also hold
for summary graphs.

B.3 Extension for Algorithms

For Algorithm 1, we only add a line at the end of the al-
gorithm (after line 17) to obtain the connected pairs in Gu
(referred as line 18 in the next section). This costs O(e)
and hence does not contribute to the overall complexity.

For Algorithm 2, as showed by Lemma B.1, undirected
edges are preserved, it is sufficient to add a line at the end
of the algorithm (after line 9) to keep all the undirected
edges. This costs O(e) and hence does not contribute to
the overall complexity.

C Proof that Algorithm 1 outputs S̃3

Let A1(G) be the output of Algorithm 1 and A′1(G) be
the output of Algorithm 1 without checking adjacencies
in lines 6, 11 and 14. We also define the following sets

for a MAG G:

H1(G) = {{v, w, z} : v ∈ V and w, z ∈ paG(v)}
H2(G) = {{v, w, z} : v ↔ w, z ∈ tail({v, w})}
Ha

3 (G) = all heads of size 3 with some adjacencies
Hn

3 (G) = all heads of size 3 with no adjacencies
H3(G) = all heads of size 3 = Ha

3 (G) ∪Hn
3 (G)

Ŝ3(G) = {S ∈ S3(G) : there are some adjacencies in S}
U3(G) = {S ⊆ V(Gu) : |S| = 3 and S is complete}.

Thus by definition S̃3(G) ⊆ Ŝ3(G) ⊆ S3(G) and S2(G),
H1(G), H2(G), Ha

3 (G), Hn
3 (G), U3(G) are disjoint.

Lemma C.1. In a MAG G, for any single vertex a,
tail(a) = paG(a), and {v, w} is a head if and only if
v ↔ w.

Proof. If a ⊂ disan(a)(a) then there is a vertex b such
that b↔ a and b ∈ anG(a), which contradicts ancestral-
ity. Hence tail(a) = paG(a).

If v ↔ w then v, w have no ancestral relation so by
definition, it is a head. Suppose {v, w} is a head, so
{v, w} ∈ S(G) then they must be adjacent by Propo-
sition 3.4 and the adjacency can not be undirected or di-
rected, thus v ↔ w.

Thus H1(G) and H2(G) are precisely the sets in S3(G)
that arise from heads of size one and two, respectively.
Lemma C.2. For a MAG G, we have

S3(G) = S2(G) ∪H1(G) ∪H2(G) ∪H3(G) ∪ U3(G)
Ŝ3(G) = S2(G) ∪H1(G) ∪H2(G) ∪Ha

3 (G) ∪ U3(G).

Proof. Consider the first equality, for S = {v, w} ∈
S3(G), by Proposition 3.4, v, w are adjacent in G so
S ∈ S2; For S ∈ S3(G) and |S| = 3, it is a clique
in Gu or it origins from heads of size either 1 or 2 or
3. Thus by Lemma 4.1 and Lemma 4.1, S ∈ H1(G) ∪
H2(G)∪H3(G)∪U3(G); For S in the right hand side, it
is in S3(G) by definition.

For the second equality, by definition Ŝ3(G) excludes all
S ∈ S3(G) that have no adjacencies, but note that all S ∈
S2(G)∪H1(G)∪H2(G)∪U3(G) have some adjacencies.
And by definition Ha

3 (G) extract all heads of size 3 with
some adjacencies.

Lemma C.3. For a MAG G, A′1(G) ∪ U3(G) = Ŝ3(G).

Proof. S ∈ A′1(G) obtained at line 5, 7, 9, 12, 17 and
18, correspond to sets in S2(G), H1(G), S2(G), H2(G),
Ha

3 (G) and S2(G), respectively. So by Lemma C.2,
A′1(G) ∪ U3(G) ⊆ Ŝ3(G) Conversely, all sets in Ŝ3(G) \
U3(G) can be obtained at corresponding lines.

Proposition 4.1. For a MAG G, A1(G) = S̃3(G).

Proof. Compared to Ŝ3(G), S̃3(G) excludes all sets of
size 3 that have 3 adjacencies. If the set is clique in Gu
except for edges, it is not added in Algorithm 1. Other-
wise note that when sets of size 3 are obtained, lines 6,
11 and 14 check their adjacencies.

Notice that Algorithm 1 naturally identifies Ŝ3(G) \
U3(G), but to obtain the full Ŝ3(G) one also needs to
identify all triangles in the undirected component; S̃3(G)
excludes this set.

Proposition 4.2. Let Ai be the number of ancestors of
the vertex i. Then

EAi =
(
1 +

r

n

)i−1
.

In particular,

EAn =
(
1 +

r

n

)n−1
−→ er.

Proof. We proceed by induction. The result is trivially
true for A2 = 1 + r

n . Suppose the result holds for Aj .
Then

EAj+1 = 1 +

j∑
i=1

E1{i→j+1}Ai

= 1 +
r

n

j∑
i=1

(
1 +

r

n

)i−1
,

using independence of the edge andAi and the induction
hypothesis. Hence

EAj+1 = 1 +

j∑
i=1

i−1∑
k=0

(
i− 1

k

)(r
n

)k+1

= 1 +

j−1∑
k=0

(r
n

)k+1
j−1∑

i=k+1

(
i− 1

k

)

= 1 +

j−1∑
k=0

(r
n

)k+1
(

j

k + 1

)

= 1 +

j∑
k=1

(r
n

)k (j
k

)
.

by a standard result about binomial coefficients. This
gives the result.

References
T. S. Richardson and P. Spirtes. Ancestral graph Markov

models. Annals of Statistics, 30(4):962–1030, 08
2002.

N. Wermuth. Probability distributions with summary
graph structure. Bernoulli, 17(3):845–879, 08 2011.

