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Appendix A.

Lemma 2. For any integer 1 < a < n/4 and 6 €
(0,1), if the query mechanism A is (a, 0)-PAC, then

a> gyt (Ind —In(1 - 4)).

Proof. We prove the equivalent form, if A is («, §)-PAC,
then S0 e;q; > In0=lnU=9) - We first consider
count query. Recall that this case assumes that each data
entry d; is a 0/1-value. We assume for a contradiction
that )" | eiq; < W and the query mecha-
nismis (a, §)-PAC.Let R = {r e R | \T—go(cfgt)\ < a}.
By the definition of (v, §)-PAC, Pr (CD (cfgt) c R) >
0.

Assume, w.l.o.g., that ¢;q; are sorted in ascending order,

ie., €1q1 < €2g2 < ... < €pqn. Consider the first 4«
data owners (Note that 4o < n). Clearly,

4o
Z&;qi < ’I”L(h’l(s — ln(l — 5)) 4£ =1Ind — ln(l — 5)
P 4o n

Let d = (d;)icr, and dl = (di)ier, where I; = {1 <
i <da | d; = j}forj € {0,1}. Without loss of general-
ity, assume that |d°| > 2a.. Let I’ C I, that contains ex-
actly 2« elements, and define a dataset d = (b1y...,by)
where b; = 1if¢ € I’, and b; = d; otherwise. It follows

that ¢(d’) = ¢(dg) + 20v.
It is straightforward to verify by definition of PDP that

Pr (<I>(ci7) S R) > exp (—;siqZ) Pr (q)(ci:gt) IS R)
>exp(—(Ind —1n(l —9))) x o
1—-46

5 0 o

—

Since o(d) = @(dg) + 20, by the triangle
inequality, we have Pr (\@(J;)f¢(ci7)|>a) >
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Pr (\(I)(J;) — p(dg)| < a) > 1 — 4, which contradicts
the (v, )-PAC assumption.

The proof is similar for the case when ¢ is the gen-
eral linear predictor where the data entries are real val-
ues. The only difference is that we define the set I’ as
{1,...,20} and the dataset &’ by b; = d; + L for all
t € I and b; = d; otherwise. '

For the case when ¢ is a median query. Assume
di,do,...,d, are distinct positive integers. We only
deal with the case when n is odd (the case when n is
even can be proven in a similar way). Let m denote
the median among dy,...,d,. Let Iy == {i | d; <
m} and Iy = {i | d;i > m}. Suppose, w.lo.g.,
that >, €iqi < Mi(lﬂs)). Let k = [{i |
m < d; < m + 2a}|. Note that by mutual distinc-
tion of data values, k¥ < 2a. For every ¢ € Iy, put ¢
into H if the data owner s;’s privacy requirement ¢; is
among the smallest £ among data owners in Ij. Clearly,
Siegeigi < M=o e 5 (1 - 4).
Let dyax = max{di,...,d,}. Define a new dataset
d = (by,...,by) by bj = di + dax if i € H; and
b; = d; otherwise. It then follows that the median of d is
at least m+2a and thus <p(cz7) > @(d;t)+2a. By PDP of
®, we have Pr(|®(d')—¢(dyg )| < a) > 1—4. By the tri-

angle inequality, we have Pr (\@(cf) —o(d)| > a) >

Pr (\(I)(J;) — p(dg)| < a) > 1 — 4, which contradicts
the accuracy assumption. O

Appendix B.

Lemma 3. Assuming that ; is independent from the
reported valuation v; for all 1 < ¢ < n, a simple direct
mechanism W is incentive compatible and individually
rational.

Proof. For IR, suppose 0; < 6F. Then Q;(0;) = 1. By



(10), P;(6;) equals

/ Qi(s dsff)Jr/ 1ds =67

and U;(0;10;) = P;(6;) — 0,Q:(0;) = 6F — 0, > 0. If
0; > 0F, Q;(v;) = 0 which implies P;(6;) = 0 and
Ui(6:]6;) = 0. In either case, the expected utility of re-
porting the valuation truthfully is non-negative.

For IC, note that 6} forall i € {1,...,n} is independent
from the reported valuation. When data owners report
their valuations untruthfully, there are two cases:

Case (1) Suppose s; reports a valuation 1; > 6;.

a. if 0; < v < 0F, U;(4]0;) = U (0;10;) = 0F — ;.

b. if0; < 0F <, Ui (0;16;) = 05 —0; > 0= U;(v46;).
c. if 07 < 0; <, Ui(v10;) = U (0;]0;) =0

Case (2) Suppose s; reports a valuation 1; < 6;.

a. if i, < 0; < 0F, U;(4]0;) = U (0;10;) = 07 — ;.

b. if ¢, < 0F < 0;, Ui (v410;) = 05 —0; < 0=U;(6;]6;).
c. if 0F < < 0;, Ui (:10;) = U;(0;]0;) =0

The above argument shows that each data owner can
maximise her expected utility by truthfully reporting the
valuation. O

Appendix C.

Lemma 4. The optimal solution to the optimisation
problem (12) is an optimal threshold.

Proof. Firstly, since the threshold 0 is determined by
solving (12), it is independent from ;. By Lemma 3, IC
and IR constraints are satisfied by allocation rule (9) and
payment rule (10).

For the objective function, by substituting (2) the ob-

jective function becomes > ., f: Qi (:) fi (i) dus,
which, by (9), is -

n 0r n
Z/ eifi(ip) diby = i Fi(0
=172 i=1

For BF, by (3) the left hand side of the constraint (6) is

n

Z/e Pi(ts) fi(160) A

3

- (mczz (1) /Q s> Ji(s) di by (10)

e*fl () depi = Ze*

Il
HM: i
\h
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Thus (6) is equivalent to > ., 67F;(#7) < B.
Moreover, it is easy to see that (6) is binding, i.e.,
S 07 Fi(67) = B. Otherwise, we can always in-

crease the value of 6 and select more data owners. [J

Appendix D.

Theorem 1. The procurement mechanism ¥ guarantees
to find the optimal solution of Problem (8).

Proof. By Lemma 4, we only need to show that the pro-
curement mechanism W solves Problem (12). Define B;
as 0 F;(0F). The first constraint in (12) then becomes
lel B; = B, which is affine in terms of B;.

Also, since any B; corresponds to a 8, we can view 8} as
a function of B; and thus write B; = 6;(B;) F;(6;(B;)).
The derivative in terms of B; is

1= 67 (B F:(0; (By)) + 6:(B:)" £:(67 (B:))6; (By)
Reorganise the equation, we can get
1

[/ p—_—
H 4 L(91) *
e T0

Because of the regularity assumption, the denominator is
strictly increasing. Thus, fi(ﬁ;k)Hf/ is strictly decreasing.
Furthermore, the derivative of the objective function in
terms of B; is

> eifil07 (B))O; (By).
i=1

It is strictly decreasing as well. Therefore, the objective
is to maximise a concave function. The above arguments
asserts the convexity of Problem (12).

Since Problem (12) is convex and the vector 0* satisfies
conditions (14) and (15), Karush-Kuhn-Tucker theorem
(see (Luenberger, 1997)) implies that 0% is the optimal
solution to (12). O]



