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Abstract

Differential privacy has been widely applied to
provide privacy guarantees by adding random
noise to the function output. However, it in-
evitably fails in many high-stakes voting sce-
narios, where voting rules are required to be
deterministic. In this work, we present the first
framework for answering the question: “How
private are commonly-used voting rules?” Our
answers are two-fold. First, we show that de-
terministic voting rules provide sufficient pri-
vacy in the sense of distributional differential
privacy (DDP). We show that assuming the ad-
versarial observer has uncertainty about indi-
vidual votes, even publishing the histogram of
votes achieves good DDP. Second, we intro-
duce the notion of exact privacy to compare
the privacy preserved in various commonly-
studied voting rules, and obtain dichotomy the-
orems of exact DDP within a large subset of
voting rules called generalized scoring rules.

1 INTRODUCTION

Differential privacy (DP) has gained much public atten-
tion recently, partly due to its use in the United States
2020 Census. Improving upon ad-hoc privacy techniques
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that were broken in the previous census [Garfinkel et al.,
2018], formal privacy definition like DP are much more
suitable for controlling the leakage of sensitive data.

Yet, sensitive data is still published today without nec-
essarily understanding the privacy leakage it incurs. In
particular, voting data has been surprisingly accessible.
In the US, histograms of votes are revealed per county,
and voting and registration tables are released [US Cen-
sus Bureau, 2019], which include fields like sex, race,
age, location, and marital status. This abundance of in-
formation has enabled politicians to buy voter profiles
from data mining companies to manipulate public opin-
ion [Verini, 2007; Bradshaw and Howard, 2018].

Unfortunately, it is not easy to achieve (differential) pri-
vacy for voting. It is insufficient to protect voter reg-
istration tables with proven privacy techniques; releas-
ing the election outcome can also be a cause of infor-
mation leakage. To see how an individual’s vote can be
inferred by observing the winner of the election, we con-
sider the following example. Suppose Alice cast a vote
in an election, and then the winner is announced. Fur-
ther suppose that an adversary can accurately estimate
other votes from questionnaires or by machine learning
from the other voters’ social media, and it turns out these
other votes ended up with a tie among the candidates. In
this case, the adversary can distinguish Alice’s vote even
if he knows nothing about Alice, since Alice must have
voted for the winner as the tie-breaker.

The strict definition of differential privacy means the
mere possibility of the above scenario is a privacy vio-
lation. Moreover, ties do occur quite often in real life
elections. For example, 9.2% of STV elections on Preflib
election data [Mattei and Walsh, 2013] are tied [Wang et
al., 2019]. Even if we consider another formal privacy
definition that accepts the uncertainly stemming from
machine learning methods or low likelihood of ties as
helpful in disguising votes, it is unclear how to quanti-
tatively measure the effect of such uncertainty, and how



(or whether) privacy differs for different voting rules.

Motivated by the privacy concern in voting, we focus on
the following key question in this paper.

How private are commonly-used voting rules?

The importance of answering this question is both practi-
cal and theoretical. On the practical side, minimizing the
amount of information leakage from voting rules helps
protect against censorship, coercion, and vote buying.
On the theoretical side, privacy provides a new angle to
comparing voting rules and designing new ones.

A first attempt would be to employ differential pri-
vacy (DP) [Dwork, 2006], measure of privacy widely-
accepted and widely-applied in the cryptographic com-
munity. Mathematically, a voting rule M for n ∈ N
voters is a mapping M : Un → R, where U is the set
of all possible votes; R is the set of all possible out-
comes of voting, e.g. winners or histograms of votes. M
is (ε, δ)−differentially private if for any pair of prefer-
ence profiles ~X ∈ Un and ~X ′ ∈ Un that only differ on
one vote, and any subset of outcomes S ⊆ R, the fol-
lowing inequality holds:

Pr
[
M( ~X) ∈ S

]
≤ eε Pr

[
M( ~X ′) ∈ S

]
+ δ. (1)

Smaller ε, δ are desirable as it means the outcome of
M is not affected much by one vote, and thus reveals
little about an individual voter. Note in general M must
be randomized to satisfy Inequality (1); indeed [Shang et
al., 2014; Lee, 2015; Hay et al., 2017] achieved DP via
randomized voting.

Yet most, if not all, voting rules used in high-stakes polit-
ical elections are deterministic, since randomized voting
rules suffer from difficulties in verifying implementation
correctness, e.g. the controversy in the 2016 Democratic
primary election in Iowa [Clayworth and Noble, 2016].
Unfortunately, the randomness in Inequality (1) comes
from the voting rule itself, so deterministic rules cannot
achieve DP except with the trivial parameter of δ ≥ 1,
which always holds (see Example 1 for more details).

1.1 OUR CONTRIBUTIONS

To overcome the critical limitation of DP in high-stakes
voting scenarios, we study the privacy of determinis-
tic voting rules using distributional differential privacy
(DDP) [Bassily et al., 2013], a well-accepted notion
of privacy that works for deterministic functions. DDP
measures the amount of individual information leakage,
assuming the adversary only has uncertain information
about voter preferences, for example when using a ma-
chine learning algorithm. Our result on the DDP of
commonly-used voting rules carries the following en-
couraging message:

Main Message 1: Many commonly-used voting rules
achieve good DDP in natural settings.

More precisely, we focus on a natural DDP setting where
the adversary’s information is represented by a set of
i.i.d. distribution’s over preference profiles, denoted by
∆ ⊆ Π(U), where Π(U) is the set of all probability dis-
tributions over U with full support. A voting rule M’s
DDP is now measured by three parameters (ε, δ,∆). A
deterministic function is DDP (Definition 2) if it satis-
fies an inequality similar to Inequality (1), but now the
randomness is replenished by the adversary’s uncertainty
about the profile ~X , represented by ∆. Like DP, smaller
ε and δ in DDP are more desirable.

With DDP, we can quantitatively measure the privacy of
the histogram rule Hist, which outputs the frequency of
each type of vote in the preference profile, in the follow-
ing Theorem 1. As an immediate consequence, many
common voting rules also achieve good privacy.

Theorem 1 (DDP for Hist). Given any U =
{x1, . . . , xl} and ∆ ⊆ Π(U) with |∆| < ∞, let
pmin = minπ∈∆,i≤l(π(xi)). For any n ∈ N and any

ε ≥ 2 ln
(

1 + 1
pminn

)
, Hist for n voters is (ε, δ,∆)-

DDP where δ = exp(−Ω(npmin[min(2 ln(2), ε)]2)).

Theorem 1 states that Hist is private with good parame-
ters, as even a small ε results in δ that is considered neg-
ligible in cryptography literature. The winner of many
commonly-used voting rules depends only on the out-
come of Hist, and thus contain (often stricly) less infor-
mation than Hist. Thus, they achieve at least as good
privacy w.r.t. DDP as simply outputting the histogram.

Next, we highlight that DDP (as well as DP and its
variants) parameters only describe loose bounds on
privacy—by definition, if a voting rule satisfies (ε, δ,∆)-
DDP, it also satisfies (ε+ 0.1, δ+ 0.1,∆)-DDP. To com-
pare the privacy-preserving capability of voting rules, we
introduce the notion of exact distributional differential
privacy (eDDP), whose parameters describe tight bounds
on ε and δ. We focus on the ε = 0 case as a first step to
compare various voting rules with their eDDP in the δ
parameter. Our results on the eDDP of commonly-used
voting rules carry the following message:

Main Message 2: For many combinations of
commonly-used voting rules and ∆, the (0, δ,∆)-
eDDP exhibits a dichotomy between δ = Θ(

√
1/n)

and δ = exp(−Ω(n)).

More precisely, we prove the following dichotomy the-
orem for two candidates {a, b} and α-biased majority
rules with α ∈ (0, 1), which chooses a as the winner



iff at least αn out of n votes prefer a.

Theorem 2 (Dichotomy in Exact DDP for α-Majority
Rules over Two Candidates, Informal) Fix two can-
didates {a, b} and ∆ ⊆ Π({a, b}) with |∆| < ∞. For
any α ∈ (0, 1), the α-biased majority rule is (0, δ,∆)-
eDDP for all n, where δ is either Θ(

√
1/n), when ∆

contains a distribution π with π(a) = α, or exponen-
tially small otherwise.

For more than two candidates, we prove the following
dichotomy theorem for a large family of voting rules and
∆ ⊆ Π(U).

Theorem 3 (Dichotomy in Exact DDP of A Large
Class of Voting Rules and ∆, Informal) For any fixed
number of candidates, and any voting rule in a large
family, the (0, δ,∆)-eDDP is δ = Θ(

√
1/n), when ∆

contains the uniform distribution, or δ = exp(−Ω(n)),
when ∆ is finite and does not contain any unstable dis-
tributions.

Intuitively, a distribution π is unstable under a voting rule
M if adding small perturbations can cause a different
candidate to win (Definition 7). Instead of conducting
case-by-case studies of eDDP for commonly-used voting
rules, we prove Theorem 3 for a large family of voting
rules called generalized scoring rules [Xia and Conitzer,
2008] that further satisfy monotonicity, local stability,
and canceling-out. We show that many commonly-used
voting rules satisfy these conditions (Section 5). We also
compute and compare the concrete δ values for small
elections (Table 1, Section 6 and Appendix E).

1.2 RELATED WORK

Differential privacy [Dwork, 2006] was recently used to
add privacy to voting. Shang et al. (2014) applied Gaus-
sian noise to the histogram of linear orders, while Hay et
al. (2017) used Laplace and Exponential mechanisms ap-
plied to specific voting rules. Lee (2015) also developed
a method of random selection of votes to achieve differ-
ential privacy. One interesting aspect of adding noise to
the output that was observed in [Birrell and Pass, 2011;
Lee, 2015] is that it enables an approximate strategy-
proofness; the idea here is that the added noise dilutes
the effect of any individual deviation, thereby making
strategies which would slightly perturb the outcome ir-
relevant. We remark that if one wishes to achieve DP for
a large number of voting rules, well-known DP mecha-
nisms (like adding Laplace noise [Dwork et al., 2006])
can be applied to rules in GSR in a straightforward way,
by adding noise to each component of the score vector
and outputting the winner based on the noised score vec-
tor. Our work is different because we focus on exact pri-

vacy of deterministic voting rules.

In our work, we compare deterministic functions by their
exact privacy. In differential privacy literature where
functions must be randomized, their accuracy, or util-
ity, is used to compare them. A number of works
have defined utility as a metric which describes the
comparative desirability of ε-DP mechanisms. In [Mc-
Sherry and Talwar, 2007], utility is an arbitrary user-
defined function, used in the exponential mechanism.
The works of [Blum et al., 2008; Hardt and Talwar, 2010;
Bassily and Smith, 2015] define utility in terms of error,
where the closer (by some metric) the output of the func-
tion, which uses this mechanism to apply noise, is from
the desired (deterministic) query’s, the higher the utility;
the definition of [Ghosh et al., 2009] in addition allows
the user to define as a parameter, the prior distribution
on the query output. In contrast, our results imply that
in the context of distributional differential privacy, vot-
ing rules achieve a well-accepted notion of privacy while
preserving perfect accuracy, or utility.

1.3 DISCUSSIONS

While DP has been widely applied to measure privacy
and has been applied to voting, as we discussed in the
Introduction, it fails for deterministic functions such as
voting rules in high-stakes elections. This critical lim-
itation motivates our study. To the best of our knowl-
edge, we are the first to illustrate how to measure privacy
in high-stakes voting using (e)DDP in a natural setting.
We will see that the problem, though challenging, can be
solved by our novel trails technique. Below we explicitly
discuss our conceptual and technical contributions and
closely related works. More comprehensive discussions
of related work can be found in Appendix A.

Conceptual contributions. Our first conceptual con-
tribution is the application of DDP to deterministic vot-
ing rules. As discussed earlier, while previous works
add random noise to achieve DP, to the best of our
knowledge, no previous studies were done for deter-
ministic voting rules. We note that the truncated his-
togram result of [Bassily et al., 2013] does not suf-
fice, since in general, votes are not removed in an elec-
tion. Moreover, we prove our results in a simpler defi-
nition than DDP; the equivalence of this definition and
DDP is proven in Appendix B.1. Our second concep-
tual contribution is the introduction of exact DDP, ad-
dressing the issue that parameters of DDP (and other
relaxations of DP [Bassily et al., 2013; Groce, 2014;
Kasiviswanathan and Smith, 2008; Hall et al., 2012;
Duan, 2009; Bhaskar et al., 2011]) describe only upper
bounds on privacy. We are not aware of other works that
explicitly propose to characterize tight bounds on the pri-



M Borda STV Maximin Plurality 2-approval

δ(n)
1√

1.347n+ 0.5263

1√
1.495n+ 0.02669

1√
1.553n+ 4.433

1√
1.717n− 0.09225

1√
1.786n+ 0.3536

Table 1: δ values in (0, δ,∆)-eDDP for some commonly-used voting rules under the i.i.d. uniform distribution, m = 3 and
n ≤ 50. From left to right, we rank rules from least to most private.

vacy parameters ε and δ.

Technical contributions. Our first theorem (Theo-
rem 1) is quite positive, showing the privacy of out-
putting histograms. Theorem 2 and 3 characterize eDDP
in terms of δ values by fixing ε = 0. We do so for the
two reasons: (1) it is the common convention to com-
pute δ based on a fixed ε for DP or DDP; (2) ε = 0
is the most informative choice, since Theorem 1 shows
that even for small non-zero ε, any difference we can ob-
serve in the δ of two voting rules is exponentially small—
considered negligible in cryptography literature. While
our theorems appear similar and related to the dichotomy
theorems on the probability of ties in voting [Xia and
Conitzer, 2008; Xia, 2015], the definition and mathemat-
ical analysis are quite different, and previous techniques
do not work for all cases; see more discussions in the
proof sketch for Theorem 3. To address the challenge, we
developed the trails technique, which significantly sim-
plifies calculations.

Generality of our setting. As the first work towards
answering our key question, we assume the adversary’s
beliefs are modeled by a set of i.i.d. distributions over
the votes. A special case is the i.i.d. uniform distribu-
tion, which is known as the impartial culture assumption
in social choice [Georges-Théodule, 1952]. Extending to
general (ε, δ), and non-i.i.d. distributions is an important
and challenging future direction. Lastly, though our def-
initions and results are presented in the context of voting
for the sake of presentation, they can easily be extended
to general applications.

2 PRELIMINARIES

Let C = {c1, . . . , cm} be a set of m ≥ 2 candidates, and
L(C) denote the set of all linear orders over C, that is, the
set of all antisymmetric, transitive, and total binary rela-
tions. Let U denote the set of all possible votes. Given
n ∈ N, we let ~X = (X1, . . . , Xn) ∈ Un denote a collec-
tion of n votes called a preference profile. Let R denote
the set of outcomes of voting. A (deterministic) voting
rule for n voters is a mapping M : Un → R.

For example, in the plurality rule, U = R = C; each
voter votes for one favorite candidate, and the winner is
the candidate with the most votes. In the Borda rule,

U = L(C) and R = C; each voter cast a linear order X
over C, denoted by ci1 � ci2 � · · · � cim , where a � b
means that a is preferred over b; each candidate c gets
m− i points in each vote, where i is the rank of c in the
vote; the winner is the candidate with the highest total
points. A tie-breaking mechanism is used when there are
ties in plurality and Borda.

Definition 1 (The histogram rule). Let U =
{x1, · · · , xl}. For any n ∈ N, the histogram func-
tion, denoted by Hist : Un → Nl, takes as input a
preference profile ~X = (X1, . . . , Xn) ∈ Un and outputs
a l-dimensional integer vector whose ith component is
|{j : Xj = xi, j ∈ {1, · · · , n}}|.

For example, when applied to the setting of the plural-
ity rule, l = m and Hist outputs the number of votes
each candidate receives. When applied to the setting of
the Borda rule, l = m! and Hist outputs the number of
occurrences of each linear order.

3 DISTRIBUTIONAL DIFFERENTIAL
PRIVACY FOR VOTING

As we discussed, DP is not a suitable notion to ana-
lyze nontrivial deterministic voting rules as shown in the
following example, which motivates our use of distribu-
tional differential privacy (DDP) [Bassily et al., 2013].

Example 1 (DP fails for deterministic voting rules).
Consider the plurality rule for two candidates {a, b} and
three voters (n = 3). We have U = R = {a, b}. In
Inequality (1), let ~X = (a, a, b), ~X ′ = (b, a, b), and
S = {a}. Then, (1) becomes 1 ≤ eε × 0 + δ, which
means that δ ≥ 1.

At a high level, the DDP of a (deterministic or ran-
domized) function is characterized by three parameters
(ε, δ,∆), where ε and δ are privacy parameters similar
to DP, and ∆ is a set describing the adversary’s knowl-
edge about the preference profile. We consider adver-
saries that can be modeled as ∆ ⊆ Π(U), which encodes
each of the adversary’s possible uncertainties as a distri-
bution where each vote is i.i.d..

Example 2 (Adversary’s information ∆). Suppose U =
R = C = {a, b}, and the n votes could be i.i.d. gener-
ated from either π0.2 or π0.7. Here, for any γ ∈ [0, 1],



πγ(a) = γ. Then, the adversary’s information is rep-
resented by ∆ = {π0.2, π0.7}. Say we prove that some
voting rule is (ε = 0.5, δ = 0.1,∆)-DDP for the above
∆. Intuitively, this means that the voting rule has pri-
vacy ε = 0.5, δ = 0.1, given the adversary’s knowledge
can be modeled by any distribution in ∆. We remark that
this privacy holds without the need to add noise to the
outcome of the election, contrasting with DP.

To simplify presentation, below we will introduce the
definition of DDP studied in this paper. In our setting of
this paper, our simpler definition is equivalent to the orig-
inal DDP. More details can be found in Appendix B.1.
Definition 2 (DDP studied in this paper). For any ∆ ⊆
Π(U), ε > 0, and δ > 0, a voting rule M : Un → R is
(ε, δ,∆)-DDP if for every π ∈ ∆, i ≤ n, x, x′ ∈ U , and
S ⊆ R, the following inequality holds.

Pr ~X∼π(M( ~X) ∈ S|Xi = x)

≤ eε Pr ~X∼π(M( ~X) ∈ S|Xi = x′) + δ,
(2)

where ~X = (X1, . . . , Xn) is a preference profile where
each vote is i.i.d. generated from π.

For deterministic M, the randomness in Inequality (2)
comes from the adversary’s incomplete information, cap-
tured by ∆. We show that Hist satisfies good DDP.

Theorem 1 (DDP of Hist, proof in Appendix B.2).
Given any U = {x1, . . . , xl} and ∆ ⊆ Π(U) with |∆| <
∞, let pmin = minπ∈∆,i≤l(π(xi)). For any n ∈ N and
any ε ≥ 2 ln(1 + 1

pminn
), Hist for n voters is (ε, δ,∆)-

DDP where δ = exp(−Ω(npmin[min(2 ln(2), ε)]2)).

As corollary, these privacy parameters of Hist automat-
ically apply to all functions that only depend on the out-
put of Hist, i.e. most voting rules, or outputting the
histogram in addition to the winner as in US presiden-
tial elections. This follows immediately from a prop-
erty of DDP called immunity to post processing (see
Lemma 3 in Appendix B.2). We note the result is similar
to that of [Bassily et al., 2013], but they assume lower-
frequency items in the histogram are truncated (which is
not the case in general when election results are posted)
and describe a less precise δ.

4 EXACT PRIVACY OF VOTING
RULES: TWO-CANDIDATE CASE

In this section, we first present the definition of exact
distributional differential privacy (exact DDP or eDDP),
then characterize (0, δ,∆)-eDDP for two candidates un-
der any α-biased majority rule. The proof of this theo-
rem will serve as a toy application of our trails technique,
useful for proving our main result Theorem 3.

Intuitively, a function has exact privacy with parameters
ε and δ if the function cannot satisfy the privacy defini-
tion with strictly better parameters. We remark that this
definition can easily be altered to define (ε, δ)-exact dif-
ferential privacy (eDP) by omitting ∆.

Definition 3 (Exact Distributional Differential Pri-
vacy (eDDP)). A voting rule M is (ε, δ,∆)-Exact Dis-
tributional Differential Privacy (eDDP) if it is (ε, δ,∆)-
DDP and there does not exist (ε′ ≤ ε, δ′ < δ) nor
(ε′ < ε, δ′ ≤ δ) such that M is (ε′, δ′,∆)-DDP.

The α-biased majority rule, denoted by Mα, over two
candidates (a, b) outputs a as the winner if at least α
fraction of votes prefer a over b. An example of this
type of voting rule is supermajority, used in government
decisions around the world.

Theorem 2 (Exact DDP for Majority Rules, full proof
in Appendix C.2). Fix two candidates {a, b} and ∆ ⊆
Π({a, b}) with |∆| < ∞. For any α ∈ (0, 1), the α-
biased majority rule is (0, δ,∆)-eDDP for all n, where

δ = max
p=π(a) : π∈∆

Θ

(√
1

n

[( p
α

)α( 1− p
1− α

)1−α
]n)

.

In particular, δ = Θ
(√

1/n
)

if there exists π ∈ ∆with

π(a) = α; otherwise δ = exp(−Ω(n)).

In the following subsections, we will present our trails
technique for analyzing DDP in voting, followed by a
proof sketch of Theorem 2 using the trails technique.

4.1 OUR TOOL TO ANALYZE PRIVACY:
TRAILS TECHNIQUE

Let us describe the trails technique using a simple, toy
example: suppose there are two candidates {a, b}, and
n = 5 votes. Let M be the majority rule where ties are
broken in favor of a, i.e. α = 0.5. We want to compute
(0, δ,∆)-eDDP of M for any ∆ ⊆ Π({a, b}). In light of
Definitions 2 and 3, we have:

δ = max
S,x,x′,i,π∈∆

[
Pr ~X∼π(M( ~X) ∈ S|Xi = x)

−Pr ~X∼π(M( ~X) ∈ S|Xi = x′)
]
.

(3)

Now, the majority rule is anonymous, that is, the iden-
tity of the voter is irrelevant and it chooses the winner
only based on the histogram of votes. We can thus write
M = f ◦Hist, where t = (ta, tb) and f(t) outputs a if
ta ≥ tb and outputs b otherwise. Then, Equation (3) can
be rewritten with probabilities over histograms, which is



easier to compute (below, ~X ∼ π is implicit).

δ = max
S,x,x′,i,π∈∆

[
Pr(f(Hist( ~X)) ∈ S|Xi = x)

−Pr(f(Hist( ~X)) ∈ S|Xi = x′)
]

= max
S,x,x′,i,π∈∆

 ∑
t : f(t)∈S

Pr(Hist( ~X) = t|Xi = x)

−
∑

t : f(t)∈S

Pr(Hist( ~X) = t|Xi = x′)

 .
(4)

For example, if S = {a}, then T ≡ {t : f(t) ∈ S} =
{(5, 0), (4, 1), (3, 2)} is an example of what we call a
trail. Intuitively, a trail T is a set of histograms consecu-
tive in the sense that, starting from some t, we can list ex-
actly the elements of T by iteratively subtracting 1 from
and adding 1 to two components of t, respectively. We
see that T can be listed in such a way, starting from entry
Enter(T) = (5, 0) and ending at exit Exit(T) = (3, 2),
by interatively subtracting from the first component and
adding to the second component of (5, 0) (we say the di-
rection of T is (1, 2)). See Figure 1.

ta

tb
(0, 5)

Trail T with 

Enter(T) = (5, 0)

and Exit(T) = (3, 2)

(2, 3)

(1, 4)
a wins

b wins

(4, 1)

(3, 2)∈End(a)

(5, 0)

Figure 1: A trail for two candidates. A graph of number of
votes for candidate a (= ta) versus votes for candidate b (= tb).
Each point in the line is a histogram where the total number of
votes is n = 5. The set {(5, 0), (4, 1), (3, 2)} forms a trail. We
denote by End(a) (used in the proof of Theorem 3) the set of
histograms which are exits of trails where a is the winner. In
this example End(a) = {(3, 2)}.

We now give intuition for our key Lemma 1 presented
below using this example. Suppose in Equation (4) the
maximizing S is {a} (so that {t : f(t) ∈ S} = T), x = a,

and x′ = b. Then, for any i, and any π ∈ ∆:

δ =
∑

t∈{(5,0),(4,1),(3,2)}

Pr(Hist( ~X) = t|Xi = a)

−
∑

t∈{(5,0),(4,1),(3,2)}

Pr(Hist( ~X) = t|Xi = b).

The core of Lemma 1 is the observation that when votes
are independent (e.g. when ∆ ⊆ Π({a, b})), then for all
t = (ta, tb) such that ta > 0, the following holds

Pr(Hist( ~X) = (ta, tb)|Xi = a)

= Pr(Hist( ~X) = (ta − 1, tb + 1)|Xi = b).

In light of this, Pr(Hist( ~X) = (5, 0)|Xi = a) can-
cels out with Pr(Hist( ~X) = (4, 1)|Xi = b), and
Pr(Hist( ~X) = (4, 1)|Xi = a) cancels out with
Pr(Hist( ~X) = (3, 2)|Xi = b). This leaves

δ = Pr(Hist( ~X) = (3, 2) = Exit(T)|Xi = a)

− Pr(Hist( ~X) = (5, 0) = Enter(T)|Xi = b).

We note that here Pr(Hist(X) = Enter(T)|Xi = b) =
0, but this does not hold generally for all trails for m ≥
2. This calculation can be extended to the more general
Lemma 1 below. Before that, let us formally define trails.
For any histogram t = (t1, · · · , tl) ∈ Nl, any z ∈ Z and
j ≤ l, we let (t1, · · · , tl) + zxj denote the histogram
(t1, · · · , tj + z, · · · tl).

Definition 4 (Trails). Given a pair of indices (j, k)
where j 6= k, a histogram t, and a length q, we define
the trail Tt,xj ,xk,q = {t − zxj + zxk) : 0 ≤ z ≤ q},
where (j, k) is called the direction of the trail, t is then
the entry of this trail, also denoted by Enter(Tt,xj ,xk,q),
and t− qxj + qxk is called the exit of the trail, denoted
by Exit(Tt,xj ,xk,q).

Alternatively, a trail T can be defined by just its entry
and exit.
Lemma 1. Let T be a trail with direction (j, k), and let
π ∈ Π(U). For any i, xj , xk ∈ U , we have:

Pr
~X∼π

(Hist( ~X) ∈ T |Xi = xj)

− Pr
~X∼π

(Hist( ~X) ∈ T |Xi = xk)

= Pr
~X∼π

(Hist( ~X) = Exit(T) |Xi = xj)

− Pr
~X∼π

(Hist( ~X) = Enter(T) |Xi = xk).

Proof. Fix distribution π over n votes, where each vote
is independently distributed. For ~X ∼ π, denote X−i
as the random variable ~X but without the ith vote. The
equality in the lemma comes from the simple observation



that when votes are independently distributed, for any
histogram t ∈ Nl and any j ∈ [l]

Pr
~X∼π

(Hist( ~X) = t|Xi = xj) = Pr
~X∼π

(Hist(X−i) = t− xj)

(Below, ~X ∼ π is implicit). Let q be the length of the
trail. For any 0 ≤ z < q, let tz = Enter(T)− zxj + zxk.
Then,

Pr(Hist( ~X) = tz|Xi = xj)

= Pr(Hist(X−i) = tz − xj)

= Pr(Hist( ~X) = tz − xj + xk|Xi = xk)

= Pr(Hist( ~X) = tz+1|Xi = xk).

In other words,

Pr(Hist( ~X) ∈ T|Xi = xj)

− Pr(Hist( ~X) ∈ T|Xi = xk)

= Pr(Hist( ~X) = tq|Xi = xj)

− Pr(Hist( ~X) = t0|Xi = xk)

+
∑

0≤z<q

(
Pr(Hist( ~X) = tz|Xi = xj)

− Pr(Hist( ~X) = tz+1|Xi = xk)
)

= Pr(Hist( ~X) = tq|Xi = xj)

− Pr(Hist( ~X) = t0|Xi = xk)

(Every term in the summation of differences cancels out.)

= Pr(Hist( ~X) = Exit(T)|Xi = xj)

− Pr(Hist( ~X) = Enter(T)|Xi = xk)

Remark. In this subsection’s example, no matter the
S, the set {t : f(t) ∈ S} forms one single trail, but this
does not hold in general. Instead, to prove our main the-
orem we will partition this set into multiple trails, and
apply Lemma 1 to simplify probabilities over each trail.

4.2 A SIMPLE APPLICATION OF TRAILS
TECHNIQUE: PROOF OF THEOREM 2

Proof. [Proof sketch for Theorem 2, see Appendix C.2
for the full proof]. For any π ∈ ∆, let p = π(a).
Let trails Ta = {t : t = (k, n− k), k ≥ αn} and Tb =
{t : t = (k, n− k), k < αn}. It follows that any his-
togram in Ta results in a being the winner, and any in
Tb results in b as the winner. Also, Equation (4) implies
we should not consider S = {a, b} nor S = ∅ as oth-
erwise δ = 0 (the default lower bound on δ). Thus, we
only consider S = {a} (when winner is a, correspond-
ing to trail Ta) or S = {b} (trail Tb). Then Equation
(4) becomes (we disregard the value of i since votes are

i.i.d.):

δ = max
j∈{a,b},x,x′

[
Pr ~X∼π(Hist( ~X) ∈ Tj |Xi = x)

−Pr ~X∼π(Hist( ~X) ∈ Tj |Xi = x′)
]

(Equation (4))

= max
j∈{a,b},x,x′

[
Pr(Hist( ~X) = Exit(Tj)|Xi = x)

−Pr(Hist( ~X) = Enter(Tj)|Xi = x′)
]
. (Lemma 1)

We first discuss S = {a} whose corresponding trail Ta
starts at Enter(Ta) = (n, 0) and exits at Exit(Ta) =
(dαne, b(1 − α)nc). Here, x = a and x′ = b maximize
δ. Then,

Pr(Hist( ~X) = Enter(Ta)|Xi = b)

= Pr(Hist( ~X) = (n, 0)|Xi = b) = 0,

and

Pr(Hist( ~X) = Exit(Ta)|Xi = a)

= Θ

(√
1

n

[( p
α

)α( 1− p
1− α

)1−α
]n)

.

The case for S = {b} is similar and Theorem 2 follows
by maximizing δ over π ∈ ∆.

5 EXACT PRIVACY OF VOTING
RULES: GENERAL CASE

The main result of this section, Theorem 3, character-
izes (0, δ,∆)-exact DDP of generalized scoring rules
(GSR) for arbitrary number of candidates, defined below.
The main message is that the characterization holds for
commonly-used voting rules (Corollary 1). Therefore,
to get the main message, a reader can skip the technical
descriptions and definitions below to Corollary 1.

Definition 5 (Generalized Scoring Rules (GSR) [Xia and
Conitzer, 2008]). A Generalized Scoring Rule (GSR)
is defined by a number K ∈ N and two functions f :
L(C) → RK and g, which maps weak orders over the
set {1, . . . ,K} to C. Given a vote V ∈ L(C), f(V ) is
the generalized score vector of V . Given a profile P , we
call f(P ) =

∑
V ∈P f(V ) the score. Then, the winner is

given by g(Ord(f(P ))), where Ord outputs the weak
order of the K components in f(P ).

We say that a rule is a GSR if it can be described by some
f , g as above. Most popular voting rules (i.e., Borda,
Plurality, k-approval and ranked pairs) are GSRs. See
Example 3 and Example 4 for f , g for plurality rule and
majority rule. The domain of GSRs can be naturally ex-
tended to weighted profiles, where each type of vote is
weighted by a real number, due to the linearity of f .



Example 3. The simplest example of a GSR is plurality.
This is the voting rule where each voter chooses exactly
one candidate, and the candidate with the most votes is
the winner. Here,K is equal to the number of candidates
m. Suppose V is a vote (linear order over candidates)
where the top candidate is xi. The function f would map
V to a vector f(V ) = (0, · · · , 0, 1, 0, · · · , 0) where the
1 is at position i in the vector. Then, f(P ) is exactly the
histogram counting the number of times each candidate
is ranked at the top of a vote. Finally, the function g
chooses the winner.

We now define a set of properties of GSRs to present our
characterization of eDDP in Theorem 3.

Definition 6 (Canceling-out, Monotonicity, and Local
stability). A voting rule M satisfies canceling-out if for
any profile ~X , adding a copy of every ranking does not
change the winner. That is, M( ~X) = M( ~X ∪ L(C)).

A voting rule satisfies monotonicity one cannot prevent
a candidate from winning by raising its ranking in a vote
while maintaining the order of other candidates.

A voting rule M satisfies local stability if there exist lo-
cally stable profile. A profile ~X∗ is locally stable (to M),
if there exists a candidate a, a ranking W , and another
ranking V that is obtained from W by raising the posi-
tion of a without changing the order of other candidates,
such that for any ~X ′ in the γ neighborhood of ~X∗ in
terms of L∞ norm, we have (1) M( ~X ′) 6= a, and (2) the
winner is a when all W votes in ~X ′ becomes V votes.

Definition 7 (Unstable distributions). Given a GSR M,
a distribution π over U is unstable, if for any ε > 0,
there exists ~p and ~q with ‖~p‖2 = ‖~q‖2 < ε, such that
M(π + ~q) 6= M(π + ~q)1, where ‖ · ‖2 is the `2-norm.

Theorem 3 (Dichotomy of Exact DDP for GSR, full
proof in Appendix D.1). Fix m ≥ 2 and ∆ ⊆ Π(L(C))
with |∆| < ∞. For any n, any GSR M that satis-
fies monotonicity, local stability, and canceling-out is
(0, δ,∆)-DDP, where δ is

• Θ(
√

1/n), if ∆ contains the uniform distribution
over L(C), or

• exp(−Ω(n)), if ∆ does not contain any unstable
distribution.

Proof sketch for Theorem 3. (See Appendix D.1 for the
full proof) We first prove the δ = exp[−Ω(n)] case. Re-
calling the proof of Theorem 2, we know that δ is closely
related to the probability of End(a) for some a ∈ C.
It turns out that this is also the case for any GSR M

1We slightly abuse notation—M(π) denotes the output of
M when the voters cast fractional votes according to π.

that also satisfies monotonicity. Applying our trails tech-
nique, we have

δ ≤ max
a

∑
P∈End(a)

Pr(P − V ),

where V is a vote s.t. there exists vote W with M(P −
V + W ) 6= a. Thus, we know δ is upper bounded by
the probability of all profiles (P − V ) “close” to a tie
of voting rule r. For any unstable distribution π, we
can prove that the center of π is reasonably “far” away
from any profile in End(a) (or “far” away from any ties).
Then, the exponential upper bound follows after Cher-
noff bound and union bound. The proof for this part is
similar to the analysis of probabilities of tied profiles as
in [Xia and Conitzer, 2008].

We now move on to the δ = Θ(
√

1/n) case. The upper
bound O(

√
1/n) also derived from the trails technique’s

result: δ ≤ maxa
∑
P∈End(a) Pr(P−V ). General frame-

work of our proof is similar with the δ = exp[−Ω(n)]
case. Since adding any vote to a uniform profile results
in a new winner, we know the uniform distribution of
preferences is always an unstable distribution when re-
quirements in Theorem 3 are met. Thus, we can prove
that the center of the profiles’ distribution (multinomial
distribution in m!-dimensional space) is “close” to a tie.
Then, we apply Stirling’s formula to each trails and give
an upper bounds to Pr(P − V ) for profiles P ∈ End(a).

For the lower bound Ω(
√

1/n), canceling-out and lo-
cally stability are used to construct a “good” subset of
profiles. At a high level, canceling-out ensures that the
constructed subset is large enough, and locally stability
ensures the trails constructed from the selected subset is
long enough. Our subset is contracted by certain profiles
with O(

√
n) distance2 from the center of profile distri-

bution in the direction of local stable profile. Giving
a lower bound to the Pr(P − V ) for any profile P in
our selected subset is the most non-trivial part of this
proof and is quite different from the proof in [Xia and
Conitzer, 2008]. Unlike the profiles P in our selected
subset of profiles, P −V do not necessarily concentrated
in a specific region in the space of profiles. Here, we
use a non-i.i.d. version of Lindeberg-Levy central limit
theorem [Greene, 2003] to analyze the multinomial dis-
tribution of m! kinds of votes.

Next, we use a simple example of majority rule to show
the results in Theorem 3 matches the 2-candidate results
in Section 4. In the following example, we also provide
the intuitions on how to describe voting rules in the lan-
guage of GSR.

2we use `2 distance in the m!-dimensional space of profile.



Example 4 (Example of Definition 5 and Theorem 3).
Let U = R = C = {c1, c2}, V = [c1 � c2], and
W = [c2 � c1]. For the majority rule with α = 0.5,
we have f(V ) = (1, 0) and f(W ) = (0, 1). Then, the
winner is chosen according to g corresponding to the
largest component in f(P ). Recalling our definition of
unstable distribution, we know ( 1

2 ,
1
2 ) is the only unsta-

ble distribution for 2-candidate majority rule. This is the
intuitive reason behind δ = Θ(

√
1/n) when π = ( 1

2 ,
1
2 )

for both Theorem 3 and Theorem 2 (when α = 0.5).
For any other π 6= (1

2 ,
1
2 ), these two theorems result in

δ = exp[−Ω(n)]. We note that while Theorem 3 cov-
ers more voting rules, Theorem 2 is a more fine-grained
result for two candidates.

Corollary 1. Plurality, veto, k-approval, Borda, max-
imin, Copeland, Bucklin, Ranked Pairs, Schulze (see
e.g. [Xia and Conitzer, 2008]) are (0,Θ (1/

√
n) ,∆)-

eDDP when ∆ contains the uniform distribution.

Proof. As shown in Definition 6, cancelling-out and
monotonicity are very natural properties of most voting
rules. These two properties can be easily checked ac-
cording to the definitions of voting rules discussed in
Corollary 1. In the next proposition, we prove a more
generalized version of Corollary 1 for local stability,
which indicate a large subset of the voting rules can sat-
isfies all properties required by Theorem 3.

Proposition 1. All positional scoring rules and all Con-
dorcet consistent and monotonic rules satisfy the prop-
erty of local stability.

Proof. Let si to denote the score of the i-th candidate
(f(P ) in definition 5). Suppose s1 = · · · = sl > sl+1.
We let V = [a � c1 � cl−1 � b � others] and
W = [c1 � cl−1 � b � a � others]. Let M be
the permutation c1 → c2 → . . . cm−2 → c1. Let
V1 = [a � b � others] and V2 = [b � a � others]. Let
P ′ =

⋃m−2
i=1 M i(V1)∪M i(V2). LetP ∗ = 2P ′∪{V,W}.

It follows that a and b are the only two candidates tied in
the first place in P ∗. Therefore, there exists ε to satisfy
the condition in local stability.

The same profile can be used to prove the local stability
of all Condorcet consistent and monotonic rules.

Then, Corollary 1 follows by combining the results for
all three properties.

Another commonly-used GSR called STV does not sat-
isfy monotonicity, which means that Theorem 3 does not
apply. However, empirical results (Section E) suggest
that STV is likely also (0,Θ (1/

√
n) ,∆)-eDDP for this

distribution.

6 CONCRETE ESTIMATION OF THE
PRIVACY PARAMETERS

We present an example of computing concrete estimates
of (0, δ,∆)-exact DDP values for several GSRs. For this
example, we let ∆ = {π} such that π ∈ Π({x1, x2, x3})
and π(xi) = π(xj) = 1/3 (i.e., votes are i.i.d. and uni-
form). We generated these concrete estimates via ex-
haustive search over possible profiles for 3 candidates
and n ≤ 50 votes, and computing the δ values exactly
for each n. Since we know that δ = Θ(1/

√
n), we fit

these values to δ(n) = 1√
an+b

via linear regression. We
rank voting rules from most to least private. The larger
the a, the smaller the δ value and thus more private:

2-approval B Plurality B Maximin B STV B Borda

We showed in Table 1 (Section 1, also see Table 2 in
Appendix E for more information) the fitted δ curves.
Figure 2 shows the comparison between Plurality, Borda,
and STV voting rules w.r.t. their δ values in (0, δ,∆)-
eDDP, when fitted to δ(n) = 1√

an+b
.

Figure 2: The δ values in (0, δ,∆)-eDDP for Borda, STV, and
plurality in our concrete estimates.

7 SUMMARY AND FUTURE WORK

We address the limitation of DP in deterministic voting
rules by introducing and characterizing (exact) DDP for
voting rules, leading to an encouraging message about
the good privacy of commonly-studied voting rules and a
framework to compare them w.r.t. eDDP. There are many
directions for future work. An immediate open question
for theoretical study is to extend our studies to general
(ε, δ), and non-i.i.d. distributions, as well as to other
high-stakes social choice procedures such as matching
and resource allocation. On the practical side, it could
be informative to study the eDDP of other data that is
often published during an election, such as demographic
information, and interpret their consequences.
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A Additional Related Literature

The first works on DP described how one can create mechanisms for answering standard statistical queries on a
database (e.g., number of records with some property or histograms) in a way that satisfies the DP definition. This
ignited a vast and rapidly evolving line of research on extending the set of mechanisms and achieving different DP
guarantees—we refer the reader to [Dwork and Roth, 2014] for an (already outdated) survey—to a rich literature of
relaxations to the definition, e.g., [Bhaskar et al., 2011; Leung and Lui, 2012a; Duan, 2009; Bassily et al., 2013],
that capture among others, noiseless versions of privacy, as well as works studying the trade-offs between privacy and
utility of various mechanisms [McSherry and Talwar, 2007; Blum et al., 2008; Hardt and Talwar, 2010; Bassily and
Smith, 2015; Ghosh et al., 2009].

Generalized Scoring Rules (GSRs) is a class of voting rules that include many commonly studied voting rules, such
as Plurality, Borda, Copeland, Maximin, and STV [Xia and Conitzer, 2008]. It has been shown that for any GSR the
probability for a group of manipulators to be able to change the winner has a phase transition [Xia and Conitzer, 2009;
Mossel et al., 2013]. An axiomatic characterization of GSRs is given in [Xia and Conitzer, 2009]. The most robust
GSR with respect to a large class of statistical models has been characterized [Caragiannis et al., 2014]. Recently
GSRs have been extended to an arbitrary decision space, for example to choose a set of winners or rankings over
candidates [Xia, 2015].

Relaxations to Differential Privacy and Noiseless Functions Relaxations to differential privacy have been pro-
posed to allow functions with less to no noise to achieve a DP-style notion of privacy. Kasiviswanathan and Smith [Ka-
siviswanathan and Smith, 2008] formally proved that differential privacy holds in presence of arbitrary adversarial
information, and formulated a Bayesian definition of differential privacy which makes adversarial information ex-
plicit. Hall et al. [Hall et al., 2012] suggested adding noise to only certain values (such as low-count components
in histograms) to achieve a relaxed notion of Random Differential Privacy with higher accuracy. Taking advantage
of (assumed) inherent randomness in the database, several works have also put forward DP-style definitions which
allow for noiseless functions. Duan [Duan, 2009] showed that sum queries of databases with i.i.d. rows can be out-
putted without noise. Bhaskar et al. [Bhaskar et al., 2011] introduced Noiseless Privacy for database distributions
with i.i.d. rows, whose parameters depend on how far the query is from a function which only depends on a subset of
the database. Motivated by Bayesian mechanism design, Leung and Lui [Leung and Lui, 2012b], suggested noiseless
sum queries and introduced Bayesian differential privacy for database distributions with independent rows, where the
auxiliary information is some number of revealed rows.

These ideas were generalized and extended by Bassily et al. who introduced distributional differential privacy
(DDP) [Bassily et al., 2013; Groce, 2014]. Informally, given a distribution (X,Z), where X is the adversary’s
uncertainty in the database distribution and Z is a parameter used for proving composition theorems (i.e. computing
DDP when outputting results from two functions that are both DDP with some parameters), we say a function M is
(ε, δ,∆ = {(X,Z)})-DDP if its output distribution M(X)|Z can be simulated by a simulator that is given the database
missing one row. In these works, noiseless functions which have been shown to satisfy DDP are exact sums, truncated
histograms, and stable functions where with large probability, the output is the same given neighboring databases.

B Distributional Differential Privacy for Voting

B.1 Equivalence of our DDP definition and that of [Bassily et al., 2013]

For completeness we present the DDP definition of [Bassily et al., 2013]. However, this definition is harder to work
with, and harder to explain conceptually. Thus, we choose to present Definition 2. Below, we will show that in our
setting, these two definitions are equivalent.

Definition 8 (Distributional Differential Privacy (DDP) [Bassily et al., 2013]). A function M : U∗ → R is (ε, δ,∆)-
distributional differentially private (DDP) if there is a simulator Sim such that for all D = (π, Z) ∈ ∆, ~X ∼ π, for
all i, (x, z) ∈ Supp(Xi, Z) (where Xi denotes the random variable that is the ith component of ~X , X−i denotes the
r.v. that is ~X without the ith component, and Supp(.) denotes the support of a distribution), and all sets S ⊆ R,

Pr
~X∼π

(M( ~X) ∈ S|Xi = x, Z = z) ≤ eε Pr
~X∼π

(Sim(X−i) ∈ S|Xi = x, Z = z) + δ



and
Pr
~X∼π

(Sim(X−i) ∈ S|Xi = x, Z = z) ≤ eε Pr
~X∼π

(M( ~X) ∈ S|Xi = x, Z = z) + δ

Lemma 2 (Equivalence of definitions). For any U , let ∆ ⊆ Π(U) and ∆′ = (∆, Z = ∅) (where Z is a parameter in
the [Bassily et al., 2013] definition). Suppose M is (ε, δ,∆′)-(simulation-based) DDP [Bassily et al., 2013], then M
is (2ε, (1 + eε)δ,∆)-DDP for our Definition 2. Conversely, if M is (ε, δ,∆)-DDP for Definition 2 then M satisfies
(ε, δ,∆′)-(simulation-based) DDP.

Lemma 2. We prove the first statement, that is, if M is (ε, δ,∆′)-(simulation-based) DDP [Bassily et al., 2013], then
M is (2ε, (1 + eε)δ,∆)-DDP of Definition 2.

By the definition of M being (ε, δ,∆′)-(simulation-based) DDP, the simulator Sim has to satisfy the below inequalities
for any (π, Z) ∈ ∆′, any i, and x ∈ Supp(Xi) (for ~X ∼ π). With Z = ∅, we can write the inequalities in the DDP
definition without Z as

Pr
~X∼π

(M( ~X) ∈ S | Xi = x) ≤ eε Pr
~X∼π

(Sim(X−i) ∈ S | Xi = x) + δ

Pr
~X∼π

(Sim(X−i) ∈ S|Xi = x) ≤ eε Pr
~X∼π

(M( ~X) ∈ S|Xi = x) + δ (5)

(We make ~X ∼ π implicit to ease presentation.) Now consider any x′ ∈ Supp(Xi), possibly different from the x
above. By the definition of DDP, the inequalities should also hold for x′, i.e.

Pr(M( ~X) ∈ S | Xi = x′) ≤ eε Pr(Sim(X−i) | Xi = x′) + δ

Since the simulator is not given ith entry of the database, its output does not depend on the value of the ith
row. Moreover, if database rows are independent, the distributions X−i|Xi = x′ = X−i|Xi = x. Thus
Pr(Sim(X−i) | Xi = x′) = Pr(Sim(X−i) ∈ S | Xi = x). So,

Pr(M( ~X) ∈ S | Xi = x′) ≤ eε Pr(Sim(X−i) ∈ S | Xi = x) + δ

Pr(M( ~X) ∈ S | Xi = x′) ≤ eε(eε Pr(M( ~X) ∈ S|Xi = x) + δ) + δ (By Equation 5 above.)

Pr(M( ~X) ∈ S | Xi = x′) ≤ e2ε Pr(M(X) ∈ S | Xi = x) + eεδ + δ

Thus, we have shown that for all x, x′ ∈ Supp(Xi) (and all i),

Pr(M(X) ∈ S | Xi = x′) ≤ e2ε Pr(M(X) ∈ S | Xi = x) + (eε + 1)δ

So, M is (2ε, (1 + eε)δ,∆)-DDP, proving the first statement.

We now prove the second statement. That is, if M is (ε, δ,∆)-DDP of Definition 2 then M is (ε, δ,∆′)-(simulation-
based) DDP. To do so, we define the simulator Sim to be the algorithm which inserts any x′ ∈ Supp(Xi) to the
missing ith row of the database, and apply M to the result. By independence of rows, Pr(Sim(X−i) | Xi = x) =
Pr(Sim(X−i) | Xi = x′) by our definition of Sim, equal to Pr(M(X) | Xi = x′). Then, for any X ∈ ∆, i, and
x, x′ ∈ Supp(Xi),

Pr(Sim(X−i) ∈ S | Xi = x) = Pr(M(X) ∈ S | Xi = x′) ≤ eε Pr(M(X) ∈ S | Xi = x) + δ

by inequality of Definition 2. This proves the second statement.

B.2 Proof of Theorem 1: DDP of Histogram

Theorem 1 (DDP of Hist) Given any U = {x1, . . . , xl} and ∆ ⊆ Π(U) with |∆| < ∞, let pmin =
minπ∈∆,i≤l(π(xi)). For any n ∈ N and any ε ≥ 2 ln(1 + 1

pminn
), Hist for n voters is (ε, δ,∆)-DDP where

δ = exp(−Ω(npmin[min(2 ln(2), ε)]2)).



Proof. At a high level, the proof is similar to Theorem 8 of [Leung and Lui, 2012b].

Fix π ∈ ∆. Since votes are i.i.d. and all i ∈ [n] are equivalent, we simplify Pr ~X∼π(Hist( ~X) ∈ S|Xi = x) as
Pr(Hist(x,X−1) ∈ S), where X−1 refers to ~X without the first vote.

We need to show that for all xi, xj ∈ {x1, · · · , xl}, and all S ⊆ Nl:

Pr(Hist(xi, X−1) ∈ S) ≤ eε Pr(Hist(xj , X−1) ∈ S) + δ

We observe that for any set B and x:

Pr(Hist(x,X−1) ∈ S) = Pr(Hist(x,X−1) ∈ S ∩ B) + Pr(Hist(x,X−1) ∈ S ∩ B) (6)

≤ Pr(Hist(x,X−1) ∈ S ∩ B) + Pr(Hist(x,X−1) ∈ B) (7)

Let B be the set of all histogram t ∈ Nl where ti > pi(n − 1)eε/2 and tj < pj(n − 1)e−ε/2. Fix a choice of
ε > 2 ln(1 + 1

pminn
). We claim that for δ = exp(Ω(npmin(min(2 ln(2), ε))2), the following hold:

Claim 1: Pr(Hist(xi, X−1) ∈ S ∩ B) ≤ eε Pr(Hist(xj , X−1) ∈ S ∩ B)

Claim 2: Pr(Hist(xi, X−1) ∈ B) ≤ δ

If both claims are true, then by Inequality (7),

Pr(Hist(xi, X−1) ∈ S) ≤ Pr(Hist(xi, X−1) ∈ S ∩ B) + Pr(Hist(xi, X−1) ∈ B)

≤ eε Pr(Hist(xj , X−1) ∈ S ∩ B) + δ

≤ eε Pr(Hist(xj , X−1) ∈ S) + δ

which proves the theorem. Below we will prove both claims.

Claim 1 proof:
Since all entries in random variable X−1 are i.i.d., the random variable
Hist(X−1) which outputs the histogram of the database has distribution equal to the multinomial distribution on n−1
trials and l events:

Pr(Hist(X−1) = (t1, · · · , tl)) =
(n− 1)!

t1! · · · tl!
pt11 · · · p

tl
l

where ti is the count of entries with the value xi and pi is the probability for an entry to have the value xi.

Thus,

Pr(Hist(xi, X−1) = (t1, · · · , tl)) =
(n− 1)!

t1! · · · (ti − 1)! · · · tl!
pt11 · · · p

ti−1
i · · · ptll

and

Pr(Hist(xj , X−1) = (t1, · · · , tl)) =
(n− 1)!

t1! · · · (tj − 1)! · · · tl!
pt11 · · · p

tj−1
i · · · ptll

So, for every t = (t1, · · · , tl) ∈ S ∩ B:

Pr(Hist(xi, X−1) = t)

Pr(Hist(xj , X − 1) = t)
=

(n− 1)!

t1! · · · (ti − 1)! · · · tl!
pt11 · · · p

ti−1
i · · · ptll

(n− 1)!

t1! · · · (tj − 1)! · · · tl!
pt11 · · · p

tj−1
i · · · ptll

=
ti
pi

pj
tj



=
ti

pi(n− 1)

pj(n− 1)

tj

By definition of B, ti > pi(n− 1)eε/2 or tj < pj(n− 1)e−ε/2,

so t ∈ B has ti ≤ ti(n− 1)eε/2 and tj ≥ pj(n− 1)e−ε/2

≤ pi(n− 1)eε/2

pi(n− 1)

pj(n− 1)

pj(n− 1)e−ε/2
= eε/2 × eε/2 = eε

This proves Claim 1.

Claim 2 proof: Recall B is the set of all histogram t ∈ Nl where ti > pi(n − 1)eε/2 and tj < pj(n − 1)e−ε/2. For
any i ∈ {1, · · · , l} let Hist(x,X−1)i denote ith component of the random variable Hist(x,X−1).

Pr(Hist(xi, X−1) ∈ B)

= Pr
(
Hist(xi, X−1)i > pi(n− 1)eε/2 or Hist(xi, X−1)j < pj(n− 1)e−ε/2

)
≤ Pr

(
Hist(xi, X−1)i > pi(n− 1)eε/2

)
+ Pr

(
Hist(xi, X−1)j < pj(n− 1)e−ε/2

)
(By union bound)

= Pr
(

1 + Bin(n− 1, pi) > pi(n− 1)eε/2
)

+ Pr
(
Bin(n− 1, pj) < pj(n− 1)e−ε/2

)
(Where Bin(n, p) denotes binomial r.v. with n trials and success probability p)

= Pr(Bin(n− 1, pi) > pi(n− 1)(eε/2 − (pi(n− 1))−1))

+ Pr(Bin(n− 1, pj) < pj(n− 1)e−ε/2)

The random variable Bin(n− 1, pi) has mean µ = pi(n− 1). When

2 ln(1 +
1

pi(n− 1)
) < 2 ln(1 +

1

pmin(n− 1)
) < ε ≤ 2 ln(2) < 2 ln(2 +

1

pi(n− 1)
)

we have 0 < β = eε/2 − (pi(n− 1))−1 − 1 < 1. By Chernoff bound,

Pr(Bin(n− 1, pi) > (1 + β)µ ≤ e−µβ
2/3

= exp(−Ω(pi(n− 1)(eε/2 − (pi(n− 1))−1 − 1)2))

= exp(−Ω(pinε
2))

The random variable Bin(n− 1, pj) has mean µ = pj(n− 1). By Chernoff bound, for any 0 < β = 1− e−ε/2 < 1
(ie. ε > 0),

Pr(Bin(n− 1, pj) < (1− β)µ) ≤ e−µβ
2/2

= exp(−Ω(pj(n− 1)(1− e−ε/2)2))

= exp(−Ω(pjnε
2))

So that:

Pr(Hist(xi, X−1) ∈ B) ≤ Pr(Bin(n− 1, pi) > pi(n− 1)(eε/2 − (pi(n− 1))−1))

+ Pr(Bin(n− 1, pj) < pj(n− 1)e−ε/2)

≤ exp(−Ω(pinε
2)) + exp(−Ω(pjnε

2))

≤ exp(−Ω(pminnε
2)) = δ



for 2 ln(1 + 1
pmin(n−1) ) < ε ≤ 2 ln(2). To get rid of the upper bound on ε, notice when ε = 2 ln(2),

δ = exp(−Ω(pminn(2 ln(2))2)) suffices to satisfy the inequality

Pr(Hist(xi, X−1) ∈ S) ≤ eε Pr(Hist(xj , X−1) ∈ S) + δ

Thus, when ε > 2 ln(2), the same δ = exp = (Ω(npmin[min(2 ln(2), ε)]2)) = exp(−Ω(pminn(2 ln(2))2)) also
suffices, as a larger ε only makes the right hand side of the inequality larger.

This proves Claim 2.

The definition of distributional differential privacy, like differential privacy, is immune to post-processing. This means
that if M is (ε, δ,∆)-DDP, and f is a function on the output of M, then f ◦M (their composition) is also (ε, δ,∆)-DDP.
Note that post-processing immunity is not a property of exact privacy, since exact privacy describes tight bounds on
ε, δ.

Lemma 3 (Immunity to Post-processing). Suppose M : U∗ → R is (ε, δ,∆)-DDP. Let f : R → R′ be a deterministic
function. Then f ◦M : U∗ → R′ is also (ε, δ,∆)-DDP.

Proof. For any π ∈ ∆, x, x′ ∈ Supp(Xi) and S ⊆ R′, letW = {w : f(w) ∈ S}. Then

Pr
~X∼π

(f(M( ~X)) ∈ S | Xi = x)

= Pr(M( ~X) ∈ W | Xi = x) (By definition ofW)

≤ eε Pr(M( ~X) ∈ W | Xi = x′) + δ (By M being (ε, δ,∆)-DDP)

= eε Pr(f(M( ~X)) ∈ S | Xi = x) + δ (By definition ofW)

By post-processing immunity, the parameters proven in Theorem 1 also apply to functions whose outputs are based on
the histogram of the database, such as most voting rules.

C Exact Privacy of Voting Rules: Two Candidate-Case (Cont’d)

C.1 Proof of Lemma 1: Trails Technique

Lemma 1 (Trails) Let T be a trail with direction (j, k), and let π be a distribution where votes are independently
distributed. For any i, xj , xk ∈ Supp(Xi),

Pr
~X∼π

(Hist( ~X) ∈ T | Xi = xj)− Pr
~X∼π

(Hist( ~X) ∈ T | Xi = xk)

= Pr
~X∼π

(Hist( ~X) = Exit(T) | Xi = xj)− Pr
~X∼π

(Hist( ~X) = Enter(T) | Xi = xk)

Proof for Lemma 1. Fix distribution π over n votes, where each vote is independently distributed. For ~X ∼ π, denote
X−i as the random variable ~X but without the ith vote. The equality in the lemma comes from the simple observation
that when votes are independently distributed, for any histogram t ∈ Nl and any j ∈ [l]

Pr
~X∼π

(Hist( ~X) = t|Xi = xj) = Pr
~X∼π

(Hist(X−i) = t− xj)

(Below, ~X ∼ π is implicit). Let q be the length of the trail. For any 0 ≤ z < q, let tz = Enter(T)− zxj + zxk. Then,

Pr(Hist( ~X) = tz|Xi = xj)



= Pr(Hist(X−i) = tz − xj)

= Pr(Hist( ~X) = tz − xj + xk|Xi = xk) = Pr(Hist( ~X) = tz+1|Xi = xk)

In other words,

Pr(Hist( ~X) ∈ T|Xi = xj)− Pr(Hist( ~X) ∈ T|Xi = xk)

= Pr(Hist( ~X) = tq|Xi = xj)− Pr(Hist( ~X) = t0)

+
∑

0≤z<q

Pr(Hist( ~X) = tz|Xi = xj)− Pr(Hist( ~X) = tz+1|Xi = xk)

= Pr(Hist( ~X) = tq|Xi = xj)− Pr(Hist( ~X) = t0|Xi = xk)
(Every term in the summation of differences cancels out.)

= Pr(Hist( ~X) = Exit(T)|Xi = xj)− Pr(Hist( ~X) = Enter(T)|Xi = xk)

C.2 Full proof for Theorem 2: Biased Majority

Theorem 2 (Exact DDP for Majority Rules) Fix two candidates {a, b} and ∆ ⊆ Π({a, b}) with |∆| < ∞. For
any α ∈ (0, 1), the α-biased majority rule is (0, δ,∆)-eDDP for all n, where

δ = max
p=π(a) : π∈∆

Θ

(√
1

n

[( p
α

)α( 1− p
1− α

)1−α
]n)

.

In particular, δ = Θ
(√

1/n
)

if ∃π ∈ ∆ s.t. π(a) = α; otherwise δ = exp(−Ω(n)).

Proof. (Full proof for Theorem 2).

For any π ∈ ∆, let p = π(a). Let trails Ta = {t : t = (k, n− k), k ≥ αn} and Tb = {t : t = (k, n− k), k < αn}.
It follows that any histogram in Ta results in a being the winner, and any in Tb results in b as the winner. Also,
Equation (4) implies we should not consider S = {a, b} nor S = ∅ as otherwise δ = 0 (the lower bound on δ). Thus,
we only consider S = {a} (when the winner is a, corresponding to trail Ta) or S = {b} (trail Tb). Then Equation (4)
becomes (we disregard the value of i since votes are i.i.d.):

δ = max
j∈{a,b},x,x′

[
Pr ~X∼π(Hist( ~X) ∈ Tj |Xi = x)− Pr ~X∼π(Hist( ~X) ∈ Tj |Xi = x′)

]
(Equation (4))

= max
j∈{a,b},x,x′

[
Pr(Hist( ~X) = Exit(Tj)|Xi = x)− Pr(Hist( ~X) = Enter(Tj)|Xi = x′)

]
(Lemma 1)

We first discuss the case that S = {a} where its corresponding trail Ta starts at Enter(Ta) = (n, 0) and exits at
Exit(Ta) = (dαne, b(1− α)nc). Here, x = a and x′ = b maximize δ. Thus,

Pr(Hist( ~X) = Enter(Ta)|Xi = b) = Pr(Hist( ~X) = (n, 0)|Xi = b) = 0

and

Pr(Hist( ~X) = Exit(Ta)|Xi = a)

= Pr(Hist( ~X) = (dαne, b(1− α)nc)|Xi = a)

= Pr(Hist( ~X) = (dαne − 1, b(1− α)nc))

= pdαne−1(1− p)b(1−α)nc (n− 1)!

dαn− 1e! · b(1− α)nc!

= Θ

[
1√
n
·
(

pn

dαn− 1e

)dαn−1e

·
(

(1− p)n
b(1− α)nc

)b(1−α)nc
]

(Stirling’s formula)

= Θ

(√
1

n

[( p
α

)α( 1− p
1− α

)1−α
]n)



The case for S = {b} is similar. We note that
(
p
α

)α ( 1−p
1−α

)1−α
≤ 1, and equality holds if and only if p = α. Finally,

we take the maximum of all δ’s over π ∈ ∆.

D Exact Privacy of Voting Rules: General Case (Cont’d)

In all proofs of this section, we will use r instead of M to denote GSR voting rules.

D.1 Full proof for Theorem 3

Theorem 3 (Dichotomy of Exact DDP for GSR) Fix m ≥ 2 and ∆ ⊆ Π(L(C)) with |∆| < ∞. For any n,
any GSR M that satisfies monotonicity, local stability, and canceling-out is (0, δ,∆)-DDP, where δ is Θ(

√
1/n) if ∆

contains the uniform distribution over L(C), or exp(−Ω(n)) if ∆ does not contain any unstable distribution.

Theorem 3, (Exact) DDP for GSR.. To present the result, we first introduce an equivalent definition of GSR that is
similar to the ones used in [Xia and Conitzer, 2009; Mossel et al., 2013].

Definition 9 (The (H, gH) definition of GSR). A GSR over m candidates is defined by a set of hyperplanes H =

{~h1, . . . ,~hR} ⊆ Rm! and a function gH : {+, 0,−}|H| → C. For any anonymous profile ~p ∈ Rm!, we let H(~p) =

(Sign(~h1 ·~p), . . . , Sign(~hR ·~p)), where Sign(x) is the sign (+,− or 0) of a number x. We let the winner be gH(H(~p)).

That is, to determine the winner, we first use each hyperplane in H to classify the profile ~p, to decide whether ~p is on
the positive side (+), negative side (−), or is contained in the hyperplane (0). Then gH is used to choose the winner
from H(~p). We refer to this definition the (H, gH) definition. Also see Example 4 for how (H, gH) works. In the next
claim, we show the equivalence of two definitions of GSR.

Claim 1. The (H, gH) definition of GSR is equivalent to the (f, g) definition of GSR in Definition 5.

Proof for Claim 1. We first show that any (H, gH) GSR can be represented by a (f, g) GSR in the following way: for
each ranking V , we let f(V ) = (~h1 · ~eV , h2 · ~eV , . . . ,~hR · ~eV , 0). Then, the g function mimics gH by only focusing
on orderings between the kth component of f(P ) and the last component, which is always 0, for all k ≤ R. More
precisely, ordering between the kth component of f(P ) and 0 uniquely determines Sign(~hk · ~p).

We now prove that any (f, g) GSR can be represented by an (H, gH) GSR. For any pair of distinct component
k1, k2 ≤ K, we introduce a hyperplane ~hk1,k2 = ([f(V )]k1 − [f(V )]k2)V ∈L(C). Therefore, for any profile ~p, ~hk1,k2 ·
~p = [f(~p)]k1 − [f(~p)]k2 . The sign of ~hk1,k2 · ~p corresponds to the order between [f(~p)]k1 and [f(~p)]k2 . Then, gH
mimics g.

We are now ready to present our theorem on GSRs. We will characterize eDDP under uniform distribution and give an
exponential upper bound on DDP under some other distributions. For any pair of ~π and ~h, we let Dist(~π,~h) = ~π·~h

||~h||2
to denote the distance between hyperplane ~h · ~p = 0 and vector ~π.

We first show that w.l.o.g. we can assume that all hyperplanes in H passes ~1.

Lemma 4. A GSR satisfies canceling-out, if and only if there exists another equivalent GSR r = (H, gH), where all
hyperplanes passes ~1.

Proof. The “if” direction is straightforward. To prove the “only if” part, it suffices to prove that gH does not depend
on outcomes of hyperplanes in H that does not pass ~1. W.l.o.g. let ~h1 ∈ H denote the hyperplane that does not pass ~1,
that is, ~h · ~1 6= 0. We will prove that for any ~u−1 ∈ {−1, 0, 1}L−1 and any u1, u

′
1 ∈ {−1, 0, 1}, such that there exist

profiles P,Q with H(P ) = (u1, ~u−1) and H(Q) = (u′1, ~u−1), we have gH(u1, ~u−1) = gH(u′1, ~u−1).

For the sake of contradiction, suppose this does not hold and let P,Q be the profiles such thatH(P ) andH(Q) differ on
the first coordinate, and r(P ) 6= r(Q). Then, for sufficiently large n we have that H(P + nL(C)) = H(Q+ nL(C)).
This is because for any ~h ∈ H that passes ~1, we have ~h · (P + nL(C)) = ~h · P = ~h · (Q + nL(C)). For any
~h ∈ H that does not pass ~1, we have ~h · (P + nL(C)) = ~h · P + n~h · 1, and when n is sufficiently large, the



sign of ~h · (P + nL(C)) is the same as the sign of n~h · 1, which is the sign of ~h · (Q + nL(C)). This means that
Sign(~h · P ) = Sign(~h · (P + nL(C))) = Sign(~h · (Q+ nL(C))) = Sign(~h ·Q), which is a contradiction.

Let r be a GSR, P ∗ be the locally stable profile and a be the candidate, V,W be the rankings as in the statement
of Definition 6. W.l.o.g. suppose V is the first type ranking and W is the second type ranking. In other words, V
(respectively, W ) is the first (respectively, second) coordinate in the m-profiles space. We will show that the exact
DDP bound is achieved when S is the set of all profiles where the winner is a.

We recall that for any profile P , a pair of different votes V,W . and a length q ∈ N, TP,V,W,q is the trail starting at
P , going along the V −W direction, and contains q profiles. We let TP,V,W,∞ = maxq TP,V,W,q denote the longest
V −W trail starting at P . For a GSR r, we define End(a) = {Exit(TP,V,W,∞) : ∀V,W ∈ U , r(P ) = a}. In other
words, there are no W votes in End(a).

Figure 3: Example of End(a) and End(b), for 3-candidate case. The 3 kinds of votes other than V,W and X are not
shown to simplify notations. Number of unshown votes are considered as constant.

Because r satisfies monotonicity, for any profile P such that r(P ) = a, we must have that a is the winner under all
profiles in the V -W trail starting at P . Therefore, S can be partitioned into multiple non-overlapping trails, each of
which starts at a different profile, where a is the winner, and a is no longer the winner if we go one step into the
W -V direction. Formally, we let End(a) (shown in Figure 3) denote all n-profiles P such that (1) r(P ) = a and (2)
r(P +W − V ) 6= a. Then, we define a partition Sa as follows.

Sa = {P : r(P ) = a} =
⋃

P∈End(a)

TP,V,W,∞

It follows from Lemma 1 that

Pr(P ∈ Sa|X1 = V )− Pr(P ∈ Sa|X1 = W ) =
∑

P∈End(a):P (V )>0

Pr(P − V ).

We will define a subset of n-profile,Rn and prove the lower bound on it. For a locally stable profile P ∗ (with constant
γ in the statement of Definition 6), let ~p0 = P ∗ − ~1 · |P

∗|
m! . That is, ~p0 be obtained from P ∗ by subtracting a constant

in each component, such that ~p0 · ~1 = 0. For any n, we define Rn to be the set of n-profiles that are in the γ
√
n

neighborhood of n
m! ·~1 + ~p0 ·

√
n w.r.t. L∞ norm for last m!− 2 dimensions. That is,

Rn =
{
P : P [V ] = 0 and ∀j ≥ 3,

∣∣∣P [j]−
( n
m!

+ ~p0[j] ·
√
n
)∣∣∣ ≤ γ√n}

Throughout the proof in Theorem 3, we will use ~π to denote the database distributionD, and π[j] denote the probability
of j-th kind of ranking. Here P [V ] is the number of V votes in P and P [j] is the number of j-th type of vote in P .



For any P ∈ Rn, we let Piv(P ) = End(a) ∩ TP,V,W,∞ denote the intersection of End(a) and the V -W trail starting
at P . That is, Piv(P ) = P + l(V −W ) for some l ∈ Z, r(Piv(P )) = a, and r(Piv(P )− V +W ) 6= a.

We next prove that the number of V votes in Piv(P ) and the number of W votes in Piv(P ) are close—the difference
is O(

√
n).

Claim 2. For any P ∈ Rn, we have |Piv(P )[V ]− Piv(P )[W ]| = O(
√
n).

Proof. LetQ+ = Piv(P ) andQ− = Piv(P )−V +W . We note that Piv(P ) is at the boundary of S, which means that
r(Q+) 6= r(Q−). Therefore, because r is a GSR, the line segment between Q+ and Q− must contain the intersection
of TP,V,W,∞ and a hyperplane ~h ∈ H . Therefore, it suffices to show that the difference in number of V votes and
number of W votes at the intersection of TP,V,W,∞ and any hyperplane ~h is O(

√
n).

We recall that by Lemma 4, all hyperplanes for r pass ~1. For any ~h ∈ H , we recall that we assumed that V and W
corresponds to the first and second coordinate, respectively. Because ~h · (P + l(V −W )) = 0, we have (h2 − h1)l =
~h · P = ~h · (P −~1 · nm! ) = O(

√
n). This means that |l| = |Piv(P )[V ]− Piv(P )[W ]| = O(

√
n).

Claim 3. For any P ∈ Rn, there is a V -W trail passing P .

Proof. According to the cancelling out property of r, we can construct profile P ′ = P − n−|P∗|
√
n

m! , which is
equivalent to P . For any profile P ∈ Rn, we have

∣∣P [j]−
(
n
m! + ~p0[j] ·

√
n
)∣∣ ≤ γ

√
n, which is equivalent with

|P ′[j]− P ∗[j] ·
√
n| ≤ γ

√
n, which means P ′√

n
is in the γ neighborhood of profile P ∗ in terms of the 3-rd to m!-th

dimensions. According to the (H, gH) definition of GSR, we know r(P ∗) = r(P ′) and the claim follows by local
stability of P ∗.

We will show that the probability of a subset of End(a)—the pivotal profiles on trails starting at profiles in Rn—
is Θ(1/

√
n) for the condition that π is uniform over U . Let R−n ⊆ Rm!−2 and for any ~p− ∈ R−n , we define

Piv(~p−) = Piv(P ), where P ∈ Rn and P [3, . . . ,m!] = ~p−.∑
P∈End(a)

Pr(P − V ) ≥
∑
P∈Rn

Pr(Piv(P )− V )

=
∑

~p−∈R
−
n ,|P |=n−1

(
Pr(P [3, ...,m!] = ~p−)·

Pr(P [1] = Piv(~p−)[1]− 1,Pr(P [2] = Piv(~p−)[2]|P [3, ...,m!] = ~p−)
)

=
∑

~p−∈R
−
n ,|P |=n−1

A(~p−)B(~p−)

where A(~p−) = Pr(P [3, . . . ,m!] = ~p−) and

B(~p−) = Pr(P [1] = Piv(~p−)[1]− 1,Pr(P [2] = Piv(~p−)[2]|P [3, . . . ,m!] = ~p−)

It follows that B(~p−) is equivalent to probability of flipping a coin ( π[W ]
π[V ]+π[W ] probability for head) for Piv(~p−)[1] +

Piv(~p−)[2] − 1 times, with Piv(~p−)[1] − 1 heads and Piv(~p−)[2] tails. The next lemma gives a lower bound to∑
~p−∈R−n ,|P |=n−1A(~p−)B(~p−) when π is a uniform distribution.

Lemma 5.
∑

~p−∈R−n ,|P |=n−1A(~p−)B(~p−) = Ω
(

1√
n

)
if π is uniform over U .

Proof. We first bound the total number of V and W votes in P ∈ Rn in the next claim.

Claim 4. Piv(~p−)[1] + Piv(~p−)[2]− 1 = Θ(n) for all ~p− ∈ R−n .

Proof. ∣∣∣Piv(~p−)[1] + Piv(~p−)[2]− 2n

m!

∣∣∣ =

m!∑
j=3

∣∣∣P [j]− n

m!

∣∣∣ ≤ m!∑
j=3

(
γ
√
n+ |~p0[j]|

√
n
)
≤ (γ + 1)m!

√
n



According to Claim 2 & 4, we know that B(~p−) is equivalent to probability of flipping a fair coin for 2n
m! + c1

√
n

times and get n
m! + c2

√
n, where c1 and c2 are bounded constants. In the next claim, we give a tight bound to B(~p−)

for uniform distributed entries.

Claim 5. B(~p−) = Θ
(√

1
n

)
for any ~p− ∈ R−n

Proof. Letting n′ = 2n
m! + c1

√
n, c′ = c2 − c1

2 and assuming n′ is a even number, for the lower bound, we have,

B(~p−) =

(
1

2

) 2n
m! +c1

√
n( 2n

m! + c1
√
n

n
m! + c2

√
n

)
=

(
1

2

)n′ (
n′

n′/2 + c′
√
n

)
=

(
1

2

)n′
·
(
n′

n′/2

)
·
n′

2 × · · · × (n
′

2 − c
′
√
n′ + 1)

(n
′

2 + c′
√
n′ − 1)× · · · × n′

2

>
1

2n′

(
n′

n′/2

)
·

(
n′/2− c′

√
n′

n′/2

)c′√n′

=Ω

(
1√
n

)
(applying Stirling’s Formula)

(8)

Upper bound can be obtained using similar technique as lower bound.

The next claim gives a lower bound on
∑

~p−∈R−n A(~p−). The proof uses the main technique of Lindeberg-Levy
Central Limit Theorem [Greene, 2003].

Claim 6.
∑

~p−∈R−n A(~p−) = Ω (1).

Proof of Claim 6. We first define a set of m! − 2 dimensions random variables that Yi = (Yi[1], · · · , Yi[m!− 2]),
where Yi[j] = 1 if ranking j happens to i-th row and Yi[j] = 0 otherwise. According to the definition of profile,
we have P [j + 2] =

∑n
j=1 Yi[j] and E(P [j]) = n

m! for uniform case. We further define a m! − 2 dimensional
random vector ~u such that ~u[j] =

(
P [j + 2]− n

m!

)
/
√
n, which is the scaled average of Y1, · · · , Yn. According to

Lindeberg-Levy Central Limit Theorem [Greene, 2003], we know that the distribution of ~u converges in probability
to multivariate normal distribution N (0,Σ), where

Σ =



m!−1
(m!)2 − 1

(m!)2 · · · − 1
(m!)2

− 1
(m!)2

m!−1
(m!)2 · · · − 1

(m!)2

...
...

. . .
...

− 1
(m!)2 − 1

(m!)2 · · · m!−1
(m!)2


.

Since each diagonal element in Σ is strictly larger than the sum of the absolute value of all other elements in the same
row, we know that Σ is non-singular according to Levy-Desplanques Theorem [Horn and Johnson, 1990]. According
to Varah et al. [Varah, 1975], we obtain a bound on Σ−1’s L∞ norm as,

||Σ−1||∞ ≤
1

mini

(
|Σii| −

∑
j 6=i |Σij |

) ≤ (m!)2

2
.

For any m! − 2 dimensional random vector ~u constructed from a profile P using the procedure that ~u[j] =(
P [j + 2]− n

m!

)
/
√
n, we have,

P ∈ R−n if and only if ~u ∈ U = {~u : |~u[j]− ~p0[j]| ≤ γ, ∀j ∈ [m!− 2]} .



Thus, for all ~u ∈ U we know about its Probability Density Function (PDF) that,

PDF(~u) =
1√

(2π)m!−2|Σ|
exp

(
−1

2
~uTΣ−1~u

)
=

1√
(2π)m!−2|Σ|

exp

(
−1

2
|~uTΣ−1~u|

)
≥ 1√

(2π)m!−2|Σ|
exp

(
−1

2
||~uTΣ−1||∞ · ||~u||1

)
(Holder’s Inequality)

≥ 1√
(2π)m!−2|Σ|

exp

(
−1

2
||~uT ||∞ · ||Σ−1||∞ · ||~u||1

)

≥ 1√
(2π)m!−2|Σ|

[
exp

(
(m!)2

4

)]−||~u||2∞
= Ω (1) .

Thus, letting Vol(·) be the volume function,∑
~p−∈R−n

A(~p−) ≥ Vol(U) ·min
~u∈U

PDF(~u) ≥ γm!−2 · Ω (1) = Ω(1).

Lemma 5 follows be combining Claim 6 and Claim 5.

Recalling Lemma 1, for the case that π is uniform over all ranking, we have,

δ = max
x,x′,S

Pr(M(X) ∈ S|X1 = x)− Pr(M(X) ∈ S|X1 = x′)

≤Pr(M(X) ∈ Sa|X1 = W )− Pr(M(X) ∈ Sa|X1 = V )

=
∑

P∈End(a)

Pr(P − V ) = Ω

(
1√
n

)
.

Then, we derive an upper bound of δ using the similar technique of lower bound (π can be non-uniform for this bound).
We first defineR′n, a subset of n-profile space, where event P ∈ R′n will be proved to happen with high probability.

R′n =
{
P : P [V ] = 0 and ∀j ≥ 3, |P [j]− (n · π[j])| ≤ n3/4

}
.

Then, we recall Lemma 1, for the case that π such that mini π[i] > 0, we have,

δ = max
V,W,S

Pr(P ∈ S|X1 = V )− Pr(P ∈ S|X1 = W )

≤max
V,W

m∑
i=1

Pr(P ∈ Si|X1 = V )− Pr(P ∈ Si|X1 = W ) =

m∑
i=1

∑
P∈End(xi)

Pr(P − V ).

where Si = {X : r(X) = xi} =
⋃
P∈End(xi)

TP,V,W,∞. The next claim gives am upper bound on the number of
pivotal profiles sharing one End.

Claim 7. For any profile P inR′n, there are at most |H| pivotal profiles following V −W direction.

Proof. We know from the (H, gH) definition of GSR that r’s output only changes while passing at least
one hyperplane. Considering a trail TP0 enter at (P0[1] + P0[2], 0, P0[3], · · · , P0[m!]) and exit at (0, P0[1] +
P0[2], P0[3], · · · , P0[m!]) (P0 is an arbitrary n-profile). Thus, there are at most |H| pivotal profiles sharing the same
end point because TP0

passes hyperplanes at most |H| times.



Using the partition ofR′n and arbitrarily selected candidate a, we have,

∑
P∈End(xi)

Pr(P − V ) ≤|H|

 ∑
P∈R′n

Pr(Piv(P )− V ) +
∑

P∈End(xi)\R′n

Pr(Piv(P )− V )


≤|H|

 ∑
~p−∈R

′−
n ,|P |=n−1

A(~p−)B(~p−) +
∑

~p− 6∈R
′−
n ,|P |=n−1

A(~p−)B(~p−)


≤|H|

 max
~p−∈R

′−
n

B(~p−) ·
∑

~p−∈R
′−
n

A(~p−) + max
~p− 6∈R

′−
n

B(~p−) ·
∑

~p− 6∈R
′−
n

A(~p−)


=O

(
1√
n

)
·O(1) +O(1) ·O

(
1√
n

)
(by applying Claim 9)

=O

(
1√
n

)

The next claim gives an upper bound to
∑

~p− 6∈R−n A(~p−).

Claim 8.
∑

~p− 6∈R′−n A(~p−) = O
(

1√
n

)
.

Proof. Let Y (i)
j = ”the i-th agent gives vote of type j”. One can see that P [j] =

∑n
i=1 Y

(i)
j , E(P [j]) = nπ[j] and

V ar(P [j]) = nπ[j](1− π[j]). Thus,

∑
~p− 6∈R−n

A(~p−) = Pr

 m!⋃
j=3

{
|P [j]− n · π[j]| ≤ n3/4

}
≤

m!∑
j=3

Pr
[{ ∣∣∣P [j]− E(P [j])

∣∣∣ ≤ n3/4
}]

≤
m!∑
j=3

nπ[j](1− π[j])

n3/2
(by Chebyshev’s Inequality)

=O

(
1√
n

)

Then, all we need is an upper bound on B(~p−), and we first prove that the length of V −W sequence is Θ(n) for all
P ∈ R′n.

Claim 9. Piv(~p−)[1] + Piv(~p−)[2]− 1 = Θ(n) for all P ∈ R′n.

Proof.

|Piv(~p−)[1] + Piv(~p−)[2]− n(π[W ] + π[V ])| =
m!∑
j=3

|P [j]− n · π[j]| ≤
m!∑
j=3

n3/4 ≤ m! · n3/4

Then, using the same technique of Claim 5, we know that,

B(~p−) = Θ

(√
1

n

)
for all p− ∈ R′−n



Thus, combining all results above, we have,

δ ≤
m∑
i=1

∑
P∈End(xi)

Pr(P − V ) =

m∑
i=1

∑
P∈End(xi)

Pr(P − V ) = O

(
1√
n

)

Next, we will give a exponential (tighter) upper bound on δ when π does not belong to any hyperplanes.We first give
a generalized definition of pivotal profile.

Definition 10 (Generalized Pivotal Profile). Profile P is a (generalized) pivotal profile if there exist pair of votes V
and W such that r(P ) 6= r(P − V +W ).

Then, we define a distance function Dist∗(P, h) to be a generalized distance between profile P and hyperplane h. We
define

Dist∗(P,~h) = inf
P ′∈h̃

||P − P ′||2,

where h̃ = {P ∈ h : ∃ unit vector ~e s.t. r(P ′ − ~e) 6= r(P ′ + ~e)}. In the next lemma we will show generalized pivotal
profiles only lays close to hyperplanes. We fist gives definition of distance function Dist(·, ·):
1. for hyperplane h and a point (n-profile) P , Dist(h, P ) =

~h·P
||~h||2

, which is the Euclidian distance between P and

hyperplane ~h · ~p = 0.
2. for 2 points (n-profile) P1 and P2, Dist(h, P ), returns the Euclidian distance between P1 and P2.

Claim 10. For any GSR r = (H, gH) and one of its generalized pivotal profile P , there must exist one hyperplane
~h ∈ H such that Dist(h, P ) ≤

√
2.

Proof. Recalling the definition of generalized pivotal profiles, we know the GSR winner will change at the 1 neigh-
borhood of P . Thus, there must exist a hyperplane ~h ∈ H and pair of votes V,W such that Sign

[
~h · P

]
6=

Sign
[
~h · (P + V −W )

]
and Dist(h, P ) ≤ Dist(P, P + V −W ) =

√
2.

Lemma 6. LetD be the distribution on profiles (databases of votes), where each entry is iid according to distribution π
over linear orders on m candidates. GSR r(H,hH) is (0, δ,∆ = {(D, ∅)})-DDP when only the winner is announced,
where

δ = O

[
exp

(
− [minh∈H Dist∗(~π, h)]

2

3(m!)2
(
maxi∈[m!] π[i]

) · n)] = O
[
e−Ω(n)

]
.

Proof. We first define the set of all generalized pivotal profiles PPiv. For any P ∈ PPiv, we know that there exist
hyperplane h ∈ H such that Dist∗(h, P ) ≤

√
2. According to triangular inequality, we have Dist∗(n~π, P ) ≥

Dist∗(n~π, h)−Dist(h, P ) ≥ nDist∗(~π, h)−
√

2. The second ≥ sign comes from the fact that all hyperplanes passes
~0. Thus, there must exist one dimension j that |P [j]− nπ[j]| ≥ nDist∗(~π, h)−

√
2

m! . Then, we bound δ as,

δ = max
V,W,S

[Pr(P ∈ Si|X1 = V )− Pr(P ∈ Si|X1 = W )]

≤
∑
P∈PPiv

[
max
V

Pr(P ∈ PPiv|X1 = V )
]

≤max
V,h,j

Pr

(
|P [j]− nπ[j]| ≥ nDist∗(~π, h)−

√
2

m!

∣∣∣∣X1 = V

)

≤max
h,j

Pr

(
|P [j]− nπ[j]| ≥ nDist∗(~π, h)−

√
2

m!
− 1

)

=O

[
exp

(
− [minh∈H Dist∗(~π, h)]

2

3(m!)2
(
maxi∈[m!] π[i]

) · n)] by applying Chernoff bound.



Theorem 3 follows by combining all three bounds derived above.

D.2 Proof for Corollary 1

Proposition 2. All positional scoring rules and all Condorcet consistent and monotonic rules satisfy all properties
required by Theorem 3.

Proof of Proposition 2 . Suppose s1 = · · · = sl > sl+1. We let V = [a � c1 � cl−1 � b � others] and W = [�
c1 � cl−1 � b � a � others]. Let M be the permutation c1 → c2 → . . . cm−2 → c1. Let V1 = [a � b � others] and
V2 = [b � a � others]. Let P =

⋃m−2
i=1 M i(V1) ∪M i(V2). Let P ∗ = 2P ′ ∪ {V,W}. It follows that a and b are the

only two candidates tied in the first place in P ∗. Therefore, there exists ε to satisfy the condition.

The same profile can be used to prove the local stability of all Condorcet consistent and monotonic rules.

Corollary 1 follows by the definition of voting rules and the definition of positional scoring rules.

D.3 Exact DDP for Histogram

As a complementary result to the DDP result for histograms, we present the histogram’s eDDP with ε = 0.
Theorem 4 (Exact DDP of Histogram). Fix l ≥ 2, U = {x1, · · · , xl}, and ∆ ⊆ Π(U). Let pmin = minπ∈∆(π(xi) +

π(xj)). For all n ∈ N, Hist of n voters is (0, δ(n) = Θ
(√

1
npmin

)
,∆)-eDDP.

Sketch. First we present the case for l = 2.

Lemma 7 (Exact DDP for Histogram, when l = 2). Fix U = {x1, x2} and ∆ ⊆ Π(U). The histogram for n voters is
(0,Θ(1/

√
n),∆)-eDDP.

Lemma 7. Consider some π ∈ ∆, and let p = π(a). Without loss of generality let x = x1 and x′ = x2 (otherwise,
rename them). Then, the maximizing set S in Equation (3) is exactly the set of histograms such that

Pr
~X∈π

(Hist( ~X) ∈ S|Xi = x1) > Pr(Hist( ~X) ∈ S|Xi = x2)

Since votes are i.i.d., these follow the binomial distribution (with n trials). Below we find that S is the set of histograms
(k, n− k) where k > pn.

Pr(Hist( ~X) = (k, n− k)|Xi = x1) > Pr(Hist( ~X) = (k, n− k)|Xi = x2)

=⇒ pk−1(1− p)n−k (n− 1)!

(n− k)!(k − 1)!
> pk(1− p)n−k−1 (n− 1)!

(n− k − 1)!k!

=⇒ k > pn

Thus, S = {t = (k, n− k) : k > pn}. This set forms a trail T which starts from Enter(()T) = (n, 0) and exits at
Exit(T) = (pn+ 1, n− (pn+ 1)). Thus,

δ = Pr(Hist( ~X) ∈ S|Xi = x1)− Pr(Hist( ~X) ∈ S|Xi = x2) (Equation (3))

= Pr(Hist( ~X) = Exit(T)|Xi = x1)− Pr(Hist( ~X) = Enter(T)|Xi = x2) (Lemma 1)

= Pr(Hist( ~X) = (pn+ 1, n− (pn+ 1))|Xi = x1)− Pr(Hist( ~X) = (n, 0)|Xi = x2)

= ppn(1− p)n−pn−1 (n− 1)!

(pn)!(n− pn− 1)!
(When one row is fixed to x2, the probability of histogram being (n, 0) is zero.)

= Θ(1/
√
n) (By applying Stirling’s formula)



We can generalize the result to l > 2, by using the trail technique. Again we assume WLOG that x = x1 and x′ = x2.
Let t = (t1, · · · , tl) be the histogram, where ti counts the number of occurrences of xi. We observe that, when votes
are i.i.d, t3, · · · , tl are independent of t1, t2 when conditioned on the sum s = t1+t2. This means that we can compute
δ for general l, as a sum

δ =
∑

0<s≤n

δs Pr(Bin(n, π(x1) + π(x2)) = s)

Where δs is the δ-value for l = 2, when there are s votes. Using Chernoff bound we see that Bin(n, π(x1)+π(x2)) is

concentrated at its mean n(π(x1) + π(x2)). Plugging in the result for l = 2, we get δ = Θ

(
1√

n(π(x1)+π(x2))

)
.

Full proof

Below we present the full proof of Theorem 4, using Lemma 7 which showed the case for l = 2.

Proof of Theorem 4, Exact DDP of Histogram. Consider any π ∈ ∆, and let pi = π(xi). Like in the l = 2 case,
without loss of generality, we can let x = x1 and x′ = x2 (otherwise, rename them). Then, the maximizing set S
(similar to when l = 2) is exactly the set of histograms such that

Pr
~X∼π

(Hist( ~X) ∈ S|Xi = x1) > Pr
~X∼π

(Hist( ~X) ∈ S|Xi = x2)

(We will implicitly assume ~X ∼ π from now on) Since we have i.i.d. votes, the histogram follows the multinomial
distribution (with n trials). For any 0 < s ≤ n, (t3, · · · , tl) where t3 + · · ·+ tl = n− s, and k ≤ s:

Pr(Hist( ~X) = (k, s− k, t3, · · · , tl)|Xi = x1) > Pr(Hist( ~X) = (k, s− k, t3, · · · , tl)|Xi = x2)

pk−1
1 pn−k2 pt33 · · · p

tl
l

(n− 1)!

(k − 1)!(s− k)!t3! · · · tl!
> pk1p

n−k−1
2 pt33 · · · p

tl
l

(n− 1)!

(s− k − 1)!k!t3! · · · tl!
p2

s− k
>
p1

k

k >

(
p1

p1 + p2

)
s

Thus, the set S =
{
t = (k, s− k, t3, · · · , tl) : k >

(
p1

p1+p2

)
s
}

.

Let p = p1
p1+p2

. For each 0 < s ≤ n and (t3, · · · , tl) which sum to n− s (i.e. t3 + · · ·+ tl = n− s), let Ts,(t3,··· ,tl)
be the trail starting from Enter(Ts,(t3,··· ,tl)) = (s, 0, t3, · · · , tl) and exiting at Exit(Ts,(t3,··· ,tl)) = (ps+ 1, s− (ps+
1), t3, · · · , tl). The set S then can be partitioned into such trails. Thus,

δ = Pr(Hist( ~X) ∈ S|Xi = x1)− Pr(Hist( ~X) ∈ S|Xi = x2)

=
∑

Ts,(t3,··· ,tl)

Pr(Hist( ~X) ∈ Ts,(t3,··· ,tl)|Xi = x1)− Pr(Hist( ~X) ∈ Ts,(t3,··· ,tl)|Xi = x2)

=
∑

Ts,(t3,··· ,tl)

Pr(Hist( ~X) = Exit(Ts,(t3,··· ,tl))|Xi = x1)

− Pr(Hist( ~X) = Enter(Ts,(t3,··· ,tl))|Xi = x2) (By Lemma 1)

=
∑

0<s≤n

∑
(t3,··· ,tl)

t3+···+tl=n−s

Pr(Hist( ~X) = (ps+ 1, s− (ps+ 1), t3, · · · , tl)|Xi = x1)

− Pr(Hist( ~X) = (s, 0, t3, · · · , tl)|Xi = x2)

Now let us consider these two probabilities. Consider the distribution X−i, which is ~X but without the ith row. Let
the random variables of the individual components of Hist(X−1) be (a1, · · · , al). Since votes are i.i.d., for any



(t1, · · · , tl),

Pr(Hist( ~X) = (t1, · · · , tl)|Xi = x1)

= Pr(Hist(X−i) = (t1 − 1, t2, t3, · · · , tl))
= Pr((a1, · · · , al) = (t1 − 1, t2, t3, · · · , tl)) (Recall these a’s are components of Hist(X−i))
= Pr((a1, · · · , al) = (t1 − 1, t2, t3, · · · , tl)|a1 + a2 = s)× Pr(a1 + a2 = s)

= Pr((a1, a2) = (t1 − 1, t2) |a1 + a2 = s)

× Pr((a3, · · · , al) = (t3, · · · , tl) |a1 + a2 = s)× Pr(a1 + a2 = s)
(By Lemma 8, (a1, a2) and (a3, · · · , al) are independent conditioned on a1 + a2 = s)

Similar to the l = 2 case, Pr(Hist( ~X) = (s, 0, t3, · · · , tl)|Xi = x2) = 0. This is because when one vote is fixed to
x2, it is impossible to have zero in the second component in the histogram (which is the number of occurences of x2).
Thus,

δ =
∑

0<s≤n

∑
(t3,··· ,tl)

t3+···+tl=n−s

Pr((a1, a2) = (ps, s− (ps+ 1))|a1 + a2 = s)

× Pr((a3, · · · , al) = (t3, · · · , tl)|a1 + a2 = s)× Pr(a1 + a2 = s)

=
∑

0<s≤n

Pr((a1, a2) = (ps, s− (ps+ 1))|a1 + a2 = s)× Pr(a1 + a2 = s)

×
∑

(t3,··· ,tl)
t3+···+tl=n−s

Pr((a3, · · · , al) = (t3, · · · , tl)|a1 + a2 = s)

(Factor out the common terms Pr((a1, a2) = (ps, s− (ps+ 1))|a1 + a2 = s) and Pr(a1 + a2 = s))

=
∑

0<s≤n

Pr((a1, a2) = (ps, s− (ps+ 1))|a1 + a2 = s)× Pr(a1 + a2 = s)

(For any s, the second sum equals one.)

Where Pr((a1, a2) = (ps, s− (ps+ 1))|a1 + a2 = s) is the δ value for histogram when l = 2, the vote distribution is
π′ ∈ Π({x1, x2}), where π′(x1) = p1

p1+p2
, and number of voters is s (we refer to Lemma 7 of the l = 2 case for this

claim). We denote this δ by δs. Moreover,

Pr(a1 + a2 = s) = Pr(Bin(n, p1 + p2) = s)

We denote p′ = p1 + p2. Then, Bin(n, p′) is the binomial distribution with n trials and probability p′ = p1 + p2

(recall that pi = π(xi)). Then

δ =
∑

0<s≤n

δs Pr (Bin (n, p′) = s)

=
∑

s≥
(

1−
√

3
4

)
np′

s≤
(

1+
√

3
4

)
np′

Pr (Bin (n, p′) = s)× δs +
∑

s<
(

1−
√

3
4

)
np′

s>
(

1+
√

3
4

)
np′

Pr (Bin (n, p′) = s)× δs

Lower bound of δ:

δ ≥
∑

s≥
(
1−
√

3
4

)
np′

s≤
(
1+
√

3
4

)
np′

Pr
(
Bin

(
n, p′

)
= s
)
× δs



Since δs decreases with larger s (more votes implies more privacy), δ(
1+
√

3
4

)
np′

is the minimum.

≥ δ(
1+
√

3
4

)
np′
×

∑
s≥

(
1−
√

3
4

)
np′

s≤
(
1+
√

3
4

)
np′

Pr
(
Bin

(
n, p′

)
= s
)

= δ(
1+
√

3
4

)
np′
×

[
1− Pr

(
Bin(n, p′) >

(
1 +

√
3

4
np′
))
− Pr

(
Bin(n, p′) <

(
1−

√
3

4
np′
))]

By Chernoff bound for binomial distribution, for any 0 < β < 1, we have:

Pr (Bin (n, p′) > (1 + β)µ) ≤ e−
β2µ
3

Pr (Bin (n, p′) < (1− β)µ) ≤ e−
β2µ
2

Where µ = np′ is the mean of Bin (n, np′). Now let β =
√

3
4 , which is between 0 and 1. Then,

1 ≥

[
1− Pr

(
Bin (n, p′) >

(
1 +

√
3

4

)
np′

)
− Pr

(
Bin (n, p′) <

(
1−

√
3

4

)
np′

)]
≥ 1− e− 3

4
µ
3 − e− 3

4
µ
2

= 1− e−
np′
2 − e−

3np′
2

(For large enough n, np′ ≥ 1, so e−
np′
2 ≤ e−1/2 and e−

3np′
2 ≤ e−3/2)

≥ 1− e−1/2 − e−3/2 ≥ 1
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Which means

[
1− Pr

(
Bin(n, p′) >

(
1 +

√
3
4

)
np′
)
− Pr

(
Bin(n, p′) <

(
1−

√
3
4

)
np′
)]

= Θ(1).

By Stirling formula, we have

δ(
1+
√

3
4

)
np′

= Θ

 1√(
1 +

√
3
4

)
np′


= Θ

(√
1

np′

)
(Recall we assumed the maximizing x, x′ are x1, x2, up to renaming the xi’s, and that p′ = p1 + p2)

= Θ

(√
1

npmin

)
(In general, pmin = mini 6=j∈[l](pi + pj).)

Which gives us the lower bound δ ≥ Θ
(√

1
npmin

)
.

Upper bound of δ:

δ =
∑

s≥
(
1−
√

3
4

)
np′

s≤
(
1+
√

3
4

)
np′

Pr
(
Bin

(
n, p′

)
= s
)
× δs

+
∑

s<
(

1−
√

3
4

)
np′

s>
(

1+
√

3
4

)
np′

Pr
(
Bin

(
n, p′

)
= s
)
× δs

Since δs ≤ 1 for all s and
∑

s≥
(

1−
√

3
4

)
np′

s≤
(

1+
√

3
4

)
np′

Pr
(
Bin

(
n, p′

)
= s
)
≤ 1



≤ max(
1−
√

3
4

)
np′ ≤s ≤

(
1+
√

3
4

)
np′

(δs) +
∑

s<
(

1−
√

3
4

)
np′

s>
(

1+
√

3
4

)
np′

Pr
(
Bin

(
n, p′

)
= s
)

= δ(
1−
√

3
4

)
np′

+ Pr

(
Bin

(
n, p′

)
<

(
1−

√
3

4

)
np′
)

+ Pr

(
Bin

(
n, p′

)
>

(
1 +

√
3

4

)
np′
)

≤ δ(
1−
√
− 3

4

)
np′

+ e−
np′
2 + e

3np′
2 (By Chernoff bound for binomial)

≤ δ(
1−
√
− 3

4

)
np′

+ 2

√
1

np′
(Since np′ ≥ 0, both e−

np′
2 , e

3np′
2 ≤

√
1
np′ )

By Stirling’s formula, δ(
1−
√
− 3

4

)
np′

= Θ

 1√(
1−

√
− 3

4

)
np′


= Θ

(√
1

np′

)
As is with the lower bound, in general (without assuming (x, x′) = (x1, x2)), we have p′ = pmin = mini 6=j∈[l](pi +

pj). Since both lower and upper bounds of δ are Θ
(√

1
npmin

)
, δ = Θ

(√
1

npmin

)
.

Lemma 8 (Conditional independence). Let U = {x1, · · · , xl} and π ∈ ∆(U). Let #xi denote the r.v. of the number
of occurrences of the vote xi in π. Then, for all 0 ≤ s ≤ n, the random variables (#x1,#x2) and (#x3, · · · ,#xl)
are independent conditioned on #x1 + #x2 = s. In other words, for any (t1, · · · , tl) such that

∑
i ti = n, we have

Pr((#x1, · · · ,#xl) = (t1, · · · , tl) |#x1 + #x2 = s)

= Pr((#x1,#x2) = (t1, t2) |#x1 + #x2 = s)× Pr((#x3, · · · ,#xl) = (t3, · · · , tl) |#x1 + #x2 = s)

Proof for Lemma 8. We equivalently show that

Pr((#x3, · · · ,#xl) = (t3, · · · , tl) |#x1 + #x2 = s)

= Pr((#x3, · · · ,#xl) = (t3, · · · , tl) |#x1 + #x2 = s ∧ (#x1,#x2) = (t1, t2))
(9)

Now, conditioned on there being exactly s people who voted x1 or x2, let D1 > D2 > · · · > Ds denote the random
variables of the indices of the votes in the profile which voted for x1 or x2, in ascending order. By total probability,
the left hand side of Equation 9 is:

Pr((#x3, · · · ,#xl) = (t3, · · · , tl) |#x1 + #x2 = s)

=
∑

d1>d2>···>ds

Pr((#x3, · · · ,#xl) = (t3, · · · , tl) |#x1 + #x2 = s ∧ (D1, · · · , Ds) = (d1, · · · , ds))

× Pr((D1, · · · , Ds) = (ds, · · · , ds) |#x1 + #x2 = s)

We already assume there are exactly s votes for x1 or x2, so

Pr((#x3, · · · ,#xl) = (t3, · · · , tl) |#x1 + #x2 = s)

=
∑

d1>d2>···>ds

Pr((#x3, · · · ,#xl) = (t3, · · · , tl) | (D1, · · · , Ds) = (d1, · · · , ds))

× Pr((D1, · · · , Ds) = (d1, · · · , ds))

The right hand side of Equation 9 is:

Pr((#x3, · · · ,#xl) = (t3, · · · , tl) |#x1 + #x2 = s ∧ (#x1,#x2) = (t1, t2))

= Pr((#x3, · · · ,#xl) = (t3, · · · , tl) |#x1 + #x2 = s ∧ (#x1,#x2) = (t1, t2))

= Pr((#x3, · · · ,#xl) = (t3, · · · , tl) | (#x1,#x2) = (t1, t2)) (Since we assume t1 + t2 = s)



Rule Winner Mean Square Error (n ∈ [50])

Borda δ(n) =
1√

1.347n+ 0.5263
0.0566844201243

STV δ(n) =
1√

1.495n+ 0.02669
0.0542992943035

Maximin δ(n) =
1√

1.553n+ 4.433
0.0377631805983

Plurality δ(n) =
1√

1.717n− 0.09225
0.0477175838906

2-approval δ(n) =
1√

1.786n+ 0.3536
0.0454223047191

Table 2: δ values in (0, δ,∆)-eDDP for some commonly-used voting rules under the i.i.d. uniform distribution. m = 3
and n = 10 to 50.

=
∑

d1>d2>···>ds

Pr((#x3, · · · ,#xl) = (t3, · · · , tl) | (#x1,#x2) = (t1, t2) ∧ (D1, · · · , Ds) = (d1, · · · , ds))

× Pr((D1, · · · , Ds) = (d1, · · · , ds) | (#x1,#x2) = (t1, t2)) (By total probability,)

Since each vote is independent, (#x3, · · · ,#xl) is independent of (#x1,#x2). Moreover, the vote indices
(D1, · · · , Ds) are independent of (#x1,#x2). As votes are i.i.d., (#x1,#x2) does not depend on the value of
(d1, · · · , ds). Thus,

Pr((#x3, · · · ,#xl) = (t3, · · · , tl) |#x1 + #x2 = s ∧ (#x1,#x2) = (t1, t2))

=
∑

d1>d2>···>ds

Pr((#x3, · · · ,#xl) = (t3, · · · , tl) |(D1, · · · , Ds) = (d1, · · · , ds))

× Pr((D1, · · · , Ds) = (d1, · · · , ds))

This concludes that the left hand side and right hand side probabilities of Equation 9 are equal. The random variables
(#x1,#x2) are independent conditioned on (#x1,#x2).

E Concrete Estimate of the Privacy Parameters

In this section we present an example of computing concrete estimates of (0, δ,∆)-exact DDP values for several GSRs.
For this example, we let ∆ = {π} such that π ∈ Π({x1, x2, x3}) and π(xi) = π(xj) = 1/3 (i.e., votes are i.i.d. and
uniform).

We generated these concrete estimates by doing an exhaustive search of all possible profiles for 3 candidates and
n ≤ 50 votes, and computing the δ values exactly for each n. Since we know that δ = Θ(1/

√
n), we fit these values

to δ(n) = 1√
an+b

via linear regression. We rank voting rules from most to least private, by the value a for outputting
the winner. The larger the a, the smaller the δ value and more private. The resulting ranking from most to least private
is:

2-approval B Plurality B Maximin B STV B Borda

We show in Table 2 the fitted δ curves with the mean square error in the fit.
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