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A Proof of Lemmal(l

Proof. By the strong law of large numbers, for all 4, j € [p], it holds that

E[f;] <25 Eln;] and E[j;;] =5 E[ni;] as n — oo.
The functions g are continuous since they are continuously differentiable by [(A2)} therefore, for all ¢ € [p], it holds that

fri = gi(E[0:]) == gi(E[m:]) = ps as n — oo;
similarly, for all ¢, j € [p], it holds that
frij = 9i (Elfi;]) == 9i5(Elnij]) = pij as n — oc.

Therefore,

- ~ PN a.s.

(Bij) = fuij — frafty = pij — paptj = (X)i; as n— 00
and the correlations A
(X)) as. ()i

Y e, Vs

= pij as n — 0.

Recursively applying a similar argument to equation proves that p;;.x is consistent, thereby completing the
proof. O

B Proof of Theorem [I]

We start by defining the vectors of all correlations estimated from Algorithm|[T]and all true correlations of Z as

[312 P12
P13 P13
pi= j and p:= j , (S.1)
Plp—1)p P(p—1)p

respectively. We use 7 to denote the vector obtained from concatenating all monomials in X; and X; that appear in 7;
and n;; for ¢, j € [p] in Assumption [(A2)| i.e.,

ni=0ml n ... o .. onhy nly nl).
We let
ie=00 03 o0y o0 il 0.

be the analogous concatenated vector with 7j; and 7;; for i, j € [p| of sample monomials in X; and X ; calculated from
the data X = (X1, X . X)),

The following lemma is concerned with the asymptotic distribution of the correlation vector p.



Lemma S.1. Under Assumptions|(Al)|and|(A2)
R D
Vil = p) 2 Nyl (0,Aw)),

where v is the vector of all first and second order moments of n and A is a continuous function of v.

Proof. Assumption[(AZ)|asserts that the covariance of 1) is finite. Hence, we can apply the Central Limit Theorem to
obtain

A D

V(E[)] — Enl) = Ny (0, 4, (v)), (S.2)

where A, is the covariance matrix of 7. The elements of the covariance matrix A,, can be written as a continuous
function of the first-and second-order moments of 7, i.e., they can be written as a continuous function of v.

Assumptions and imply that we can write for all 4, j € [p],
_ 95 (Bni;]) — 9i(E[ni]) g, (E[n;]) ‘
V9ii Elnial) — 9i(Emi])? /955 (Elny5]) — g;(Eln])2
We compute sample correlations p;; in our algorithm as
9 (Bli5]) — 9i(E[:]) g, (E[7;]) .
V9ii Eliial) — 9i(Ei])2/ 955 (Elny5]) — 95 (El7])2

Based on equation (S.3) we can define a function w : RI"l — RI?l such that w(E[n]) = p and w(E[7)]) = p. Applying
the Delta method to equation (S.2)) with the function w, we get

Vs = p) 2 Nipy (0,4,)),

where 4, (v) = Vw(E[n])T A, (v)Vw(E[n]), since the elements of the mean vector E[)] are elements of v. Notice that
under the assumption that the variance of X; = F;(Z;) is non-zero, which we mention in Section the denominator
in (S.3) is non-zero, and therefore p is continuously differentiable in g(E[n]), which is continuously differentiable in
E[n] by Assumption [(A2)} Hence, Vw(E[r)]) is continuous in E[r], and therefore continuous in v. Since A,(v) is a
matrix product of functions continuous in v, it is also continuous in v, which completes the proof. O

Lemma S.2. If

Pij (S.3)

pij =

. D
Vip=p) 2 Ny (0.4,(0)),
where v is the vector of all first- and second-order moments of 1, and A, (v) is continuous in v, then under Assump-

tionsandfor any i,j € [p]and K C [p] \ {i,7},
Vn(pij.x — piji) EEN N1(0, 7455 (V)),

for some 7;;. that is continuous in v, where p;;. i are the partial correlations estimated by Algorithm

Proof. We take any arbitrary but fixed ¢, j € [p] and subset K € [p], and we prove the lemma for j;;.x . Let k := |K|+2,
where | K| is the size of the conditioning set K. We begin by relabeling the variables of interest for clarity. We relabel 4

to 1, j to 2 and the elements of K to S = {3,--- , k}. Furthermore, we define the sets
g . {m,m+1,--- k} 3<m<k
0 m=k+1"

Note that S3 = S, and thereby, the partial correlation of interest is pi2.5 = pi2.5,. Now we define for m €
{3, ,k + 1}, the vectors

:51,2-57,1, P1,2-S,,
P1,3-Spm P1,3-Spm
£2,3-S,, P2,3-S,,
P1,4-Sp, P1,4-Sp,
s P2,4-5,, P2,4-Sp,
Pm = and pp, =
P1m—1-S,, P1,m—1-Sp,
P2,m—1-Sp, P2,m—1-S,,
pAm—Z,m—LSm Pm—2m—1-S,,



It follows from the definition of Sy that prr1 = p and px41 = p. In order to prove the lemma, we proceed by
induction on m starting with the base case of m = k + 1 and showing that for all m such that 3 < m < k,

Vi = pn) 2> N (0. 4n(v) (S:4)

for some A,, that is continuous in v. Note that the base case is given by the hypothesis in the lemma. Moreover, the
statement of the lemma is that the above holds for m = 3, and therefore, completing the inductive step proves the
lemma.

To complete the inductive step, assume that for m such that 3 < m < k + 1, we have

V(P = o) 2 Ny, (0 A (). (8.5)

Note that for any «, 8 € [p], the recursive formula for the partial correlations

Pap-5, = paﬂSm;l - pam‘sm+lp/827”'s7n+l (S.6)
\/1 ~ Pam-Spm i1 \/1 - p5m~5m+1

implies that the vector p,, can be written as a function of p,,41. Let f,, : RlPm+1l — RIPm| be this function, then we
have

P1,2-Spmia P1,2-Sp,
P1,3-Smt1 P1,3-Sp,
P2,3-Smy1 P2,3-Sm
P1,4-Spmp1 P1,4-S,,
0£2,4-8, P2,4-Sp,
fm(pm-‘rl):fm( _”m+1 = = Pm-
P1,m-Spt1 P1,(m—1)-Sm,
P2,m-Spi1 P2,(m—1)-Sy,
Pm—1,m-Sp41 pm72,(m71)-Sm

Note that this implies f,,(pm+1) = pPm since our procedure uses this recursive formula to estimate the partial
correlations. Applying the Delta method to (S.3)) with the function f,, gives

~ D
\/ﬁ(l)m - pm) — Mpm\ (07 Am(”v pm+1)>a

where A, (v, pms1) = Vm(pms1) Ami1 V)V frn(pme1)T. The matrix V £, (pmi1) can be computed to be the
following matrix

a2 0 O 0 b1271 b1272 0 0 . 0
0 ais 0 0 b13,1 0 b1373 0 -0
0 0 a3 0 0 b2372 0 b2373 -0
D = vfm(pm-l—l) = . 0 . . . . . . ’
0 0 0 -+ am-nm
2
where
1
Apy = )
\/1 - pi,m's7n+l \/1 - pz,m'sm+1
b _ Pzy-Smi1Pz,m-Smi1 — Py,m-Smia
ry,x = )
\/(1 - piym'SnHrl)?)\/l - pz’m'snwl
and

b Px,y-Smy1Py,m-Smi1 — Pz,m-Smi1

zy,y — :
\/1 - pi,m-Sm-H \/(1 - pzz;,m-Sm,+1)3




To simplify indexing, we define the index function

I(z,y) =x+w.

)" row and column of the Jacobian D. We can now compute the elements

Then, the element a,, ,, will be on the I(z,y
of the matrix A,, in terms of the elements of A,, 1. Namely, defining d := (m=2)(m=1) ,nq using the notation M,

2
to denote the entry in the 2 row and y** column of M, we can compute the element in the I(z, y)*" row and I(z, w)*"
column of A4,,, to be

I(1,m) I(1,m)
T
Am[I(x,y),I(z,w)] = Z Z Dm[l(z,y),p]Am+1[p,q]Dm[q,l(z,w)]

p=1 q=1
I(1,m) I(1,m)
= D Dulicaral D Am+iipag Pl
p=1 qg=1
I(1,m)
= Z Dm[[(m,y),p] (az,wAm+1[p,I(z,w)] + bzw,zAm+1[p,d+z] + bzw,wAm+1[p,d+w]>
p=1

= Qgy (az,wAm—i-l[I(z,y),l(z,w)] + bzw,zAm+1[I(m,y),d+z] + bzw,wAm—o—l[I(m,y),d—o—w])
+ bwy,w (az,wAm+1[d+:z:,I(z,w)] + bzw,zAm+1[d+m,d+z] + bzw,wAm+1[d+:c,d+w])

+ bayy (Gds 2 drwAmt1[dy,1(zw0)) T Dzw,zAmt1(dty,dtz] + Ozw,wAm+1(dty,dtu])-
(S.7)

Note that equation (S.6) shows that p,,+1 is a continuously differentiable function of p,,2 since it is a composition of
continuously differentiable functions. Hence, D is continuous in p,, 2. Furthermore, p,, 2 is continuous in p, which
can be seen by applying a similar argument recursively. Therefore, p,, is continuous in p. By Assumption[(AZ)] for

alli,j € [p],
_ 9i3 (Eni;]) — 9i(E[n:])g; (Eln;]) .
\/gu(]E[mv]) - gi(E[m])z\/gjj (E[nj;1) — g;(E[n;])?
Hence, p is continuous in v. Therefore, p,,1 is continuous in v. A similar argument shows that each of azy, by, »
and b, ,, are continuous in v. Finally, the I(x,y), I(z, w) entry of A,, is continuous in the elements of A,,1(v) for

arbitrary x,y, z and w. Therefore, we can reparameterize A,, (v, pm+1) = A (v), and the inductive step follows for
m € {3,---,k}. Specifically, for m = 3, we have the desired statement:

Vn(ps — ps) 2, N1(0, A3(v))

for A3(v) continuously differentiable in v. Relabeling back to 4, j and K, and defining 7;;.x () := A3(v), we have

Pij (S.8)

. D
\/ﬁ(pij-K — pij-K) — N1(0, Tij.[((l/)),
which completes the proof. O

Note that it was not necessary to find the form of the elements of A,,, explicitly to argue that it was continuous. However,
the proof of this lemma gives us a recursive formula to compute the elements of A3. Furthermore, this recursive
formula is independent of the choice of noise functions F' and the associated functions g. Hence, this recursion can be
used for all noise models, as long as the base case is derived for that noise model, i.e., as long as the elements of the
matrix A(v) in LemmalS.1|can be found.

Proof of Theorem([l] Follows directly from combining Lemma|[S.T|and Lemma [S.2] O

C Proof of Corollary 1]
Proof. By Theorem|[I]and the hypothesis of the corollary,

Valpijx — pijerc) 2> Ni(0, 7.k (pijoxc)).-



By application of the Delta method with

dp+C,

1
zij.x (p) = / Nere)
we obtain
Vi (i) = s (pigerc)) 2 N1 (0, (2.1 (0)) Figac (i) ) = N1(0, ).

Note that the condition imposed on C, z;;.x(0) = 0, by the corollary is not required to prove the result, but is only
needed to prove Theorem 2] O

D Proof of Corollary 2|

Proof. By the Law of Large Numbers, 7 —*% v as n — oo. Therefore Tij k(D) N Tij.k (V) since 7;;.5 is
continuous in v by Theorem[I} Combining this with the convergence result of Theorem [I] gives

Vipigx = pigerc) = N1 (0,7i5.5(9)),

and hence A
\/ﬁ( Pi,ngA _ pi,j~KA ) 2>N1 (071).
Vi (@) /T ()
If we define
Gy (Y, 9) = — e,
we obtain
VGt (Pagcs#) = G (pigese, ) 2> N1(0,1),
which completes the proof. ]

E Proof of Theorem 2]

We rely on the consistency of the causal discovery algorithm that our procedure uses such as PC (Spirtes et al., | 2000) or
GSP (Solus et al.| [2017)) in the oracle setting, i.e., when the conditional independence statements of the underlying graph
are known. Hence, to prove consistency of our procedure, it is sufficient to show that the conditional independence
statements that our procedure estimates from the observed data converges to the true set of conditional independence
statements under the faithfulness assumption in[(AT)]

First, recall that our procedure estimates the CI statements implied by P through declaring X; I X ;| X if

e

T (pij.r)| < @7 5 ), (S.9)

where T could be one of two statistics:

(i) T is chosen as in Corollary I]to be
. . 1 .
T(pij.x) = Vnzij.x (Pijr) = \/ﬁ(/ ————dpij.x + O) (S.10)
Tij~K(pij-K)
with C' chosen such that z;;.x (0) = 0 if the conditions of Corollaryare satisfied,
(ii) or 7' is chosen as in Corollary [2]to be
. . . N Pij K

T(pij.-x) = VnCijx (pij, V) = Vn ——2——. (S.11)

Tij~K(pij-K7 V)

The first step in proving the theorem is the following lemma.

Lemma S.3. As n — oo, the CI statements that our procedure estimates from the observations of X converge to the CI
statements implied by P.



Proof. Take any arbitrary 4,7 € [p] and K C [p| \ {¢,}. First, note that in both settings of T'(p;;.x) in (S.I0)
and (S.I1), T'(p;j.x) is monotonic and continuous in p;;. k. In the first setting it is the anti-derivative of a strictly
positive function of j;;.x and in the second, it is linear in p;;. g with positive slope. Monotonicity and the definitions of
zi;j.x and (5. imply that for n # 0, T'(p;;.x) = 0 if and only if p;;.x = 0. Continuity and Lemmaimply that

T(pijx) == T(pij) as n— 0.

Let H, be the event that X; J{ X ;| X was declared by the test in (S9). Let H be the event that X; U X i1 XK
according to the measure P. Let H’ be the event that X; Il X;| X according to P. We analyze the limits of the
probability of declaring a CI statement correctly, P(H,|H), and the limits of declaring a CI statement incorrectly,
P(H,|H'"). First, for all « € (0, 1],

B(HalH) = B(IT(pi1)| > @7 (1= 5)| pigoxc #0)

= P(T(pij-rc)| > 071 (1= ) | pigerc #0)

—1 as n — oo, (S.12)

where to obtain (S.12), we used that T'(p;;.x ) # 0 since p;;.x # 0. Hence,
n — 0o. Moreover,

T(pij.x)| = |v/n- ¢l — ooforec#0as

P(HolH')
= P(IT(pig.00| > 71 (1= 5) | pigxc = 0)

2
—a as n — oo, (S.13)

= P(T(i500) > 971 = (o0 =0) + B(Tl0sy) < 87 ()| T0iy) =)

where (S.13)) follows from Corollaries [T and [2] that assert the asymptotic normality of 7" in both settings. Hence, for any
e > 0, we can set o = €¢/2 and we will obtain P(H,_|H') — a. < € as n — oo. Therefore both errors in estimating
the CI statements implied by [P vanish asymptotically, implying that the set of CI statements obtained from observations
X converge to those implied by P, thereby completing the proof. O

Proof of Theorem 2. Under faithfulness, the CI statements implied by PP are those implied by G. Hence, by Lemma[S.3]
the set of CI statements obtained from X as n — oo converge to those implied by G. Therefore, if the causal discovery
algorithm used in step 6 of Algorithm[I]is consistent in the oracle setting, then Algorithm|[I]is consistent. O

F Derivation of the transforms for the dropout model

In this section, we derive the transforms for the dropout model. Recall, in the dropout model introduced in SectionE],
we consider an anchored causal model where Z ~ A (u, ) satisfies[(A1)] In Example the corrupted observation
vector X is modeled as

Z; wp g

forall ¢ S.14
0 wp 1-q orall i€ [p], (S.14)

X, =F(Z;) = {
with ¢; € (0, 1]. Note that Assumption |(A2)|is satisfied since each X is independent of all other variables given its
parent Z;. We can find the moments of Z in terms of the moments of X:

E[X] = qipi,  EIX7] = qipis,  E[XiX;] = qigjpi (S.15)

forall ¢, j € [p] with i # j, where we defined y;; := E[Z;Z;]. From this, we can see that Assumption |(A2)|is satisfied
with
ni=Xi, o= X2 nig o= Xo X, (S.16)

and

gi(y) = 37 9ii(y) = 27 9i5(y) : Y (S8.17)

qi B qiq; .



F.1 Derivation of the Dropout Stabilizing Transform

In this section, we derive the dropout stabilizing transform under the assumption that p; = 0 for all i € [p] and K = (),
i.e., we find a variance stabilizing transformation z;; = z;;.¢ for the correlations p;; = p;;.9. We first show that 7;;(v)
can be reparameterized as 7;;(p;;) and then solve for the dropout stabilizing transform z;;(p). We follow the proof of
Lemma [S.T]and later impose the 1 = 0 assumption.

We take any arbitrary, but fixed distinct nodes 7, j € [p] and define
T
0= (n: n; Mii 0jj Mij)
as the vector of monomials in X; and X; from (S.16). Similarly, we define
. AN 4
n= (m N5 Mii M55 77ij)
as the analogous vector of monomials in X, and X ; estimated from the observed data.

Then, applying the Central Limit Theorem gives

VR(E[] — Eln)) 2 Ns5(0, A5(v)),

where A5 (v) is the matrix

Cov(X;, X;) Cov(X;, X;) Cov(X2, X;) Cov(X?, X;) Cov(X,; X, X;)
Cov(X;, X;) Cov(X,, X;) Cov(X2, X;) COV(X%-,XJ') Cov(X,; X, X;)
Cov(X;, X?) Cov(X;, X?) Cov(X2, X?) Cov(X7, X7?)  Cov(X;X;,X7) |,
Cov(X;, X7) Cov(X;, X7) Cov(X7, X7?) COV(XJZ,XJZ) Cov(X;X;, X7?)

Cov(X;, X;X;) Cov(X;, X;X;) Cov(XZ2, X;X;) COV(X X:X;) Cov(X;X;, X, X;)

and v is the vector of all first and second order moments of 7. Now, define w : R5 — R! as

al
a2 as — a10a2
w | as = .
2 2
ay \/ag—al\/a4—a2
as

Note that we have w(E[n]) = p;; and w(E[7]) = p;;. Applying the Delta method with w gives
N D
Vilpij = piz) = N1(0,73;(v)), (S.18)

where

7ij(v) = Vuw(E[n])" As (v) Vu(E[]). (8.19)
Carrying out the multiplication gives the asymptotic variance 7;;(v) parameterized by elements of v. In the case of the
dropout model, any moments of X are linear in moments of Z, for example,

E[X; X2 X;] = qianq; E[Z: 21, Z;).

Furthermore, any moments of Z, which is a Gaussian random variable, can be written as polynomials in the first and
second order moments of Z, i.e., the elements of p and Y. Hence, after imposing the constraint that = 0, we can
reparameterize 7,;(v) in terms of ¥ as

o 1 A Amim) e | s ij
7-1] (2) - + + + ( ) b
qiq; qiq; 4q; 4q; 2 NG

where oy = (Z)kl The details of the computation are included in the Supplementary Mathematica Notebook. Now,
using p;; = \/T \/7 We can reparameterize 7;; (X) once more to obtain

1 +2P12j 9% 90 @ .
e 69 4q 44 2 Y

Hence, in the ;1 = 0 case, we can rewrite (S.18) as

Valpij — pis) 2 N1(0, 75 (pig))-

Tij(pij) =



In order to find a variance stabilizing transform for p;;, we can now solve

dp+C

1
2ij(p) = / VY
! Vi (p)
with C' chosen such that z;;(0) = 0. Then, by Corollary[1} we have

. D
\/ﬁ(zia‘(ﬂz‘j) - Zij(Pij)) = N1(0,1).

There is no closed form for z;;(p) in this case. However, it can written as

Z4 P

iarcsin2p,/ 2?7;]
02 002
V1B f1 oy seae / (1+ 2= sin6) "3 df
0

zij(p) = —i : (S.20)

( 2qiq; )( 4+(8—-9¢: —9q;+2qiq;) p*+4qiq; p* )
Z4+ qi9;

where i = y/—1, and

Zy = +8 = 9¢i — 9q; + 2qiq; + \/*64%'%' + (8 —9¢; — 9g; + 2qi9;)?,

oo = 8 4+9g; + 90; — 2i0; + ) ~64aig; + (8 — 9g: — 9g; + 20452,

The integral that appears in the expression of z;;(p) is the elliptic integral of the first kind, and can be computed
numerically.

F.2 Conditions for the Dropout Stabilizing Transform

As mentioned in Section[d] the dropout stabilizing transform only exists when 2 = 0 and K = {). If the derivation was
done with non-zero means, it would not have been possible to reparameterize the asymptotic variance of the correlations
7;;(v) in terms of only the correlation p;; to satisfy the conditions of Corollary |1 In Figure we demonstrate the
dependence of 7;;(v) from equation (S.19) for fixed p;; on o := o;; = 0,;, which are elements of v, when p # 0.
This can be additionally verified through the Supplementary Mathematica notebook. Figures [S.1] (a)-(e) show that
7;; is still dependent on elements of v, even for a fixed correlation p;; for ¢ # 1 when p # 0, and hence a transform
of the kind in Corollary [I| does not exist for u # 0. For ¢ = 1, i.e. no dropout, the dropout model reduces to the
measurement-error-free Gaussian, and 7;; no longer depends on y and o for fixed p;;. In this case, a transform of the
kind in Corollary E] does exist and as shown in|Lehmann| (1998)), it is the Fisher’s z-transform.

F.3 Derivation of the Dropout Normalizing Transform

In this section we give a way to compute the dropout normalizing transform corresponding to Corollary [2Junder the
dropout model. We begin by showing how to compute the asymptotic variance of the partial correlations, 7;;. x ().

In the proof of Lemma we showed that if we know the continuous function A, (») such that

Vo= p) 2 Nipy (0,4,)), (s:21)

then we can recursively compute the function 7;;.x () beginning with the matrix A,(v). Hence, to give a way to
compute 7;;.x for the dropout model, it is sufficient to describe the elements of the matrix A,(v) and thus we find a
formula for each element of the A,(r) matrix. First, recall that the elements of A,(v) correspond to the covariances of
the sample correlations of the latent variables Z estimated in step 3 of Algorithm That is, each element of A,(v)
will correspond to the asymptotic covariance of v/npap and \/np.q for some a, b, ¢,d € [p| such that a # b and ¢ # d.
There are three different cases for each entry in A,(v), corresponding to different cases of a, b, ¢, d:

(@) {a,b} = {c,d} are distinct, and the element is along the diagonal, corresponding to the asymptotic variance
Of \/ﬁ/}ab’
(b) a & {c,d} and b € {c,d},

(¢) all of a, b, c, d are distinct.



q=03 q=05

q=1
(@pu=2 (b) p=2 yp=2
q=03 q=05 q=1
dp=1 @ pu=1 ®Op=1
=03 q=05 q=1
(®pn=0 (h) p=0 ®p=0

Figure S.1: Plots of 7;;.9 when p;; is fixed to 0.5, ;» € {0, 1,2}, with o allowed to vary. This shows that we cannot

reparameterize 7;; as a function of only p;; for non-zero mean, unless ¢ = 1. For ¢ = 1 the transform corresponding to
Corollary |I|is the Fisher’s z-transform.

To analyze all three cases, it is sufficient to take four arbitrary, but fixed distinct 4, j, k, [ € [p]. We begin by noting that
for the dropout model, we can write

L fuij — fifl;
Pig = /7 o2 [ 2
Hii — K34/ Hj5 — K5

oo Elii] — o- Bl - E[iy]

\/':‘!i El] - (5; EW)Q\/%]. Elij;] — (5
— E[9:;] — E[n:] E[9;]
V@ B[] — E[2/q; Elny;] — E[n,]2 (5.22)

E[7;])?

Define
p = (pij Pir Pit Pik Pst )"
as the vector of estimated correlations of X;, X;, Xj, X; obtained from E[7}] by (S.22). Similarly, let
P = (Pij Pik Pil Pjk Pjl sz)T
be the analogous vector of true correlations. In the next part of the derivation, we will apply the Delta method to the

vectors of moments of the monomials in X;, X; X}, and X; of Assumption@ to obtain the asymptotic distribution
of the vector p, as in the proof of Lemma@ We begin by defining the vector of relevant monomials in X;, X, X},
and X

T
n= (m N5 Mk M Nii Mg Mik it M55 M5k T50 Mkk Mkl Ull)



where the components are defined for our model in equation (S.16). Then, by the Central Limit Theorem, we have
V(B[] — Elr)) 2> M (0, Au(v) (5.23)

where A14(v) is the covariance matrix of the vector 7, and v is the vector of all first and second order moments of 7). To
obtain the convergence result stated in Lemma we define the function w, : R — RS based on (S.22)) such that
w,(E[n]) = pand w,(E[7]) = p. Then

R D
V(= p) 2> N (0, Vo, (Bl Ava (v) Vo, (B[] ). (3.24)
Since the moments in 7 are included in the vector of moments v, we can define

As(v) == Vuw,(EN)T Ara(v)Vw,(E[n)). (S.25)

The explicit form of Ag() can be found by carrying out the matrix multiplication in (S.23). Before performing the
matrix multiplication, we note that for the dropout model, we can write any moment of X as a linear function of a
moment of Z, for example,

E[X: X7 X,] = qiqrq; E[Z: 21 7).
Furthermore, since Z is a Gaussian random vector and all moments of a Gaussian random vector can be written in
terms of its first and second order moments, we can parameterize the asymptotic covariance with the moments of the
Gaussian Z as

A(p, ) = As(n)-
For each entry in Ag(n), we list the three cases mentioned previously in terms of the parameterization as A(u, X).
The full computation is carried out in the Supplementary Mathematica notebook. We use the notation o;; := (X);; to
denote the elements of X.. For a,b,¢,d € {i, 7, k, 1},

(a) If the element corresponds to the asymptotic covariance of \/npqp and \/np.q with {a, b} = {c, d}, then it is
equal to
1 Taa0bb
0aa0bb ~ Yafb
MZLU 217 Nga 21; l

2 2 2
+ (— — —4 + 22 4
( HeObb — Mg fbp HallbOab 40}% 20 @

4 .2 2 2
Ha0 ap ﬂaoab)i

2 2 2
+ (150 aa — Hahty — dptaftoTab + 102, 200

1
+ (uiabb + ufoaa + ui,u% + 4ptapvoap + 2sz) 720

a

4 2 2 2 4 2 2 92 4 )

HaOab  HaTab _ Hp%ab _ Hp%ab Tab 22 Oab

= B N o + +4 4 Zab

( 4Uc2ta 204q 40‘517 200 Caalbb Kol HallbOab 5 )
_ %(i + l))
4 " @

(b) If the element corresponds to the asymptotic covariance of \/npqp and /np.q with a & {c,d} and b = d, then
the element is equal to

2 2
<2(Ib0'bb0'bc(0'ab0'aco'bb — 20440acObb0be + TaaTab0ie)

- Ucc(l - Qb),uzlo'aao'abo'bc

+2(1 = @b) U5 0aaObbTccTabOhe

— (14 @) 0330 ccOaaTabThe

+ Uccagbaaa (Uababc - 40acabb)

1

4Qb0'g)b (Craao'cc)3 ’

- 4U§b0acacc(%02b + (Qb - 1)#%”% + Ubbaaa))
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(c) If the element corresponds to the asymptotic covariance of v/npqp and v/np.q With a, b, ¢, d distinct, then the
element is equal to

2 2
(UccUcd(UabUadUbb — 20440ad0bb0bd + TaaTabThyg)
+ 0aa0tb(TadObcOce + 0acObdOce — TacObeTcc — OadObeOcd)0dd
- 2O'aco'ado'bb] OccOddTab

2
+ 04c0bb0cdTddTab
1

(Uaaobboccadd)3 .

+ Uaaabcaddaab(abcgcd - 2Ubd0cc))

These expressions can be used as the base case of the recursion (S.7), which allows us to indirectly find 7;;. x for any
i,j € [p]and K C [p] \ {4, 7} under the dropout model.

The dropout normalizing transform is then computed using
Gij-r (P D) == p/7\[Tijor (D).

F.4 Derivation of the Dropout Normalizing Transform with Shrinkage

In this section, we derive the dropout normalizing transform when the partial correlations are estimated from the
shrinkage matrix A for a fixed shrinkage coefficient . The derivation closely follows Section First recall that from
Section 4] . . .

A=(1-a)X+aS
where § = 37| X X (T is covariance matrix of the observations of X. Then, denoting A;; = (A);;, we can
express correlations as

pij = # (S.26)
RCRVRYY
where the elements of A are
A 1. U B . .
Ny = (1= o) (- Blg] — Bl - Blis]) + o Bli) — B EL,)).
A 1 1
Ao = (=) (Bl = (- El)?) + o Elia] - Bl). (827)

2 1 .. 1 . . .

Vg = (1= @) (- Eligs] — (- Ela)?) +a( Bligs] - BA°)-
j j

We can define the function w, of equation (S.24) based on equations (S.26) and and proceed as in Section [F.3]

to derive the corresponding elements of the asymptotic covariance matrix. The derivation of the dropout normalizing

transform with shrinkage, in addition to the result is shown in the Supplementary Mathematica notebook. Note that in

this case, the elements of the asymptotic covariance matrix of 1/np will be functions of c.

G Experiments

We include additional simulation results for varying p € {10, 30}, n € {1000, 2000, 10000, 50000} and d € {2, 3,5}.
Specifically, we evaluate the estimated skeleton as well as the CPDAG in recapitulating the true DAG G using ROC
curves and SHD. For the majority of the settings, the dropout stabilizing transform outperforms the naive Gaussian
CI test applied on the corrupted data. As pointed out in Section [5.1] both dropout transforms tend to outperform the
Gaussian CI test when the number of samples is high. In plotting the ROC curve for the CPDAG for p € {10, 30}, we
consider an undirected edge in the CPDAG a true positive if a directed edge exists in G in either direction, and a false
positive otherwise. We consider a directed edge in the CPDAG a true positive if a directed edge of the same direction
exists in G, and a false positive otherwise.

We also include the inferred gene regulatory network for the pancreatic type Il diabetes data set, collected with inDrop
single-cell RNA-seq technology. We use the dropout stabilizing transform and Algorithm|T]to obtain causal relationships
between latent genes.
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Figure S.2: Q-Q Plots for empirical distributions of the statistic computed from the dropout normalizing and dropout
stabilizing transforms under the null hypothesis
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Figure S.3: ROC curves for evaluating the estimated skeleton of the true DAG using dropout stabilizing transform,
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and d € {3,5}.
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Figure S.4: ROC curves for evaluating the estimated skeleton of the true DAG using dropout stabilizing transform and
Gaussian CI test in simulations with p = 30 and n € {1000, 2000, 10000, 50000} and d € {2, 3}.
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Figure S.5: ROC curves for evaluating the estimated CPDAG of the true DAG using dropout stabilizing transform,
dropout normalizing transform, and Gaussian CI test in simulations with p = 10 and n € {1000, 2000, 10000, 50000}
and d € {3,5}.
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Figure S.6: ROC curves for evaluating the estimated CPDAG of the true DAG using dropout stabilizing transform and
Gaussian CI test in simulations with p = 30 and n € {1000, 2000, 10000, 50000} and d € {2, 3}.
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Figure S.7: SHD for evaluating the estimated skeleton of the true DAG using dropout stabilizing transform, dropout
normalizing transform, and Gaussian CI test in simulations with p = 10 and n € {1000, 2000, 10000, 50000} and

d e {3,5}.
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Figure S.8: SHD for evaluating the estimated CPDAG of the true DAG using dropout stabilizing transform, dropout

normalizing transform, and Gaussian CI test in simulations with p = 10 and n € {1000, 2000, 10000, 50000} and
de {3,5}.
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Figure S.9: Gene regulatory network inferred from the pancreas data set collected with inDrop. Dropout stabilizing
transform was used to learn the causal edges between latent error-free genes.
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