
MaskAAE: Latent space optimization for Adversarial Auto-Encoders

Arnab Kumar Mondal∗
IIT Delhi

anz188380@cse.iitd.ac.in

Sankalan Pal Chowdhury∗
IIT Delhi

cs1160701@iitd.ac.in

Aravind Jayendran∗†
Flipkart Internet Pvt. Ltd.

aravind.j@flipkart.com

Parag Singla
IIT Delhi

parags@cse.iitd.ac.in

Himanshu Asnani
TIFR

himanshu.asnani@tifr.res.in

Prathosh AP
IIT Delhi

prathoshap@ee.iitd.ac.in

Abstract

The field of neural generative models is domi-
nated by the highly successful Generative Ad-
versarial Networks (GANs) despite their chal-
lenges, such as training instability and mode
collapse. Auto-Encoders (AE) with regular-
ized latent space provide an alternative frame-
work for generative models, albeit their perfor-
mance levels have not reached that of GANs.
In this work, we hypothesise that the dimen-
sionality of the AE model’s latent space has
a critical effect on the quality of generated
data. Under the assumption that nature gener-
ates data by sampling from a “true” generative
latent space followed by a deterministic func-
tion, we show that the optimal performance is
obtained when the dimensionality of the latent
space of the AE-model matches with that of
the “true” generative latent space. Further, we
propose an algorithm called the Mask Adver-
sarial Auto-Encoder (MaskAAE), in which the
dimensionality of the latent space of an adver-
sarial auto encoder is brought closer to that of
the “true” generative latent space, via a proce-
dure to mask the spurious latent dimensions.
We demonstrate through experiments on syn-
thetic and several real-world datasets that the
proposed formulation yields betterment in the
generation quality.

1 INTRODUCTION

The objective of a probabilistic generative model is to
learn to sample new points from a distribution given a
finite set of data points drawn from it. Deep generative
∗Equal contribution
†Work partially done when at IIT Delhi

Proceedings of the 36th Conference on Uncertainty in Artificial
Intelligence (UAI), PMLR volume 124, 2020.

models, especially the Generative Adversarial Networks
(GANs) (Goodfellow et al. (2014)) have shown remark-
able success in this task by generating high quality data
(Brock et al. (2019)). GANs implicitly learn to sample
from the data distribution by transforming a sample from
a simplistic distribution (such as Gaussian) to the sam-
ple from the data distribution by optimising a min-max
objective through an adversarial game between a pair of
function approximators called the generator and the dis-
criminator. Although GANs generate high-quality data,
they are known to suffer from problems like instability
of training (Arora et al. (2017); Salimans et al. (2016)),
degenerative supports for the generated data (mode col-
lapse) (Arjovsky and Bottou (2017); Srivastava et al.
(2017)) and sensitivity to hyper-parameters (Brock et al.
(2019)).

Auto-Encoder (AE) based generative models (Zhao et al.
(2017); Kingma and Welling (2013); Makhzani et al.
(2016); Tolstikhin et al. (2018)) provide an alternative to
GAN based models. The fundamental idea is to learn a
lower dimensional latent representation of data through a
deterministic or stochastic encoder and learn to generate
(decode) the data through a decoder. Typically, both the
encoder and decoder are realised through learnable fam-
ily of function approximators or deep neural networks.
To facilitate the generation process, the distribution over
the latent space is forced to follow a known distribution
so that sampling from it is feasible. Despite resulting
in higher data-likelihood and stable training, the quality
of generated data of the AE-based models is known to
be far away from state-of-the-art GAN models (Dai and
Wipf (2019); Grover et al. (2018); Theis et al. (2015)).

While there have been several angles of looking at the
shortcomings of the AE-based models (Dai and Wipf
(2019); Hoshen et al. (2019); Kingma et al. (2016); Tom-
czak and Welling (2017); Klushyn et al. (2019); Bauer
and Mnih (2019); van den Oord et al. (2017)), an impor-
tant question seems to have remained unaddressed: How
does the dimensionality of the latent space (bottle-neck

Figure 1: FID score for a Wasserstein Auto-Encoder with
varying latent dimensionality m for 2 synthetic datasets
of ‘true’ latent dimensions, n = 8 and n = 16 and
MNIST. It is seen that the generation quality gets worse
on both the sides of a certain latent dimensionality. FID
scores have been scaled appropriately to bring them in
the same range

layer) affect the generation quality in AE-based models?

It is a well-known fact that most of the naturally oc-
curring data effectively lies in a manifold with dimen-
sion much lesser than its original dimensionality (Cay-
ton (2005); Law and Jain (2006); Narayanan and Mit-
ter (2010)). Intuitively, this suggests that with functions
that Deep Neural Networks learn, there exists an opti-
mal number of latent dimensions, since “lesser” or “ex-
tra” number of latent dimensions may result in loss of
information and noisy generation, respectively. This ob-
servation is also corroborated by empirical evidence pro-
vided in Fig. 1 where a state-of-the-art AE-based gener-
ative model (Wasserstein Auto-Encoder Tolstikhin et al.
(2018)) is constructed on two synthetic (detailed in Sec-
tion 5) and MNIST datasets, with varying latent dimen-
sionality (everything else kept the same). It is seen that
the generation quality metric (FID) follows a U-shaped
curve. Thus, to obtain optimal generation quality, a
brute-force search over a large range of values of latent
dimensionality may be required, which is practically in-
feasible. Motivated by the aforementioned observations,
in this work, we explore the role of latent dimensionality
in AE-based generative models, with the following con-
tributions:

1. We model the data generation as a two-stage pro-
cess comprising of sampling from a “true” latent
space followed by a deterministic function.

2. We provide theoretical understanding on the role of
the latent space dimensionality on the generation
quality, by formalizing the requirements for a faith-
ful generation in of AE-based generative models
with deterministic encoder and decoder networks.

3. Owing to the obliviousness of the dimensionality
of the “true” latent space in real-life data, we pro-
pose a method to algorithmically “mask” the spuri-
ous dimensions in AE-based models (and thus call
our model the MaskAAE).

4. We demonstrate the efficacy of the proposed model
on synthetic as well as large-scale image datasets
by achieving better generation quality metrics com-
pared to the state-of-the-art AE-based models.

2 RELATED WORK

Let x denote data points lying in the space X conform-
ing to an underlying distribution Υ(x), from which a
generative model desires to sample. An Auto-Encoder
based model constructs a lower-dimensional latent space
Z to which the data is projected through an (probabilis-
tic or deterministic) Encoder function, Eκ. An inverse
projection map is learned from Z to X through a De-
coder function Dψ , which can be subsequently used as
a sampler for Υ(x). For this to happen, it is neces-
sary that the distribution of points over the latent space
Z is regularized (to some known distribution Π(z)) to
facilitate explicit sampling from Π(z), so that decoder
can generate data taking samples from Π(z) as input.
Most of the AE-based models maximize the data like-
lihood (or a lower bound on it), which is shown (Kingma
and Welling (2013); Hoffman and Johnson (2016)) to
consist of the sum of two critical terms - (i) the like-
lihood of the Decoder generated data and, (ii) a diver-
gence measure between the assumed latent distribution,
Π(z), and the distribution imposed on the latent space by
the Encoder, Ψ(z) =

∫
Ψ(z|x)Υ(x)dx, (Hoffman and

Johnson (2016); Makhzani et al. (2016)). This under-
lying commonality, suggests that the success of an AE-
based generative model depends upon simultaneously
optimising the aforementioned terms. The first criterion
is fairly easily ensured in all AE models by minimizing
a surrogate function such as the reconstruction error be-
tween the samples of the true data and output of the de-
coder, which can be made arbitrarily small (Burgess et al.
(2017); Dai and Wipf (2019); Alain and Bengio (2014))
by increasing the network capacity. It is well recognized
that the quality of the generated data relies heavily on
achieving the second criteria of bringing the Encoder im-
posed latent distribution Ψ(z) close to the assumed la-
tent prior distribution Π(z) (Dai and Wipf (2019); Hoff-
man and Johnson (2016); Burgess et al. (2017)). This
can be achieved either by (i) assuming a pre-defined
primitive distribution for Π(z) and modifying the En-
coder such that Ψ(z) follows assumed Π(z) (Kingma
and Welling (2013); Makhzani et al. (2016); Tolstikhin
et al. (2018); Chen et al. (2018); Higgins et al. (2017);

Kim and Mnih (2018); Kingma et al. (2016)) or by (ii)
modifying the latent prior Π(z) to follow whatever dis-
tribution

(
Ψ(z)

)
Encoder imposes on the latent space

(Tomczak and Welling (2017); Bauer and Mnih (2019);
Klushyn et al. (2019); Hoshen et al. (2019); van den Oord
et al. (2017)).

The seminal paper on VAE (Kingma and Welling (2013))
proposes a probabilistic Encoder which is tuned to output
the parameters of the conditional posterior Ψ(z|x) which
is forced to follow the Normal distribution prior assumed
on Π(z). However, the minimization of the divergence
between the conditional latent distribution and the prior
in the VAE leads to trade-off between the reconstruction
quality and the latent matching, as this procedure also
leads to the minimization of the mutual information be-
tween X and Z , which in turn reduces Decoder’s ability
to render good reconstructions (Kim and Mnih (2018)).
This issue is partially mitigated by altering the weights
on the two terms of the ELBO during optimization (Hig-
gins et al. (2017); Burgess et al. (2017)), or through in-
troducing explicit penalty terms in the ELBO to strongly
penalize the deviation of Ψ(z) from assumed prior Π(z)
(Chen et al. (2018); Kim and Mnih (2018)). Adver-
sarial Auto-Encoders (AAE) (Makhzani et al. (2016))
and Wasserstein Auto-Encoders (WAE) (Tolstikhin et al.
(2018)) address this issue, by taking advantage of ad-
versarial training to minimize the divergence between
Ψ(z) and Π(z), via deterministic Encoder and Decoder
networks. There also have been attempts in employing
the idea of normalizing flow for distributional estimation
for making Ψ(z) close to Π(z) (Kingma et al. (2016);
Rezende and Mohamed (2015)). These methods, al-
though improve the generation quality over vanilla VAE
while providing additional properties such as disentan-
glement in the learned space, fail to match the generation
quality of GAN and its variants.

In another class of methods, the latent prior Π(z) is made
learnable instead of being fixed to a primitive distribution
so that it matches with Encoder imposed Ψ(z). In Vam-
Prior (Tomczak and Welling (2017)), the prior is taken
as a mixture density whose components are learned us-
ing pseudo-inputs to the Encoder. Klushyn et al. (2019)
introduces a graph-based interpolation method to learn
the prior in a hierarchical way. In van den Oord et al.
(2017); Kyatham et al. (2019), discrete latent space is
employed, using vector quantization schemes where the
prior is learned using a discrete auto-regressive model.
While these prior matching methods provide various ad-
vantages, there is no mechanism to ward-off the ‘spu-
rious’ latent dimensions that are known to degrade the
generation quality. While there exists a possibility that
the Decoder learns to ignore those spurious dimensions
by making the corresponding weights zero there is no

guarantee or empirical evidence of neglecting those di-
mensions. Another indirect approach to handle this is-
sue is to add noise to the input data and prevent vari-
ance collapse in the latent space through explicit regu-
larization (Rubenstein et al. (2018)). However, this ap-
proach avoids the problem instead of solving it. The clos-
est work to ours is 2-stage VAE (Dai and Wipf (2019)),
in which the authors show that VAEs struggle to match
the latent distribution to an isotropic standard Gaussian
when there is a mismatch between the original data man-
ifold dimension and the latent space capacity. To resolve
this, they propose two VAEs, where the first one maps
the data to a latent code having the same dimension as
the latent space capacity, and the second stage then maps
the latent spaced mapped in the first stage to an isotropic
Gaussian (see supplementary for a detailed discussion).

To summarize, it is observed that without additional
modifications, in vanilla AE-based models, the existence
of superfluous latent dimensions degrades the generation
quality. We formally address this problem, presenting a
novel theoretical analysis of the issues involved, and also
provide a method to ameliorate this problem by explic-
itly masking the spurious dimensions in the latent space
of AE based models.

3 EFFECT OF LATENT
DIMENSIONALITY

3.1 PRELIMINARIES

In this section, we theoretically examine the effect of la-
tent dimensionality on the quality of generated data in
AE based generative models. We show that if dimen-
sionality of the latent space Z is more than the optimal
dimensionality (to be defined), Π(z) and Ψ(z) diverge
too much whereas it being less leads to information loss.

Ψ̃ z̃ ∈ Rn

f : Rn → Rd

x ∈ Rd

Step-1: Sampling from an isotropic

continuous distribution

Step-2: Non-linear transformation to higher dimension,

d >> n

Figure 2: Depiction of the assumed data generation pro-
cess. Samples drawn from a ‘true’ latent distribution
Ψ̃(z̃) are passed through a function f to obtain x.

To begin with, we allow a certain inductive bias in as-
suming that nature generates data as described in Fig-
ure 2 using the following two-step process: First sam-

ple from some isotropic continuous latent distribution in
n-dimensions (call this Ψ̃ over Z̃), and then pass this
through a function f : Rn → Rd, where d is the dataset
dimensionality. Typically d >> n, thereby making data
to lie on a low-dimensional manifold in Rd. Since Z̃ can
intuitively be viewed as the latent space from which the
nature is generating the data, we call n the true latent di-
mension and function f , as the data-generating function.
Note that within this ambit, Z̃ forms the domain of f and
it is unique only up to its range with following properties:

A1 f is L-lipschitz: ∃ some finite L ∈ R+ satisfying
||f(z̃1)− f(z̃2)|| ≤ L||z̃1 − z̃2||, ∀z̃1, z̃2 ∈ Z̃ .

A2 There does not exist f∗ : Rn
′ → Rd, n′ < n satis-

fying A1 such that the range of f is a subset of the
range of f∗.

The first property is satisfied by a large class of functions,
including neural networks and the second simply states
that n, the dimension of the domain (generative latent
space) of f is minimal1. Hence, it is reasonable to im-
pose these restrictions on data-generating functions. (An
illustrative example for A2 is provided in the supp.)

3.2 CONDITIONS FOR GOOD GENERATION

In this section, we formulate the conditions required for
faithful generation in latent variable generative models.
Let Γ(x, z) and Γ′(x, z) denote the true and the (implic-
itly) inferred joint distribution of the observed and latent
variables. The goal of the latent variable generative mod-
els is to minimize the negative log-likelihood of Γ′(x, z)
under Γ(x, z):

L(Γ,Γ′) = − E
x,z∼Γ

[
log(Γ′(x, z))

]
(1)

An AE-based generative model would attempt to mini-
mize Eq. 1 by learning two parametric functions, Eκ ,
g : Rd → Rm (m is hereafter referred to as assumed la-
tent dimension / model capacity) and Dψ , g′ : Rm →
Rd, to approximate the distributions Ψ(z|x) and Γ(x|z),
respectively. Further, Eq. 1 can be split into two terms,
and the objective of any AE-model can be restated as:

min

(
E
Γ

[− log(Γ′(x|z))]

︸ ︷︷ ︸
R1

+E
Γ

[log
1

Γ′(z)
]

︸ ︷︷ ︸
R2

)
(2)

If Eκ and Dψ are deterministic (as in the case of

1If there exists such an f∗, then that would become the gen-
erating function with n′ being minimal.

AAE (Makhzani et al. (2016)) 2, WAE (Tolstikhin et al.
(2018)) etc.), then the two terms in Eq. 2 can be cast
as the following two requirements (see the supp. for the
proof):

R1 f(z̃) = g′(g(f(z̃))) ∀ z̃ ∈ Rn. This condition
states that the reconstruction error between the real
and generated data should be minimal.

R2 The Cross Entropy H(Ψ,Π) between the chosen
prior Ψ, and Π on Z is minimal.

With this, we state and prove the conditions required to
ensure R1 and R2 are met with assumed data generation
process.

Theorem 1. With the assumption of data generating
process mentioned in Sec.3.1, requirements R1 and R2
(Sec.3.2), can be satisfied iff assumed latent dimension
m is equal to true latent dimension n.

Proof: We prove by contradicting either R1 or R2, in
assuming both the cases of m < n or m > n.

Case A (m < n): For R1 to hold, the range of f
must be a subset of the range of g′. Further, since g′ is
a Neural Network, it satisfies A1. But, by A2, such a
function cannot exist if m < n.
Case B (m > n): For the sake of simplicity, let us
assume that Z̃ is a unit cube3 in Rn. We show in Lemma
1 and 2 that in this case, R2 will be contradicted if
m > n. The idea is to first show that the range of g ◦ f
will have Lebesgue measure 0 (Lemma 1) and this leads
to arbitrarily largeH (Lemma 2).
Lemma 1: Let Ω : [0, 1]α → Rβ be an L − lipschitz
function. Then its range R ∈ Rβ has Lebesgue measure
0 in Rβ dimensions if β > α.

Proof: For some ε ∈ N, consider the set of points:

S={(a0+0.5
ε , . . . , aα−1+0.5

ε)
∣∣ai ∈ {0, . . . , ε− 1}}.

Construct closed balls around them having radius
√
α

2ε .
It is easy to see that every point in the domain of Ω is
contained in at least one of these balls. This is because,

2Makhzani et al. (2016), in their work, have observed that
the performance of stochastic and deterministic networks are
comparable. Thus, We consider only deterministic networks
for theoretical analysis and experimentation in our work.

3One can easily obtain another function ν : [0, 1]n → Z̃
that scales and translates the unit cube appropriately. Note that
for such a ν to exist, we need Z̃ to be bounded, which may
not be the case for certain distributions like the Gaussian dis-
tributions. Such distributions, however, can be approximated
successively in the limiting sense by truncating at some large
value Rudin et al. (1964)

for any given point, the nearest point in S can be at-most
1
2ε units away along each dimension. Also, since Ω is
L-lipschitz, we can conclude that the image set of a
closed ball having radius r and centre u ∈ [0, 1]α would
be a subset of the closed ball having centre Ω(u) and
radius L× r.
The range of Ω is then a subset of the union of the image
sets off all the closed balls defined around S. The volume
of this set is upper bounded by the sum of the volumes of
the individual image balls, each having volume c

εβ
where

c is a constant having value (L)β(απ)
β
2

Γ(β2 +1)
. Therefore,

vol(R) ≤ |S| × c

εβ
=

c

εβ−α
. (3)

The final quantity of Eq. 3 can be made arbitrarily small
by choosing ε appropriately. Since the Lebesgue mea-
sure of a closed ball is same as its volume, the range of
Ω, R has measure 0 in Rβ .
Since f, and g are Lipschitz, g ◦ f must have a range
with Lebesgue measure 0 as a consequence of Lemma 2.
Now we show that as a consequence of the range of g ◦f
(call it R) having measure 0, the cross-entropy between
Π and Ψ goes to infinity.

Lemma 2: If Π and Ψ are two distributions as defined
in Sec.3.1 such that the support of the latter has a 0
Lebesgue measure, then H(Π,Ψ) grows to be arbitrar-
ily large.
Proof: Ψ can be equivalently expressed as:

Ψ(z) =

{
Ψ̃(z̃) if ∃ z̃4 ∈ Z̃ s.t. g(f(z̃)) = z,

0 otherwise
(4)

Define IR as the indicator function ofR, i.e.

IR(z) =

{
1 if ∃ z̃ ∈ Z̃ s.t. g(f(z̃)) = z,

0 otherwise
(5)

SinceR has measure 0 (Lemma 2), we have
∫

Rm
IR(z)dz = 0 (6)

Further, since IR is identically 1 in the support of Ψ,

Ψ(z) = Ψ(z)IR(z) (7)

Next, consider the cross-entropy between Π and Ψ:

H(Π,Ψ) =

∫

Z
Π(z)(− log(Ψ(z)))dz

≥
∫

Z−R
Π(z)(− log(Ψ(z)IR(z)))dz

≥ %
∫

Z−R
Π(z)dz

(8)

4Note that in general, z̃ is not unique, and if multiple such
z̃ exist, we have to sum(or perhaps integrate) Ψ̃ over all such z̃

for any arbitrarily large positive real %. This holds true
because IR is identically 0 over the domain of integra-
tion. Further,
∫

Z−R
Π(z) ≥

∫

Z
Π(z)−

∫

R
Π(z)

= 1−
∫

Rm
Π(z)IR(z)dz

≥ 1−max
Rm

(Π(z))

∫

Rm
IR(z)dz

= 1

(9)

Combining 8 and 9, the required cross-entropy is lower
bounded by an arbitrarily large quantity %.
Thus Lemma 2 contradicts R2 required for good genera-
tion when m > n. Therefore, to ensure good generation
neither m > n nor m < n can be true. Thus, the only
possibility is m = n. This concludes Theorem 1.

One can ensure good generation, by satisfying both R1
and R2 via a trivial solution in the form of g′ = f with
an appropriate g and making m = n. However, since
neither n nor f is known, one needs a practical method
to ensure m approaches n which is described in the next
section.

4 MaskAAE (MAAE)

4.1 MODEL DESCRIPTION

Our premise in section 3.2 demands a pair of deter-
ministic Encoder and Decoder networks satisfying R1
and R2, to ensure good quality generation. AE-models
with deterministic Eκ and Dψ networks, such as Ad-
versarial Auto-Encoder (AAE) (Makhzani et al. (2016))
and Wasserstein Auto-Encoder (WAE) (Tolstikhin et al.
(2018)) implement R1 by approximating norm-based
losses and R2 through an adversarial training mechanism
under metrics such as JS-Divergence or Wasserstein dis-
tance. However, most of the time, the choice of the la-
tent dimensionality is ad hoc and there is no mechanism
to get rid of the excess latent dimensions that is critical
for good-quality generation as demanded by Theorem 1.
Therefore, in this section, we take the ideas presented in
Section 3, and propose an architectural modification on
models such as AAE/WAE, such that being initialized
with a large enough estimated latent space dimension the
model would learn a binary-mask automatically discov-
ering the right number of latent dimensions required.

Specifically, we propose the following modifications in
the AAE-like architecture (Makhzani et al. (2016); Tol-
stikhin et al. (2018)), which contain an additional com-
ponent called Discriminator (Hζ) that is used to match

x

Eκ

ẑ ∼ Ψ µ� ẑ

Dψ

x̂

θ

b(·)

µ

z ∼ Π µ� z

Hζ ω

Figure 3: Block Diagram of MaskAAE. It consists of
an encoder, Eκ, a decoder, Dψ , and a discriminator Hζ

as in AAE. A new layer called mask, µ is introduced at
the end of the encoder to suppress spurious latent dimen-
sions. The prior also gets multiplied with the same mask
vector before going into the Discriminator to ensure prior
matching (R2).

Ψ(z) and Π(z) via adversarial learning. Our model,
called the MaskAAE is detailed in figure 3.

1. We introduce a trainable mask layer, µ ∈ {0, 1}m,
just after the final layer of the Encoder network.

2. Before passing the encoded representation, ẑ of an
input image x to the decoder network (Dψ) and the
Discriminator network (Hζ) a Hadamard product is
performed between ẑ and µ.

3. A Hadamard product is performed between the
prior sample, z ∼ Π(z) and the same mask µ as
in item (1), before passing it as an input to the dis-
criminator network Hζ to ensure R2.

4. During inference, the prior samples are multiplied
with the learned mask before giving as input to the
Decoder (Dψ) network which serves the generator.

Intuitively, masking of both the encoded latent vector and
prior with a same binary mask allows us to work only
with a subset of dimensions in the latent space. This
means that even though m (the initial assumed latent di-
mensionality) may be greater than n, mask (if learned
properly) reduces the encoded latent space to Rn. This
will in-turn facilitate better matching of Ψ(z) and Π(z)
(R2) required for better generation.

4.2 TRAINING MaskAAE

MaskAAE is trained exactly similarly as one would train
an AAE/WAE but with the addition of a loss term to train
the mask layer. Here, we provide the details of the mask-
loss only. For a complete description of other AAE/WAE
based training loss terms refer to the supplementary.

Although, the mask by definition is a binary-valued vec-
tor, to facilitate gradient flow during training, we relax

it to be continuous valued while penalizing it for devi-
ation from either 0 or 1. Specifically, we parameterize
µ using a vector θ ∈ Rm such that µ = b(θ) where,
b(θ) = max(0, 1 − e−θ). θ is initialized by drawing
samples from U [0, a], where a ∈ Z+. Intuitively, this
parameterization bounds µ in the range [0, 1). Since the
mask layer affects both the requirements R1 and R2, it
is trained so as to minimize both the norm-based recon-
struction error (first term in Eq. 10) and divergence met-
rics such as JS-divergence or Wasserstein’s distance, be-
tween the masked prior distribution and the masked en-
coded latent distribution (second term in Eq. 10). Fi-
nally, a polynomial regularizer (third term in Eq. 10) is
also added on µ so that any deviation from {0, 1} is pe-
nalized. Therefore, the final objective function for the
mask layer, Lmask consists of three terms as below.

Lmask =
λ1

s

s∑

i=1

||x(i) −Dψ(µ� Eκ(x(i)))||

+ λ2(1 + ω)2 + λ3

m∑

j=1

|µj(µj − 1)|
(10)

where, ω = 1
s

∑
iHζ(µ�z(i))− 1

s

∑
iHζ(µ�Eκ(x(i)))

is the Wasserstein’s distance, s denotes batch size, and
the weights (λ1, λ2, λ3) of different loss terms are hyper-
parameters. The training algorithm, and the architectures
for Eκ , Dψ and Hζ are available in the supplementary.

5 EXPERIMENTS AND RESULTS

We divide our experiments into two parts: (a) Synthetic,
and (b) Real. In synthetic experiments, we control the
data generation process, with a known number of true
latent dimensions. Hence, we can compare the perfor-
mance of our proposed model for several true latent di-
mensions, and examine whether our method can discover
the true number of latent dimensions. This also helps us
validate some of the theoretical claims made in Section 3.
On the other hand, the objective of the experiments with
real datasets is to examine whether our masking based
approach can result in a better generation quality as com-
pared to the state-of-the-art AE-based models. We would
also like to understand the behaviour of the number of di-
mensions which are masked in this case (though the true
latent dimension may not be known). We also analysed
linear and ternary search over a range on the size of the
latent space as naı̈ve alternatives. We found them to be
computationally prohibitive, taking at least an order of
magnitude more time compared to our approach. Refer
to supplement Sec. 8 for details.

(a) (b) (c)

Figure 4: (a) and (b) shows FID score for WAE and MAAE and active dimension in a trained MAAE model with
varying model capacity, m for synthetic dataset of true latent dimensions, n = 8 and n = 16, mA represents the
number of unmasked latent dimensions in the trained model and (c) shows the same plots for MNIST dataset.

5.1 SYNTHETIC EXPERIMENTS

In the following description, we will use n to denote the
true latent dimension, and m to denote the assumed la-
tent dimension (or model capacity) in line with the no-
tation used earlier in the paper. Assuming that data is
generated according to the generation process described
in Section 3, we are interested in answering the follow-
ing questions: (a) Given sufficient model capacity (i.e,
m ≥ n and sufficiently powerful Eκ, Dψ and Hζ), can
MAAE discover the true number of latent dimensions?
(b) How is the quality of the data generated by MAAE
for different values of m?

Ideally, we would expect that whenever m ≥ n, MAAE
masks (m−n) number of dimensions. Further, we would
expect that the performance of MAAE is independent of
the value of m, whenever m ≥ n. For each value of
m that we experimented with, we trained an equivalent
WAE model with exactly same architecture for Eκ , Dψ

and Hζ as in MAAE without the mask layer. We would
expect the performance of the WAE model to deteriorate
whenever m 6= n if our theory were to hold correct.

In line with our assumed data generation process, the
data for our synthetic experiments is generated as below:

• Sample z̃ ∼ N (µs,Σs), where the mean µs ∈ Rn
was fixed to be zero and Σs ∈ Rn×n represents the
diagonal co-variance matrix (isotropic Gaussian).

• Compute x = f(z̃), where f is a non-linear func-
tion computed using a two-layer fully connected
neural network with k units in each layer, d >> n
output units, and using leaky ReLU as the non-
linearity (refer to the supplement for more details).
The weights of these networks are randomly fixed
and k was taken as 128.

We set n = 8 and 16, and variedm in the range of [2, 32]

and [2, 78] with step size 2, for n = 8 and n = 16 respec-
tively. We use the standard Fréchet Inception Distance
(FID) 5 (Heusel et al. (2017)) score between generated
and real images to validate the quality of the generated
data, because FID has been shown to correlate well the
human visual perception and also sensitive to artifacts
such as mode collapse (Lucic et al. (2018); Sajjadi et al.
(2018)). Figure 4 (a) and (b) presents our results on syn-
thetic data. On X-axis, we plot m and Y-axis (left) plots
the FID score comparing MAAE and WAE for different
values of m. Y-axis (right) plots the number of active
dimensions discovered by our algorithm. It is seen that
both MAAE and WAE, achieve the best FID score when
m = n. But whereas the performance for WAE dete-
riorates with increasing m, MAAE retains the optimal
FID score independent of the value of m. Further, in
each case, we get very close to the true number of la-
tent dimensions, even with different values of m (as long
as m > 8 or 16, respectively). Table 3 of the supple-
mentary material presents the variation of log-likelihood
scores for generated data with model capacity (m) for
WAE and MaskAEE for synthetic dataset (n = 16); this
exhibits a similar behaviour. These results clearly vali-
date our theoretical claims, and also the fact that MAAE
is capable of offering good quality generation in practice.

5.2 REAL EXPERIMENTS

Next, we examine the behavior of MAAE on real-world
datasets. The true latent data dimensions (n) is unknown
for real datasets. However, the behaviour can still be ana-
lyzed as the estimated latent dimension (m) is varied. We
experiment with the following four image datasets: (a)
MNIST (Lecun (2010)) (b) Fashion MNIST (Xiao et al.

5We compute the Fréchet Distance between the real and the
generated data directly for synthetic experiments. As synthetic
data is low-dimensional, computation of Inception Net embed-
ding is not required.

(a) (b) (c)
Figure 5: Behaviour of mask in MAAE with different model capacities, m for MNIST dataset. m, in figure (a), (b),
and (c) are 32, 64, and 110, respectively. Dimensions active after training are mA are 11, 13, and 11 respectively.

(a) (b) (c) (d)
Figure 6: Randomly generated images of (a) MNIST, (b) Fashion MNIST, (c) CelebA, and (d) CIFAR-10 datasets.

(2017)) (c) CIFAR-10 (Krizhevsky (2009)) (d) CelebA
(Liu et al. (2015)) with standard test/train splits.

In our first set of experiments, we perform an analysis
similar to the one done in the case of synthetic data,
for the MNIST dataset. Specifically, we varied the es-
timated latent dimension (model capacitym) for MNIST
from 10 to 110, and analyzed the FID score, as well as
the true dimensionality as discovered by the model. For
comparison, we also did the same experiment using the
WAE model. Figure 4 (c) shows the results. As in the
case of synthetic data, we observe a U-shape behavior
for the WAE model, with the lowest value achieved at
m = 13. This validates our thesis that the best perfor-
mance is achieved at a specific value of latent dimen-
sion, which is around 13 in this case. Further, looking
at MAAE curve, we notice that the performance (FID
score) more or less stabilizes for m ≥ 16. In addi-
tion, the true latent dimension discovered also stabilizes
around 10 − 13 irrespective of m, without compromis-
ing much on the generation quality. Note that the same
network architecture was used at all points of Figure 4.
These observations are in line with the expected behav-
ior of MAAE, and the fact that it can indeed mask the
spurious dimensions to achieve good generation quality.

Figure 5 shows the behaviour of mask for model capacity
m = 32, 64 and 110 on MNIST dataset. Interestingly, in
each case, we are able to discover almost the same num-

Table 1: FID scores for generated images from different
AE-based generative models (Lower is better).

MNIST Fashion CIFAR-10 CelebA
VAE (cross-entr.) 16.6 43.6 106.0 53.3
VAE (fixed variance) 52.0 84.6 160.5 55.9
VAE (learned variance) 54.5 60.0 76.7 60.5
VAE + Flow 54.8 62.1 81.2 65.7
WAE-MMD 115.0 101.7 80.9 62.9
WAE-GAN 12.4 31.5 93.1 66.5
2-Stage VAE 12.6 29.3 72.9 44.4
MAAE 10.5 28.4 71.9 40.5

ber of unmasked dimensions, independent of the starting
point. It is also observed that the Wasserstein distance is
minimized at the point where the mask reaches the opti-
mal point (we refer to the supplementary material for the
plots).

Finally, to measure generation quality, we present the
FID scores of MAAE in Table 1 along with several state-
of-the-art AE-based models mentioned in Sec. 2. Our
approach achieves the best FID score on all the datasets
compared to the state-of-the-art AE based generative
models. Performance of MAAE is also comparable to
that of GANs listed in Lucic et al. (2018), despite us-
ing a simple reconstruction loss and an isotropic uni-
modal Gaussian prior. Figure 6 presents 100 randomly
selected MAAE-generated samples for each dataset. The
better FID scores of MAAE can be attributed to better
distribution matching in the latent space between Ψ(z)

and Π(z). But a quantative comparison of distributional
match is not straight forward as MAAE might mask out
some of the latent dimensions resulting in a dimensional-
ity mismatch among the latent space in different models,
thus rendering the usual metrics unsuitable. We there-
fore, calculate the averaged off-diagonal normalized ab-
solute co-variance6 (NAC) of the encoded latent vectors
and report it in Table 2 (Refer supp. for full co-variance
matrix). Since Π(z) is assumed to be an isotropic Gaus-
sian, ideally NAC should be zero and any deviation from
zero indicates a mismatch. We use only the unmasked
latent dimensions of MAAE for NAC computation, to
avoid underestimation by considering the unused dimen-
sion. Note that for the same model capacity, MAAE
has lesser NAC than the corresponding WAE indicating
better distribution matching in the latent space. These
results clearly demonstrate that not only MAAE can
achieve the best FID scores on various datasets, it also
serves as a first step in discovering the underlying latent
structure for a given dataset.

Table 2: Average off-diagonal covariance NAC for both
WAE and MAAE. mA represents the number of un-
masked latent dimensions in the trained model. It is seen
that MAAE has lower NAC values indicating lesser de-
viation of Ψ(z) from Π(z) as compared to a WAE.

Dataset Model Capacity WAE MAAE
mA NAC mA NAC

Synthetic8 16 16 0.040 9 0.030
Synthetic16 32 32 0.031 16 0.013
MNIST 64 64 0.027 13 0.020
FMNIST 128 128 0.025 40 0.019
CIFAR-10 256 256 0.017 120 0.013
CelebA 256 256 0.046 77 0.039

6 DISCUSSION AND CONCLUSION

Despite demonstrating its pragmatic success, we crit-
ically analyze the possible deviations of the practical
cases from the presented analysis. More often than not,
the naturally occurring data contains some noise super-
imposed onto the actual image. Thus, theoretically one
can argue that this noise can be utilized to minimize the
divergence between the distributions. Practically, how-
ever, this noise has a very low amplitude, so it can only
work for a few extra dimensions, giving a slight overes-
timate of n. Further, in practice, not all latent dimen-
sions contribute equally to the data generation. Since the
objective of our model is to ignore noise dimensions, it
may at times end up throwing away meaningful data di-
mensions which do not contribute significantly. This can
lead to a slight underestimate of n (which is occasionally

6Refer supplementary material for mathematical formula.

observed during experimentation). Finally, neural net-
works, however deep, can represent only a certain level
of complexity in a function which is simultaneous ad-
vantageous and otherwise. It is good because while we
have shown that certain losses cannot be made zero for
m 6= n, universal approximators can bring them arbitrar-
ily close to zero, which is practically the same thing. Due
to their limitation, however, we end up getting a U-curve.
It is a disadvantageous because even when m ≥ n, the
encoder and decoder networks might be unable to learn
the appropriate functions, and for m ≤ n, the Discrimi-
nator fails to make distributions apart. This implies that
instead of discovering the exact same number of dimen-
sions every time, we might get a range of values near the
true latent dimension. Also, the severity of this problem
is likely to increase with the complexity of the dataset
(again corroborated by the experiments).

To conclude, in this work, we have taken a step towards
constructing an optimal latent space for improving the
generation quality of Auto-Encoder based neural gener-
ative model. We have argued that, under the assumption
two-step generative process, the optimal latent space for
the AE-model is one where its dimensionality matches
with that of the latent space of the generative process.
Further, we have proposed a practical method to arrive
at this optimal dimensionality from an arbitrary point by
masking the ‘spurious’ dimensions in AE-based gener-
ative models. Finally, we have shown the effectiveness
of our method in improving the generation quality using
several experiments on synthetic and real datasets.

Acknowledgement

We thank IIT Delhi HPC facility7 for computational resources.
We also express our gratitude to Prof. Sivananthan Sampath
(Dept. of Maths., IIT Delhi) for his help in formalising the
proof of Lemma 1. Parag Singla is supported by the DARPA
Explainable Artificial Intelligence (XAI) Program with num-
ber N66001-17-2-4032, the Visvesvaraya Young Faculty Fel-
lowships by Govt. of India and IBM SUR awards. Himanshu
Asnani acknowledges the support of Department of Atomic En-
ergy, Government of India, under project no. 12-R&D-TFR-
5.01-0500. Any opinions, findings, conclusions or recommen-
dations expressed in this paper are those of the authors and do
not necessarily reflect the views or official policies, either ex-
pressed or implied, of the funding agencies.

References
G. Alain and Y. Bengio, “What regularized auto-encoders learn

from the data-generating distribution,” The Journal of Ma-
chine Learning Research, vol. 15, no. 1, 2014.

M. Arjovsky and L. Bottou, “Towards principled methods for
training generative adversarial networks,” in Proc. of ICLR,
2017.
7http://supercomputing.iitd.ac.in

http://supercomputing.iitd.ac.in

M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein genera-
tive adversarial networks,” in Proc. of ICML, 2017.

S. Arora, R. Ge, Y. Liang, T. Ma, and Y. Zhang, “Generaliza-
tion and equilibrium in generative adversarial nets (gans),”
in Proc. of ICML, 2017.

M. Bauer and A. Mnih, “Resampled priors for variational au-
toencoders,” in Proc. of AISTATS, 2019.

A. Brock, J. Donahue, and K. Simonyan, “Large scale gan
training for high fidelity natural image synthesis,” in Proc.
of ICLR, 2019.

C. P. Burgess, I. Higgins, A. Pal, L. Matthey, N. Watters,
G. Desjardins, and A. Lerchner, “Understanding disentan-
gling in β -VAE,” in NeuRIPS Workshop, 2017.

L. Cayton, “Algorithms for manifold learning,” Univ. of Cali-
fornia at San Diego Tech. Rep, vol. 12, no. 1, 2005.

T. Q. Chen, X. Li, R. B. Grosse, and D. K. Duvenaud, “Isolat-
ing sources of disentanglement in variational autoencoders,”
in Proc. of NeuRIPS, 2018.

B. Dai and D. Wipf, “Diagnosing and enhancing vae models,”
in Proc. of ICLR, 2019.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative
adversarial nets,” in Proc. of NeuRIPS, 2014.

A. Grover, M. Dhar, and S. Ermon, “Flow-gan: Bridging im-
plicit and prescribed learning in generative models,” in Proc.
of AAAI, 2018.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and
A. Courville, “Improved training of wasserstein gans,” in
Proc. of NeuRIPS, 2017.

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and
S. Hochreiter, “Gans trained by a two time-scale update rule
converge to a local nash equilibrium,” in Proc. of NeuRIPS,
2017.

I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot,
M. Botvinick, S. Mohamed, and A. Lerchner, “β-VAE:
Learning basic visual concepts with a constrained variational
framework,” in Proc. of ICLR, 2017.

M. D. Hoffman and M. J. Johnson, “Elbo surgery: yet another
way to carve up the variational evidence lower bound,” in
Workshop in Advances in Approximate Bayesian Inference,
NIPS, vol. 1, 2016.

Y. Hoshen, K. Li, and J. Malik, “Non-adversarial image syn-
thesis with generative latent nearest neighbors,” in Proc. of
CVPR, 2019.

H. Kim and A. Mnih, “Disentangling by factorising,” in Proc.
of ICML, 2018.

D. P. Kingma and M. Welling, “Auto-encoding variational
bayes,” 2013.

D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen,
I. Sutskever, and M. Welling, “Improved variational infer-
ence with inverse autoregressive flow,” in Proc. of NeuRIPS,
2016.

A. Klushyn, N. Chen, R. Kurle, B. Cseke, and P. van der Smagt,
“Learning hierarchical priors in VAEs,” in Proc. of NeuRIPS,
2019.

A. Krizhevsky, “Learning multiple layers of features from tiny
images,” Tech. Rep., 2009.

V. Kyatham, D. Mishra, T. K. Yadav, D. Mundhra et al., “Vari-
ational inference with latent space quantization for adversar-
ial resilience,” arXiv preprint arXiv:1903.09940, 2019.

M. H. Law and A. K. Jain, “Incremental nonlinear dimension-
ality reduction by manifold learning,” IEEE transactions on
pattern analysis and machine intelligence, vol. 28, no. 3,
2006.

Y. Lecun, “The mnist database of handwritten digits,” http://
yann.lecun.com/exdb/mnist/, 2010.

Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face
attributes in the wild,” in Proc. of ICCV, 2015.

M. Lucic, K. Kurach, M. Michalski, O. Bousquet, and S. Gelly,
“Are gans created equal? a large-scale study,” in Proc. of
NeuRIPS, 2018.

A. Makhzani, J. Shlens, N. Jaitly, and I. Goodfellow, “Adver-
sarial autoencoders,” in Proc. of ICLR, 2016.

H. Narayanan and S. Mitter, “Sample complexity of testing the
manifold hypothesis,” in Proc. of NeuRIPS, 2010.

D. J. Rezende and S. Mohamed, “Variational inference with
normalizing flows,” in Proc. of ICML, 2015.

P. K. Rubenstein, B. Schoelkopf, and I. Tolstikhin, “Wasser-
stein auto-encoders: Latent dimensionality and random en-
coders,” in ICLR Workshop, 2018.

W. Rudin et al., Principles of mathematical analysis.
McGraw-hill New York, 1964, vol. 3.

M. S. M. Sajjadi, O. Bachem, M. Lucic, O. Bousquet, and
S. Gelly, “Assessing generative models via precision and re-
call,” in Proc. of NeuRIPS, 2018.

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Rad-
ford, and X. Chen, “Improved techniques for training gans,”
in Proc. of NeuRIPS, 2016.

A. Srivastava, L. Valkov, C. Russell, M. U. Gutmann, and
C. Sutton, “Veegan: Reducing mode collapse in gans using
implicit variational learning,” in Proc. of NeurIPS, 2017.

L. Theis, A. v. d. Oord, and M. Bethge, “A note on
the evaluation of generative models,” arXiv preprint
arXiv:1511.01844, 2015.

I. Tolstikhin, O. Bousquet, S. Gelly, and B. Scholkopf,
“Wasserstein auto-encoders,” in Proc. of ICLR, 2018.

J. M. Tomczak and M. Welling, “VAE with a vampprior,” arXiv
preprint arXiv:1705.07120, 2017.

A. van den Oord, O. Vinyals et al., “Neural discrete represen-
tation learning,” in Proc. of NeuRIPS, 2017.

H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel im-
age dataset for benchmarking machine learning algorithms,”
2017.

S. Zhao, J. Song, and S. Ermon, “Infovae: Information maxi-
mizing variational autoencoders,” 2017.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

7 THEORY

7.1 JUSTIFICATION FOR A2

In the section 3 of the main paper, we present two as-
sumptions that we make on our data generating function
f , one of which is: There does not exist f∗ : Rn

′ →
Rd, n′ < n satisfying A1 such that the range of f is
a subset of the range of f∗. Here we offer some intu-
ition on why this assumption is essential and how things
would be incomplete in its absence.

Since our hypothesis relies on the fairly intuitive fact that
there is a true manifold dimension n, it is not hard to see
why we need this to be uniquely defined, given the data
manifold of a data set (note that this is equivalent to hav-
ing an infinite number of data points, a fair upper-bound
to any real data set). Now, to appreciate the importance
of the second assumption, consider the following func-
tions

f1(x, y, z) = (x+ y, x− y, y − x)

f2(x, y) = (x+ y, x− y, y − x)
(11)

Further, let Ψ̃ be the uniform distribution over the unit
cube and square respectively. It is easy to see that the
data manifold will be exactly identical in both these
cases. Since both f1 and f2 satisfy A1, in the absence
of A2, both qualify as f meaning that n could be both 2
and 3, which is undesirable. To mitigate this, we intro-
duce A2, whereby the existence of f2 disqualifies f1 and
n becomes fixed at 2 (note that we also need the fact that
there is no function from the real line to a superset of the
data manifold, and in this case, it happens to be true by
lemma 1)

7.2 DERIVATIONS FOR R1 AND R2

In the main paper, we have stated the following condi-
tions as requirements for optimal generation:

R1 f(z̃) = g′(g(f(z̃))) ∀ z̃ ∈ Rn.

R2 H(Ψ,Π) on Z is minimal.

In this section, we shall show that these are indeed nec-
essary and sufficient to minimise the cross-entropy be-
tween the true data distribution Γ and the generated data
distribution Γ′.
Since auto-encoder based frameworks work through a la-
tent space Z , their objective is to minimise the cross en-
tropy between the joint distribution of x and z. We de-
fine these joint distributions as:

Γ(x, z) = Υ(x)δ(g(x) = z)

Γ′(x, z) = Π(z)δ(x = g′(z))
(12)

where δ is the Dirac delta function. The cross entropy
between these two distributions can be broken down as
follows:

L(Γ,Γ′) = E
(x,z)∼Γ

(− log(Γ′(x, z)))

= E
(x,z)∼Γ

(− log(Γ′(x|z)))

+ E
(x,z)∼Γ

(log(
1

Π(z)
))

(13)

The first term in the final expression can further be ex-
pressed as:

E
(x,z)∼Γ

(− log(Γ′(x|z)))

= −
∫

x

∫

z

Υ(x)δ(g(x) = z) log(δ(x = g′(z)))dzdx

= −
∫

x

Υ(x) log(δ(x = g′(g(x))))dx

(14)

If the equality inside the delta function does not hold at
any point, it will push the logarithm to negative infinity,
and in turn the entire quantity will become very high. To
prevent this, we need x = g′(g(x)) at all points. Since
x varies over the range of f , this reduces to R1.
In the second term, the expectation is over a joint
distribution, but the variable x never appears inside
the expectation, so it is safe to take the expectation
over the marginal of z. However, this marginal, Γ(z)
is exactly the distribution imposed on the latent space
by the encoder and the data distribution, which we
previously called Ψ. Making this change turns this term
into H(Ψ,Π) and since we need this to be minimal, we
recover the R2.

7.3 DISCUSSION

Our generative process assumes that n, the dimension of
the input space of f is minimal. Intuitively this means
that each of the latent dimension contributes in gener-
ation of some (possibly small) region in the domain of
the observed data but it is not necessary that every latent
dimension (independently) affects every observed data
point.

For example, consider the case where a leaf is being pho-
tographed. A young leaf in broad daylight has colour
roughly (120,100,50) in the HSL system. As the age of
the leaf increases, the lightness starts to fall, but a similar
fall in lightness will also be observed with fading day-
light. At this point, lighting conditions and age of leaf
have identical effect on the appearance of the leaf. How-
ever, after a point, age will start reducing the hue of the

leaf, while lighting conditions will continue decreasing
its lightness. Since at this point these two factors influ-
ence the outcome differently, they can be separate factors
in our input space. On the other hand, the distance from
which the photo was taken and the optical zoom of the
lens will always have similar effect, and therefore, only
one of these is allowed as a factor. Note that this exam-
ple is presented for illustrative purposes only, and in real
cases, the input factors are unlikely to directly map to
real-world causes.

7.4 INTUITION FOR LEMMA 1

In the main paper, we have claimed that given a set S, de-
fined as: S={(a0+0.5

ε , . . . , an−1+0.5
ε)

∣∣ai ∈ {0, . . . , ε −
1}} if we build closed balls around each point in S, then
every point in [0, 1]n lies in atleast one of these balls. To
further the intuition behind this, we present an illustra-
tion for the case where n = 2 and ε = 4.

Figure 7: For n = 2, ε = 4 radius of each ball, r =

√
(2)

8 .

In figure 7 the big square represents the unit square. By
the nature of Cartesian space, this can be tiled completely
by 64 smaller squares having side 1

8 units. The 16 circles
represent the closed balls in R2. It is easy to see that
each of the smaller squares lies completely in some cir-
cle. Since each point in the bigger square must lie in one
of the smaller squares, they also lie in one of the circles.

7.5 COMPARISON TO 2-STAGE VAE

Our theoretical contributions share some of its motiva-
tions with Dai and Wipf (2019). In this section, we try

to put our contributions in perspective with Dai and Wipf
(2019).

To begin with, it is important to note that the most im-
portant difference between the two works lies in the base
model used. Dai and Wipf (2019) intend to improve VAE
(Kingma and Welling (2013)) while we aim at enhanc-
ing WAE (Tolstikhin et al. (2018)). Because of the above
mentioned reason, the issues faced and solved by the two
papers are in fact, complementary to each other.

Throughout our paper, we point out the fact that it is
detrimental to have m 6= n in a WAE. While having
m < n is still problematic for a VAE, the m > n sce-
nario is naturally dealt with using the encoder variance.
In the words of Dai and Wipf (2019), “For superfluous
dimensions that are unnecessary for representing x, the
associated encoder variance in these directions can be
pushed to one. This will optimize KL[qφ(z|x)||p(z)]
along these directions, and the decoder can selectively
block the residual randomness to avoid influencing the
reconstructions.” However, in order to have this stochas-
ticity VAEs also need to introduce a decoder variance
γ, which in turn creates several superfluous minima if
the dimension of the manifold being learnt is strictly less
than that of the space in which it is embedded, and the
main purpose of the 2-Stage VAE construction is to avoid
these.

Since, we have used deterministic WAEs, that doesn’t
need an additional parameter γ, and therefore a similar
issue is unlikely to exist with WAE. However, this also
means that m > n becomes a major problem, which we
attempt to solve by introducing a Mask layer.

8 NAIVE ALTERNATIVES TO MAAE

While MaskAAE offers a principled methodology to au-
tomatically suppress the spurious dimensions in the la-
tent code, one naı̈ve approach to find out the optimal
latent dimensionality might be linear search or ternary
search. However, these approaches are computationally
prohibitive as they require an order of magnitude more
time as compared to the proposed algorithm.

It is natural to assume that we have in mind a range of
possible values for n (MaskAAE needs this to set the
model capacity). The simplest way to find optimal m is
to do a linear search over this range. This will involve
training one WAE for each possible value, and then se-
lect the one with the best FID. A somewhat more sophis-
ticated approach is to do a ternary search over the range,
as described in Algorithm 1. Here we set tol to 1, and
func to be a function that trains a WAE with the said la-
tent dimensions and returns the FID score obtained. Al-
though this method makes O(log n) calls to func, it has

significantly large constants than that of binary search
(approximately 3.42 times larger). It returns the minima
as long as func is uni-modal. While this is the true for
FID as a function of model capacity, the variance is very
high because we obtain a noisy estimate which varies
between different executions. This might create severe
problems for the ternary search.

Both these methods, however, are significantly more
resource intensive than MaskAAE. Consider the case
where we want to find n for MNIST, and assume that
it lies somewhere between 2 and 100. In our experi-
ments we found that, it takes approximately 900 min-
utes to train a WAE with model capacity, m = 2 and
m = 100. So training any intermediate sized WAE will
consume similar time. A linear search would require 99
WAEs to be trained, while in the ideal scenario, ternary
search will need to train 18 models. Compared to this,
we need to train MaskAAE only once, which takes about
1000 minutes for model capacity, m = 100.

Algorithm 1 Pseudo code for ternary search

1: function FINDMIN(low, high, tol, func)
2: while high− low ≥ tol do
3: mid1← b 2×high+low

3 c
4: mid2← dhigh+2×low

3 e
5: if func(mid1) < func(mid2) then
6: high← mid1

7: else
8: low ← mid2

9: end if
10: end while
11: return high
12: end function

9 OBJECTIVE, TRAINING AND
ARCHITECTURE OF MAAE

In this section we describe the MAAE model and the
training algorithm in detail.

1. Re-construction Pipeline: This is the standard
pipeline in any given AE based model, which tries
to minimize the reconstruction loss (R1). An input
sample x is passed through the encoder Eκ results
in ẑ, the corresponding representation in the latent
space. The new addition here is the Hadamard prod-
uct with the mask µ (explained next), resulting in
the masked latent space representation µ � ẑ. The
masked representation is then fed to the decoderDψ

to obtain the re-constructed output x̂. The goal here

is to minimize the norm of the difference between
x and x̂.

2. Masking Pipeline: Introduction of a mask is one
of the novel contributions of our work, and this is
the second part of our architecture presented in the
middle of the Figure 3. Our mask is represented as
µ and is a binary vector of size m (model capacity).
Ideally, the mask would be a binary vector, but in
order to make it learnable, we relax it to be contin-
uous valued, while imposing certain regularizers so
that it does not deviate too much from 0 or 1 during
learning.

3. Distribution-Matching Pipeline: This is the third
part of our architecture presented at the bottom of
Figure 3. Objective of this pipeline is to minimize
the distribution loss between a prior distribution, Π,
and the distribution Ψ imposed on the latent space
by the encoder. z is a random vector sampled from
the prior distribution, whose Hadamard product is
taken with the mask µ (similar to in the case of en-
coder), resulting in a masked vector µ � z. This
masked vector is then passed through the network
Hζ , where the goal is to separate out the samples
coming from prior distribution (z) from those com-
ing from the encoded space (ẑ) using some diver-
gence metric. We use the principles detailed in Ar-
jovsky et al. (2017) using the Wasserstein’s distance
to measure the distributional divergence. Note that
Hζ has two inputs namely, samples of Π(z) and
output of Eκ.

9.1 OBJECTIVE FUNCTIONS OF MAAE

Next, corresponding to each of the components above,
we present a loss function where s represents the batch
size.

1. Auto-Encoder Loss: This is the standard loss to
capture the quality of re-construction as used earlier
in the AE literature. In addition, we have a term
corresponding to minimization of the variance over
the masked dimensions in the encoded output in a
batch. The intuition is that encoder should not inject
information into the dimensions which are going to
be masked anyway. The loss is specified as:

Lae =
α1

s

s∑

i=1

||x(i) −Dψ(µ� Eκ(x(i)))||

+ α2(δTDiag(A))

(15)

A represents the co-variance matrix for the encod-
ing matrix Eκ(X), X being the data matrix for the

Algorithm 2 Pseudo code for the training loop of MAAE

Hyper-parameters: α1 = 1, α2 = 100, γ = 10,
λ1 = 1000, λ2 = 1 and λ3 = 2

m

1: function TRAIN
2: λ3← 2

m
3: for i← 1 to training steps do
4: for j ← 1 to ae training ratio do
5: t← ij + j
6: gκ(t)←∇κLae
7: κt ← κt−1 − ηaegκ(t)√

ρgκ(t)+(1−ρ)g2
κ(t−1)+ε

8: gΨ(t)←∇ΨLae
9: Ψt← Ψt−1 − ηaegΨ(t)√

ρgΨ(t)+(1−ρ)g2
Ψ(t−1)+ε

10: end for
11: for j ← 1 to disc training ratio do
12: t← ij + j
13: gζ(t)←∇ζLdisc
14: ζt← ζt−1 − ηdiscgζ(t)√

ρgζ(t)+(1−ρ)g2
ζ(t−1)+ε

15: end for
16: gκ(i)←∇κLgen
17: κi ← κi−1 − ηgengκ(i)√

ρgκ(i)+(1−ρ)g2
κ(i−1)+ε

18: if i%reg schedule interval == 0 then
19: λ3← λ3 × 2
20: end if
21: gM (i)←∇MLmask
22: Mi ←Mi−1 − ηmaskgM (i)√

ρgM (i)+(1−ρ)g2
M (i−1)+ε

23: end for
24: end function

current batch. δ is the vector obtained by applying
the function a(u) = e−γ×u point-wise to µ. α1, α2

and γ are hyperparameters.

2. Generator Loss: This is the loss capturing the
quality of generation in terms of how far the gener-
ated distribution is from the prior distribution. This
loss measures the ability of the encoder to generate
the samples such that they are coming from Π(z)
which is ensured using the generator loss mentioned
in Arjovsky et al. (2017):

Lgen = −1

s

s∑

i=1

Hζ(µ� Eκ(x(i))) (16)

3. Distribution-Matching Loss: This is the loss in-
curred by the Distribution-matching network, Hζ in
matching the distributions. We use Wasserstein’s
distance (Arjovsky et al. (2017)) to measure the dis-

tributional closeness with the following loss:

Ldm = −1

s

s∑

i=1

Hζ(µ� z(i)) +
1

s

s∑

i=1

Hζ(µ� ẑ(i))

+
β2

s

s∑

i=1

(
||∇(i)

zavgHζ(µ� z(i)
avg)||−1

)2

(17)

Recall that ẑ(i) = Eκ(x(i)). Further, we have used
z

(i)
avg = β1z

(i) + (1− β1)ẑ(i). β1, β2 are hyper pa-
rameters, with β1 ∼ U [0, 1], and β2 set as in (Gul-
rajani et al. (2017)).

4. Masking Loss: This is the loss capturing the qual-
ity of the current mask. The loss is a function of
three terms (1) Auto-encoder loss (2) distribution
matching loss (3) a regularizer to ensure that µ pa-
rameters stay close to 0 or 1. This can be specified
as:

Lmask =
λ1

s

s∑

i=1

||x(i) −Dψ(µ� Eκ(x(i)))||

+ λ2(1 + ω)2 + λ3

m∑

j=1

|µj(µj − 1)|

(18)

where ω = 1
s

∑
iHζ(µ � z(i)) − 1

s

∑
iHζ(µ �

Eκ(x(i))) is the Wasserstein’s distance. Here λ1

and λ2 and λ3 are hyper-parameters (Supp. mate-
rial).

9.2 TRAINING ALGORITHM

During training, we optimize each of the four losses
specified above in turn. Specifically, in each learning
loop, we optimize the Lae, Ldm, Lgen and Lmask, in
that order using a learning schedule. We use RMSProp
for our optimization as described in algorithm 2.

9.3 ARCHITECTURE FOR SYNTHETIC
DATASET

Here we provide the detailed architecture of Eκ Dψ and
Hζ for different experiments performed in this work.

Eκ

x ∈ R128

→ FC1000 → ReLU
→ FC1000 → ReLU
→ FC1000 → ReLU
→ FC1000 → ReLU
→ FC1000 → ReLU
→ FCm

Dψ

z ∈ Rm

→ FC1000 → ReLU
→ FC1000 → ReLU
→ FC1000 → ReLU
→ FC1000 → ReLU
→ FC1000 → ReLU
→ FCm

Hζ

z ∈ Rm

→ FC1000 → ReLU
→ FC1000 → ReLU
→ FC1000 → ReLU
→ FC1000 → ReLU
→ FC1000 → ReLU
→ FC1

9.4 ARCHITECTURE FOR REAL DATASET

9.4.1 MNIST

Eκ

x ∈ R28×28×1

→ FC1024 → ReLU
→ FC1024 → ReLU
→ FC1024 → ReLU
→ FC1024 → ReLU
→ FCm

Dψ

z ∈ Rm

→ FC1024 → ReLU
→ FC1024 → ReLU
→ FC1024 → ReLU
→ FC1024 → ReLU
→ FC28×28 → Sigmoid
→ Reshape28×28

Hζ

z ∈ Rm

→ FC1024 → ReLU
→ FC1024 → ReLU
→ FC1024 → ReLU
→ FC1024 → ReLU
→ FC1

9.4.2 Fashion MNIST

Eκ

x ∈ R28×28×1

→ CONV64;k=(4,4);s=(2,2) → BN→ ReLU
→ CONV128;k=(4,4);s=(2,2) → BN→ ReLU
→ FC1024 → BN→ ReLU
→ FCm

Dψ

z ∈ Rm

→ FC1024 → BN→ ReLU
→ FC7×7×128 → BN→ ReLU
→ Reshape7×7×128

→ TCONV128;k=(4,4);s=(2,2) → BN→ ReLU
→ TCONV128;k=(4,4);s=(2,2) → BN→ ReLU
→ CONV1;k=(3,3);s=(1,1) → Sigmoid

Hζ Same as in 9.4.1

9.4.3 CIFAR-10

Eκ

x ∈ R32×32×3

→ CONV128;k=(4,4);s=(2,2) → BN→ ReLU
→ CONV128;k=(4,4);s=(2,2) → BN→ ReLU
→ CONV256;k=(4,4);s=(2,2) → BN→ ReLU
→ FC1024 → BN→ ReLU
→ FC1024 → BN→ ReLU
→ FC1024 → BN→ ReLU
→ FC1024 → BN→ ReLU
→ FCm

Dψ

z ∈ Rm

→ FC2×2×512 → BN→ ReLU
→ Reshape2×2×512

→ TCONV256;k=(4,4);s=(2,2) → BN→ ReLU
→ CONV RES BLOCK256 → BN→ ReLU
→ CONV TCONV256;k=(4,4);s=(2,2) → BN→ ReLU
→ CONV RES BLOCK256 → BN→ ReLU
→ TCONV256;k=(4,4);s=(2,2) → BN→ ReLU
→ CONV RES BLOCK256 → BN→ ReLU
→ TCONV256;k=(4,4);s=(2,2) → BN→ ReLU
→ CONV RES BLOCK256 → BN→ ReLU
→ CONV3;k=(3,3);s=(1,1) → Sigmoid

Hζ Same as in 9.4.1

9.4.4 CelebA

Eκ

x ∈ R64×64×3

→ CONV16;k=(3,3);s=(1,1) → BN
→ CONV RES BLOCK16 → CONV32;k=(4,4);s=(2,2)

→ CONV RES BLOCK32 → CONV64;k=(4,4);s=(2,2)

→ CONV RES BLOCK64 → CONV64;k=(4,4);s=(2,2)

→ CONV RES BLOCK64

→ FC RES BLOCK512

→ FCm

Dψ

z ∈ Rm

→ FC2×2×16 → BN→ ReLU
→ Reshape2×2×16

→ TCONV32;k=(4,4);s=(2,2) → BN→ ReLU
→ CONV RES BLOCK32 → BN→ ReLU
→ TCONV64;k=(4,4);s=(2,2) → BN→ ReLU
→ CONV RES BLOCK64 → BN→ ReLU
→ TCONV128;k=(4,4);s=(2,2) → BN→ ReLU
→ CONV RES BLOCK128 → BN→ ReLU
→ TCONV256;k=(4,4);s=(2,2) → BN→ ReLU
→ CONV RES BLOCK256 → BN→ ReLU
→ TCONV512;k=(4,4);s=(2,2) → BN→ ReLU
→ CONV RES BLOCK512 → BN→ ReLU
→ CONV3;k=(3,3);s=(1,1) → Sigmoid

Hζ Same as in 9.4.1

10 EXPERIMENTAL RESULTS

10.1 DETAILS OF THE SYNTHETIC DATASET

Figure 9, shows the architecture for synthetic data gen-
eration. The input layer has n nodes, representing n di-
mensions of the samples from a Gaussian distribution.
The hidden layer and output layer introduce two layers
of non-linearity and blow up the dimension from n to
128 of the synthetic dataset. In our experiments we have
chosen n = 8, and n = 16.

10.2 LOG-LIKELIHOOD SCORE ON
SYNTHETIC DATASET

As discussed in section 5.1 of the main paper, for eval-
uating the model performance on the synthetic dataset,
we compute the Frechet Distance directly between the
real and generated data as the data is already low dimen-
sional and calculating Inception features does not make
sense for the synthetic data. Here, we evaluate the mod-
els by computing the log likelihood of the generated data.
We do so by fitting a kernel density estimator on the real
data and then computing likelihood of the generated data
under that distribution. We use a kernel density estimator
with a Gaussian kernel and we find the optimal value for
the kernel bandwidth by doing a line search on a held out
validation set of the real data. As seen in section 5.1, we
again observe that MAAE performs better as compared
to a WAE when there is a dimension mismatch.

(a) (b) (c)

Figure 8: (a) Reconstruction loss, (b) Wasserstein distance, and (c) FID plot w.r.t. training iterations for MAAE model
on MNIST for model capacity m = 110.

I1

I2

...
In

...
...

H1

H2

H3

H128

O1

O2

O3

O128

Input
layer

Hidden
layer

Ouput
layer

Figure 9: Architecture for Synthetic Dataset generation.

Table 3: Effect of model capacity, m on generation LL
scores of WAE and MAAE (for Synthetic16 dataset).

m = 8 m = 16 m = 24 m = 40 m = 64 m = 80

WAE −196.05 −163.334 −159.31 −163.09 −167.19 −177.08
MAAE −196.85 −160.08 −156.71 −156.89 −159.08 −154.97

10.3 ANALYSIS OF TRAINING OF MAAE ON
MNIST

As discussed in section 5.2 of the main paper, we can see
in figure 8 (b) that form = 110, the Wasserstein distance
becomes zero when number of active dimensions, mA =
11 (Refer to Figure 5(c) in main paper). Also in Figure
8 (a), and (c) we see the reconstruction error stabilizes at
that point and the FID score becomes minimum.

10.4 NORMALISED ABSOLUTE
CO-VARIANCE MATRIX: WAVE VS MAAE

The following formula is used to compute the co-
variance matrix over a batch size bs = 5000.

Σ = |
i=bs∑

i=1

(ẑ(i) − µẑ)(ẑ(i) − µẑ)T | (19)

In figure 10, 11, 12, and 13 we have plotted the normal-
ized co-variance matrix Σ−min(Σ)

max(Σ)−min(Σ) .

Also from figure 10, 11, 12, and 13, we see that the off-
diagonal entries in the co-variance matrix corresponding
to a masked dimension in MAAE model are very close to
zero. Therefore, for a fair comparison of the average off-
diagonal value in table 2 of the main paper, we neglect
those dimensions in the MAAE matrix.

10.5 Computing Resources and Average Runtime

We have used a machine with Intel R© Xeon R© Gold 6142
CPU, 376GiB RAM, and Zotac GeForce R© GTX 1080
Ti 11GB Graphic Card for all of our experiments. The
average runtime for experiments on MNIST, Fashion
MNIST, CIFAR-10, and CELEBA is approximately 17
hours, 17 hours, 40 hours and 100 hours respectively.

(a) (b)

Figure 10: Co-variance Matrix of (a) WAE (b) MAAE latent representation for MNIST dataset.

(a) (b)

Figure 11: Co-variance Matrix of (a) WAE (b) MAAE latent representation for Fashion MNIST dataset.

(a) (b)

Figure 12: Co-variance Matrix of (a) WAE (b) MAAE latent representation for CelebA dataset.

(a) (b)

Figure 13: Co-variance Matrix of (a) WAE (b) MAAE latent representation for CIFAR-10 dataset.

	INTRODUCTION
	RELATED WORK
	EFFECT OF LATENT DIMENSIONALITY
	PRELIMINARIES
	CONDITIONS FOR GOOD GENERATION

	MaskAAE (MAAE)
	MODEL DESCRIPTION
	TRAINING MaskAAE

	EXPERIMENTS AND RESULTS
	SYNTHETIC EXPERIMENTS
	REAL EXPERIMENTS

	DISCUSSION AND CONCLUSION
	THEORY
	JUSTIFICATION FOR A2
	DERIVATIONS FOR R1 AND R2
	DISCUSSION
	INTUITION FOR LEMMA 1
	COMPARISON TO 2-STAGE VAE

	NAIVE ALTERNATIVES TO MAAE
	OBJECTIVE, TRAINING AND ARCHITECTURE OF MAAE
	OBJECTIVE FUNCTIONS OF MAAE
	TRAINING ALGORITHM
	ARCHITECTURE FOR SYNTHETIC DATASET
	ARCHITECTURE FOR REAL DATASET
	MNIST
	Fashion MNIST
	CIFAR-10
	CelebA

	EXPERIMENTAL RESULTS
	DETAILS OF THE SYNTHETIC DATASET
	LOG-LIKELIHOOD SCORE ON SYNTHETIC DATASET
	ANALYSIS OF TRAINING OF MAAE ON MNIST
	NORMALISED ABSOLUTE CO-VARIANCE MATRIX: WAVE VS MAAE
	Computing Resources and Average Runtime

