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Appendix A.

Lemma 2. For any integer 1 ≤ α ≤ n/4 and δ ∈
(0, 1), if the query mechanism A is (α, δ)-PAC, then
α ≥ n

4
∑n

i=1 εiqi
· (ln δ − ln(1− δ)).

Proof. We prove the equivalent form, ifA is (α, δ)-PAC,
then

∑n
i=1 εiqi ≥

n(ln δ−ln(1−δ))
4α . We first consider

count query. Recall that this case assumes that each data
entry di is a 0/1-value. We assume for a contradiction
that

∑n
i=1 εiqi <

n(ln δ−ln(1−δ))
4α and the query mecha-

nism is (α, δ)-PAC. LetR = {r ∈ R | |r−ϕ(~dgt)| < α}.
By the definition of (α, δ)-PAC, Pr

(
Φ
(
~dgt

)
∈ R

)
≥

δ.

Assume, w.l.o.g., that εiqi are sorted in ascending order,
i.e., ε1q1 ≤ ε2q2 ≤ . . . ≤ εnqn. Consider the first 4α
data owners (Note that 4α ≤ n). Clearly,

4α∑
i=1

εiqi <
n(ln δ − ln(1− δ))

4α

4α

n
= ln δ − ln(1− δ).

Let ~d0 := (di)i∈I0 and ~d1 := (di)i∈I1 where Ij = {1 ≤
i ≤ 4α | di = j} for j ∈ {0, 1}. Without loss of general-
ity, assume that |~d0| > 2α. Let I ′ ⊆ I0 that contains ex-
actly 2α elements, and define a dataset ~d′ := (b1, . . . , bn)
where bi = 1 if i ∈ I ′, and bi = di otherwise. It follows
that ϕ(~d′) = ϕ(~dgt) + 2α.

It is straightforward to verify by definition of PDP that

Pr
(

Φ(~d′) ∈ R
)
≥ exp

(
−
∑
i∈I′

εiqi

)
Pr
(

Φ(~dgt) ∈ R
)

> exp (−(ln δ − ln(1− δ)))× δ

=
1− δ
δ
· δ = 1− δ

Since ϕ(~d′) = ϕ(~dgt) + 2α, by the triangle

inequality, we have Pr
(
|Φ(~d′)− ϕ(~d′)| > α

)
≥

Pr
(
|Φ(~d′)− ϕ(~dgt)| < α

)
> 1 − δ, which contradicts

the (α, δ)-PAC assumption.

The proof is similar for the case when ϕ is the gen-
eral linear predictor where the data entries are real val-
ues. The only difference is that we define the set I ′ as
{1, . . . , 2α} and the dataset ~d′ by bi = di + 1

wi
for all

i ∈ I ′ and bi = di otherwise.

For the case when ϕ is a median query. Assume
d1, d2, . . . , dn are distinct positive integers. We only
deal with the case when n is odd (the case when n is
even can be proven in a similar way). Let m denote
the median among d1, . . . , dn. Let I0 := {i | di <
m} and I1 := {i | di > m}. Suppose, w.l.o.g.,
that

∑
i∈I0 εiqi < n(ln δ−ln(1−δ))

8α . Let k := |{i |
m ≤ di < m + 2α}|. Note that by mutual distinc-
tion of data values, k ≤ 2α. For every i ∈ I0, put i
into H if the data owner si’s privacy requirement εi is
among the smallest k among data owners in I0. Clearly,∑
i∈H εiqi ≤

n(ln δ−ln(1−δ))
4α

2α
n < ln δ − ln(1 − δ).

Let dmax := max{d1, . . . , dn}. Define a new dataset
~d′ := (b1, . . . , bn) by bi = di + dmax if i ∈ H; and
bi = di otherwise. It then follows that the median of ~d′ is
at leastm+2α and thus ϕ(~d′) ≥ ϕ(~dgt)+2α. By PDP of
Φ, we have Pr(|Φ(~d′)−ϕ(~dgt)| < α) > 1−δ. By the tri-

angle inequality, we have Pr
(
|Φ(~d′)− ϕ(~d′)| > α

)
≥

Pr
(
|Φ(~d′)− ϕ(~dgt)| < α

)
> 1 − δ, which contradicts

the accuracy assumption.

Appendix B.

Lemma 3. Assuming that θ∗i is independent from the
reported valuation ψi for all 1 ≤ i ≤ n, a simple direct
mechanism Ψ is incentive compatible and individually
rational.

Proof. For IR, suppose θi ≤ θ∗i . Then Qi(θi) = 1. By



(10), Pi(θi) equals

θiQi(θi) +

∫ θi

θi

Qi(s) ds = θi +

∫ θ∗i

θi

1 ds = θ∗i

and Ui(θi|θi) = Pi(θi) − θiQi(θi) = θ∗i − θi ≥ 0. If
θi > θ∗i , Qi(ψi) = 0 which implies Pi(θi) = 0 and
Ui(θi|θi) = 0. In either case, the expected utility of re-
porting the valuation truthfully is non-negative.

For IC, note that θ∗i for all i ∈ {1, . . . , n} is independent
from the reported valuation. When data owners report
their valuations untruthfully, there are two cases:

Case (1) Suppose si reports a valuation ψi > θi.

a. if θi < ψi ≤ θ∗i , Ui(ψi|θi) = Ui(θi|θi) = θ∗i − θi.

b. if θi ≤ θ∗i < ψi, Ui(θi|θi) = θ∗i −θi ≥ 0 = Ui(ψi|θi).

c. if θ∗i < θi < ψi, Ui(ψi|θi) = Ui(θi|θi) = 0.

Case (2) Suppose si reports a valuation ψi < θi.

a. if ψi < θi ≤ θ∗i , Ui(ψi|θi) = Ui(θi|θi) = θ∗i − θi.

b. if ψi ≤ θ∗i < θi, Ui(ψi|θi) = θ∗i −θi < 0 = Ui(θi|θi).

c. if θ∗i < ψi < θi, Ui(ψi|θi) = Ui(θi|θi) = 0.

The above argument shows that each data owner can
maximise her expected utility by truthfully reporting the
valuation.

Appendix C.

Lemma 4. The optimal solution to the optimisation
problem (12) is an optimal threshold.

Proof. Firstly, since the threshold θ∗i is determined by
solving (12), it is independent from ψi. By Lemma 3, IC
and IR constraints are satisfied by allocation rule (9) and
payment rule (10).

For the objective function, by substituting (2) the ob-

jective function becomes
∑n
i=1

∫ θ
θ
εiQi(ψi)fi(ψi) dψi,

which, by (9), is
n∑
i=1

∫ θ∗i

θ

εifi(ψi) dψi =

n∑
i=1

εiFi(θ
∗
i ).

For BF, by (3) the left hand side of the constraint (6) is

n∑
i=1

∫ θ

θ

Pi(ψi)fi(ψi) dψi

=

n∑
i=1

∫ θ

θ

(
ψiQi(ψi) +

∫ θ

ψi

Qi(s) ds

)
fi(ψi) dψi by (10)

=

n∑
i=1

∫ θ∗i

θ

θ∗i fi(ψi) dψi =

n∑
i=1

θ∗i Fi(θ
∗
i )

Thus (6) is equivalent to
∑n
i=1 θ

∗
i Fi(θ

∗
i ) ≤ B.

Moreover, it is easy to see that (6) is binding, i.e.,∑n
i=1 θ

∗
i Fi(θ

∗
i ) = B. Otherwise, we can always in-

crease the value of θ∗i and select more data owners.

Appendix D.

Theorem 1. The procurement mechanism Ψ guarantees
to find the optimal solution of Problem (8).

Proof. By Lemma 4, we only need to show that the pro-
curement mechanism Ψ solves Problem (12). Define Bi
as θ∗i Fi(θ

∗
i ). The first constraint in (12) then becomes∑n

i=1Bi = B, which is affine in terms of Bi.

Also, since anyBi corresponds to a θ∗i , we can view θ∗i as
a function of Bi and thus write Bi = θ∗i (Bi)Fi(θ

∗
i (Bi)).

The derivative in terms of Bi is

1 = θ∗
′

i (Bi)Fi(θ
∗
i (Bi)) + θi(Bi)

∗fi(θ
∗
i (Bi))θ

∗′
i (Bi)

Reorganise the equation, we can get

fi(θ
∗
i )θ∗

′

i =
1

Fi(θ∗i )

fi(θ∗i )
+ θ∗i

.

Because of the regularity assumption, the denominator is
strictly increasing. Thus, fi(θ∗i )θ∗

′

i is strictly decreasing.
Furthermore, the derivative of the objective function in
terms of Bi is

n∑
i=1

εifi(θ
∗
i (Bi))θ

∗′
i (Bi).

It is strictly decreasing as well. Therefore, the objective
is to maximise a concave function. The above arguments
asserts the convexity of Problem (12).

Since Problem (12) is convex and the vector ~θ∗ satisfies
conditions (14) and (15), Karush-Kuhn-Tucker theorem
(see (Luenberger, 1997)) implies that ~θ∗ is the optimal
solution to (12).


