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A Proof of Lemma 1

Proof. By the strong law of large numbers, for all i, j ∈ [p], it holds that

E[η̂i]
a.s.−−→ E[ηi] and E[η̂ij ]

a.s.−−→ E[ηij ] as n→∞.
The functions g are continuous since they are continuously differentiable by (A2); therefore, for all i ∈ [p], it holds that

µ̂i = gi(E[η̂i])
a.s.−−→ gi(E[ηi]) = µi as n→∞;

similarly, for all i, j ∈ [p], it holds that

µ̂ij = gij(E[η̂ij ])
a.s.−−→ gij(E[ηij ]) = µij as n→∞.

Therefore,
(Σ̂ij) := µ̂ij − µ̂iµ̂j

a.s.−−→ µij − µiµj = (Σ)ij as n→∞
and the correlations

ρ̂ij =
(Σ̂)ij√

(Σ̂)ii(Σ̂)jj

a.s.−−→ (Σ)ij√
(Σ)ii(Σ)jj

= ρij as n→∞.

Recursively applying a similar argument to equation (2) proves that ρ̂ij·K is consistent, thereby completing the
proof.

B Proof of Theorem 1

We start by defining the vectors of all correlations estimated from Algorithm 1 and all true correlations of Z as

ρ̂ :=


ρ̂12
ρ̂13
·
·
·

ρ̂(p−1)p

 and ρ :=


ρ12
ρ13
·
·
·

ρ(p−1)p

 , (S.1)

respectively. We use η to denote the vector obtained from concatenating all monomials in Xi and Xj that appear in ηi
and ηij for i, j ∈ [p] in Assumption (A2), i.e.,

η :=
(
ηT1 ηT2 . . . ηTp . . . ηT11 ηT12 ηTpp

)
.

We let
η̂ :=

(
η̂T1 η̂T2 . . . η̂Tp . . . η̂T11 η̂T12 η̂Tpp

)
.

be the analogous concatenated vector with η̂i and η̂ij for i, j ∈ [p] of sample monomials in X̂i and X̂j calculated from
the data X̂ = (X̂(1), X̂(2), . . . , X̂(n)).

The following lemma is concerned with the asymptotic distribution of the correlation vector ρ̂.



Lemma S.1. Under Assumptions (A1) and (A2),
√
n(ρ̂− ρ)

D−→ N|ρ|
(

0, A(ν)
)
,

where ν is the vector of all first and second order moments of η and A is a continuous function of ν.

Proof. Assumption (A2) asserts that the covariance of η is finite. Hence, we can apply the Central Limit Theorem to
obtain √

n(E[η̂]− E[η])
D−→ N |η|(0, Aη(ν)), (S.2)

where Aη is the covariance matrix of η. The elements of the covariance matrix Aη can be written as a continuous
function of the first-and second-order moments of η, i.e., they can be written as a continuous function of ν.

Assumptions (A1) and (A2) imply that we can write for all i, j ∈ [p],

ρij =
gij(E[ηij ])− gi(E[ηi])gj(E[ηj ])√

gii(E[ηii])− gi(E[ηi])2
√
gjj(E[ηjj ])− gj(E[ηj ])2

. (S.3)

We compute sample correlations ρ̂ij in our algorithm as

ρ̂ij =
gij(E[η̂ij ])− gi(E[η̂i])gj(E[η̂j ])√

gii(E[η̂ii])− gi(E[η̂i])2
√
gjj(E[η̂jj ])− gj(E[η̂j ])2

.

Based on equation (S.3) we can define a function w : R|η| → R|ρ| such that w(E[η]) = ρ and w(E[η̂]) = ρ̂. Applying
the Delta method to equation (S.2) with the function w, we get

√
n(ρ̂− ρ)

D−→ N |ρ|
(

0, Aρ(ν)
)
,

where Aρ(ν) = ∇w(E[η])TAη(ν)∇w(E[η]), since the elements of the mean vector E[η] are elements of ν. Notice that
under the assumption that the variance of Xi = Fi(Zi) is non-zero, which we mention in Section 2, the denominator
in (S.3) is non-zero, and therefore ρ is continuously differentiable in g(E[η]), which is continuously differentiable in
E[η] by Assumption (A2). Hence, ∇w(E[η]) is continuous in E[η], and therefore continuous in ν. Since Aρ(ν) is a
matrix product of functions continuous in ν, it is also continuous in ν, which completes the proof.

Lemma S.2. If
√
n(ρ̂− ρ)

D−→ N |ρ|
(

0, Aρ(ν)
)
,

where ν is the vector of all first- and second-order moments of η, and Aρ(ν) is continuous in ν, then under Assump-
tions (A1) and (A2), for any i, j ∈ [p] and K ⊆ [p] \ {i, j},

√
n(ρ̂ij·K − ρij·K)

D−→ N1(0, τij·K(ν)),

for some τij·K that is continuous in ν, where ρ̂ij·K are the partial correlations estimated by Algorithm 1.

Proof. We take any arbitrary but fixed i, j ∈ [p] and subsetK ∈ [p], and we prove the lemma for ρ̂ij·K . Let k := |K|+2,
where |K| is the size of the conditioning set K. We begin by relabeling the variables of interest for clarity. We relabel i
to 1, j to 2 and the elements of K to S = {3, · · · , k}. Furthermore, we define the sets

Sm :=

{
{m,m+ 1, · · · , k} 3 ≤ m ≤ k
∅ m = k + 1

.

Note that S3 = S, and thereby, the partial correlation of interest is ρ12·S = ρ12·S3 . Now we define for m ∈
{3, · · · , k + 1}, the vectors

ρ̂m :=



ρ̂1,2·Sm
ρ̂1,3·Sm
ρ̂2,3·Sm
ρ̂1,4·Sm
ρ̂2,4·Sm
. . .

ρ̂1,m−1·Sm
ρ̂2,m−1·Sm

. . .
ρ̂m−2,m−1·Sm


and ρm :=



ρ1,2·Sm
ρ1,3·Sm
ρ2,3·Sm
ρ1,4·Sm
ρ2,4·Sm
. . .

ρ1,m−1·Sm
ρ2,m−1·Sm

. . .
ρm−2,m−1·Sm


.
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It follows from the definition of Sk+1 that ρ̂k+1 = ρ̂ and ρk+1 = ρ. In order to prove the lemma, we proceed by
induction on m starting with the base case of m = k + 1 and showing that for all m such that 3 ≤ m ≤ k,

√
n(ρ̂m − ρm)

D−→ N |ρm|
(

0, Am(ν)
)

(S.4)

for some Am that is continuous in ν. Note that the base case is given by the hypothesis in the lemma. Moreover, the
statement of the lemma is that the above holds for m = 3, and therefore, completing the inductive step proves the
lemma.

To complete the inductive step, assume that for m such that 3 ≤ m < k + 1, we have
√
n(ρ̂m+1 − ρm+1)

D−→ N |ρm+1|

(
0, Am+1(ν)

)
. (S.5)

Note that for any α, β ∈ [p], the recursive formula for the partial correlations

ραβ·Sm =
ραβ·Sm+1 − ραm·Sm+1ρβm·Sm+1√

1− ρ2αm·Sm+1

√
1− ρ2βm·Sm+1

(S.6)

implies that the vector ρm can be written as a function of ρm+1. Let fm : R|ρm+1| → R|ρm| be this function, then we
have

fm(ρm+1) = fm

(


ρ1,2·Sm+1

ρ1,3·Sm+1

ρ2,3·Sm+1

ρ1,4·Sm+1

ρ2,4·Sm+1

. . .
ρ1,m·Sm+1

ρ2,m·Sm+1

. . .
ρm−1,m·Sm+1



)
=



ρ1,2·Sm
ρ1,3·Sm
ρ2,3·Sm
ρ1,4·Sm
ρ2,4·Sm
. . .

ρ1,(m−1)·Sm
ρ2,(m−1)·Sm

. . .
ρm−2,(m−1)·Sm


= ρm.

Note that this implies fm(ρ̂m+1) = ρ̂m since our procedure uses this recursive formula to estimate the partial
correlations. Applying the Delta method to (S.5) with the function fm gives

√
n(ρ̂m − ρm)

D−→ N|ρm|
(

0, Am(ν, ρm+1)
)
,

where Am(ν, ρm+1) := ∇fm(ρm+1)Am+1(ν)∇fm(ρm+1)T . The matrix ∇fm(ρm+1) can be computed to be the
following matrix

D := ∇fm(ρm+1) =


a12 0 0 · 0 b12,1 b12,2 0 0 · 0
0 a13 0 · 0 b13,1 0 b13,3 0 · 0
0 0 a23 · 0 0 b23,2 0 b23,3 · 0
· · · · 0 · · · · · ·
· · · · · · · · · · ·
0 0 0 · a (m−1)(m)

2
· · · · · ·

 ,

where
axy =

1√
1− ρ2x,m·Sm+1

√
1− ρ2y,m·Sm+1

,

bxy,x =
ρx,y·Sm+1ρx,m·Sm+1 − ρy,m·Sm+1√
(1− ρ2x,m·Sm+1

)3
√

1− ρ2y,m·Sm+1

,

and
bxy,y =

ρx,y·Sm+1ρy,m·Sm+1 − ρx,m·Sm+1√
1− ρ2x,m·Sm+1

√
(1− ρ2y,m·Sm+1

)3
.
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To simplify indexing, we define the index function

I(x, y) = x+
(y − 2)(y − 1)

2
.

Then, the element ax,y will be on the I(x, y)th row and column of the Jacobian D. We can now compute the elements
of the matrix Am in terms of the elements of Am+1. Namely, defining d := (m−2)(m−1)

2 and using the notation M[x,y]

to denote the entry in the xth row and yth column of M , we can compute the element in the I(x, y)th row and I(z, w)th

column of Am to be

Am[I(x,y),I(z,w)] =

I(1,m)∑
p=1

I(1,m)∑
q=1

Dm[I(x,y),p]Am+1[p,q]D
T
m[q,I(z,w)]

=

I(1,m)∑
p=1

Dm[I(x,y),p]

I(1,m)∑
q=1

Am+1[p,q]Dm[I(z,w),q]

=

I(1,m)∑
p=1

Dm[I(x,y),p]

(
az,wAm+1[p,I(z,w)] + bzw,zAm+1[p,d+z] + bzw,wAm+1[p,d+w]

)
= ax,y

(
az,wAm+1[I(x,y),I(z,w)] + bzw,zAm+1[I(x,y),d+z] + bzw,wAm+1[I(x,y),d+w]

)
+ bxy,x

(
az,wAm+1[d+x,I(z,w)] + bzw,zAm+1[d+x,d+z] + bzw,wAm+1[d+x,d+w]

)
+ bxy,y

(
ad+z,d+wAm+1[d+y,I(z,w)] + bzw,zAm+1[d+y,d+z] + bzw,wAm+1[d+y,d+w]

)
.

(S.7)

Note that equation (S.6) shows that ρm+1 is a continuously differentiable function of ρm+2 since it is a composition of
continuously differentiable functions. Hence, D is continuous in ρm+2. Furthermore, ρm+2 is continuous in ρ, which
can be seen by applying a similar argument recursively. Therefore, ρm+1 is continuous in ρ. By Assumption (A2), for
all i, j ∈ [p],

ρij =
gij(E[ηij ])− gi(E[ηi])gj(E[ηj ])√

gii(E[ηii])− gi(E[ηi])2
√
gjj(E[ηjj ])− gj(E[ηj ])2

. (S.8)

Hence, ρ is continuous in ν. Therefore, ρm+1 is continuous in ν. A similar argument shows that each of axy, bxy,x
and bxy,y are continuous in ν. Finally, the I(x, y), I(z, w) entry of Am is continuous in the elements of Am+1(ν) for
arbitrary x, y, z and w. Therefore, we can reparameterize Am(ν, ρm+1) = Ãm(ν), and the inductive step follows for
m ∈ {3, · · · , k}. Specifically, for m = 3, we have the desired statement:

√
n(ρ̂3 − ρ3)

D−→ N1(0, Ã3(ν))

for Ã3(ν) continuously differentiable in ν. Relabeling back to i, j and K, and defining τij·K(ν) := Ã3(ν), we have
√
n(ρ̂ij·K − ρij·K)

D−→ N 1(0, τij·K(ν)),

which completes the proof.

Note that it was not necessary to find the form of the elements ofAm explicitly to argue that it was continuous. However,
the proof of this lemma gives us a recursive formula (S.7) to compute the elements of A3. Furthermore, this recursive
formula is independent of the choice of noise functions F and the associated functions g. Hence, this recursion can be
used for all noise models, as long as the base case is derived for that noise model, i.e., as long as the elements of the
matrix A(ν) in Lemma S.1 can be found.

Proof of Theorem 1. Follows directly from combining Lemma S.1 and Lemma S.2.

C Proof of Corollary 1

Proof. By Theorem 1 and the hypothesis of the corollary,
√
n(ρ̂ij·K − ρij·K)

D−→ N1

(
0, τ̃ij·K(ρij·K)

)
.
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By application of the Delta method with

zij·K(ρ) =

∫
1√

τ̃ij·K(ρ)
dρ+ C,

we obtain √
n(zij·K(ρ̂ij·K)− zij·K(ρij·K))

D−→ N 1

(
0,
(
z′ij·K(ρ)

)2
τ̃ij·K(ρij·K)

)
= N 1(0, 1).

Note that the condition imposed on C, zij·K(0) = 0, by the corollary is not required to prove the result, but is only
needed to prove Theorem 2.

D Proof of Corollary 2

Proof. By the Law of Large Numbers, ν̂ a.s.−−→ ν as n → ∞. Therefore τij·K(ν̂)
a.s.−−→ τij·K(ν) since τij·K is

continuous in ν by Theorem 1. Combining this with the convergence result of Theorem 1 gives
√
n(ρ̂i,j·K − ρi,j·K)

D−→ N 1

(
0, τij·K(ν̂)

)
,

and hence
√
n
( ρ̂i,j·K√

τij·K(ν̂)
− ρi,j·K√

τij·K(ν̂)

)
D−→ N 1

(
0, 1
)
.

If we define
ζij·K(y, ν̂) :=

y√
τij·K(ν̂)

,

we obtain √
n
(
ζij·K(ρ̂ij·K , ν̂)− ζij·K(ρij·K , ν̂)

)
D−→ N 1(0, 1),

which completes the proof.

E Proof of Theorem 2

We rely on the consistency of the causal discovery algorithm that our procedure uses such as PC (Spirtes et al., 2000) or
GSP (Solus et al., 2017) in the oracle setting, i.e., when the conditional independence statements of the underlying graph
are known. Hence, to prove consistency of our procedure, it is sufficient to show that the conditional independence
statements that our procedure estimates from the observed data converges to the true set of conditional independence
statements under the faithfulness assumption in (A1).

First, recall that our procedure estimates the CI statements implied by P through declaring Xi |= Xj |XK if

|T (ρ̂ij·K)| ≤ Φ−1(1− α

2
), (S.9)

where T could be one of two statistics:

(i) T is chosen as in Corollary 1 to be

T (ρ̂ij·K) =
√
n zij·K(ρ̂ij·K) :=

√
n

(∫
1

τij·K(ρ̂ij·K)
dρ̂ij·K + C

)
(S.10)

with C chosen such that zij·K(0) = 0 if the conditions of Corollary 1 are satisfied,

(ii) or T is chosen as in Corollary 2 to be

T (ρ̂ij·K) =
√
n ζij·K(ρ̂ij·K , ν̂) :=

√
n

ρ̂ij·K
τij·K(ρ̂ij·K , ν̂)

. (S.11)

The first step in proving the theorem is the following lemma.

Lemma S.3. As n→∞, the CI statements that our procedure estimates from the observations of X converge to the CI
statements implied by P.
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Proof. Take any arbitrary i, j ∈ [p] and K ⊆ [p] \ {i, j}. First, note that in both settings of T (ρ̂ij·K) in (S.10)
and (S.11), T (ρ̂ij·K) is monotonic and continuous in ρ̂ij·K . In the first setting it is the anti-derivative of a strictly
positive function of ρ̂ij·K and in the second, it is linear in ρ̂ij·K with positive slope. Monotonicity and the definitions of
zij·K and ζij·K imply that for n 6= 0, T (ρij·K) = 0 if and only if ρij·K = 0. Continuity and Lemma 1 imply that

T (ρ̂ij·K)
a.s.−−→ T (ρij·K) as n→∞.

Let Hα be the event that Xi 6⊥⊥ Xj |XK was declared by the test in (S.9). Let H be the event that Xi 6⊥⊥ Xj |XK

according to the measure P. Let H ′ be the event that Xi |= Xj |XK according to P. We analyze the limits of the
probability of declaring a CI statement correctly, P(Hα|H), and the limits of declaring a CI statement incorrectly,
P(Hα|H ′). First, for all α ∈ (0, 1],

P(Hα|H) = P(|T (ρ̂ij·K)| > Φ−1(1− α

2
) | ρij·K 6= 0)

→ P(|T (ρij·K)| > Φ−1(1− α

2
) | ρij·K 6= 0)

→ 1 as n→∞, (S.12)

where to obtain (S.12), we used that T (ρij·K) 6= 0 since ρij·K 6= 0. Hence, |T (ρij·K)| = |
√
n · c| → ∞ for c 6= 0 as

n→∞. Moreover,

P(Hα|H ′)

= P
(
|T (ρ̂ij·K)| > Φ−1(1− α

2
)
∣∣∣ ρij·K = 0

)
= P

(
T (ρ̂ij·K) > Φ−1(1− α

2
)|T (ρij·K) = 0

)
+ P

(
T (ρ̂ij·K) < Φ−1(

α

2
)

∣∣∣∣T (ρij·K) = 0

)
→ α as n→∞, (S.13)

where (S.13) follows from Corollaries 1 and 2 that assert the asymptotic normality of T in both settings. Hence, for any
ε > 0, we can set αε = ε/2 and we will obtain P(Hαε |H ′)→ αε < ε as n→∞. Therefore both errors in estimating
the CI statements implied by P vanish asymptotically, implying that the set of CI statements obtained from observations
X converge to those implied by P, thereby completing the proof.

Proof of Theorem 2. Under faithfulness, the CI statements implied by P are those implied by G. Hence, by Lemma S.3,
the set of CI statements obtained from X as n→∞ converge to those implied by G. Therefore, if the causal discovery
algorithm used in step 6 of Algorithm 1 is consistent in the oracle setting, then Algorithm 1 is consistent.

F Derivation of the transforms for the dropout model

In this section, we derive the transforms for the dropout model. Recall, in the dropout model introduced in Section 3,
we consider an anchored causal model where Z ∼ N (µ,Σ) satisfies (A1). In Example 3.2, the corrupted observation
vector X is modeled as

Xi = Fi(Zi) =

{
Zi w.p qi
0 w.p 1− qi

for all i ∈ [p], (S.14)

with qi ∈ (0, 1]. Note that Assumption (A2) is satisfied since each Xi is independent of all other variables given its
parent Zi. We can find the moments of Z in terms of the moments of X:

E[Xi] = qiµi, E[X2
i ] = qiµii, E[XiXj ] = qiqjµij (S.15)

for all i, j ∈ [p] with i 6= j, where we defined µij := E[ZiZj ]. From this, we can see that Assumption (A2) is satisfied
with

ηi := Xi, ηii := X2
i , ηij := XiXj , (S.16)

and

gi(y) :=
y

qi
, gii(y) :=

y

qi
, gij(y) :=

y

qiqj
. (S.17)
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F.1 Derivation of the Dropout Stabilizing Transform

In this section, we derive the dropout stabilizing transform under the assumption that µi = 0 for all i ∈ [p] and K = ∅,
i.e., we find a variance stabilizing transformation zij = zij·∅ for the correlations ρij = ρij·∅. We first show that τij(ν)
can be reparameterized as τ̃ij(ρij) and then solve for the dropout stabilizing transform zij(ρ). We follow the proof of
Lemma S.1 and later impose the µ = 0 assumption.

We take any arbitrary, but fixed distinct nodes i, j ∈ [p] and define

η :=
(
ηi ηj ηii ηjj ηij

)T
as the vector of monomials in Xi and Xj from (S.16). Similarly, we define

η̂ =
(
η̂i η̂j η̂ii η̂jj η̂ij

)T
as the analogous vector of monomials in X̂i and X̂j estimated from the observed data.

Then, applying the Central Limit Theorem gives
√
n(E[η̂]− E[η])

D−→ N 5(0, A5(ν)),

where A5(ν) is the matrix
Cov(Xi, Xi) Cov(Xj , Xi) Cov(X2

i , Xi) Cov(X2
j , Xi) Cov(XiXj , Xi)

Cov(Xi, Xj) Cov(Xj , Xj) Cov(X2
i , Xj) Cov(X2

j , Xj) Cov(XiXj , Xj)
Cov(Xi, X

2
i ) Cov(Xj , X

2
i ) Cov(X2

i , X
2
i ) Cov(X2

j , X
2
i ) Cov(XiXj , X

2
i )

Cov(Xi, X
2
j ) Cov(Xj , X

2
j ) Cov(X2

i , X
2
j ) Cov(X2

j , X
2
j ) Cov(XiXj , X

2
j )

Cov(Xi, XiXj) Cov(Xj , XiXj) Cov(X2
i , XiXj) Cov(X2

j , XiXj) Cov(XiXj , XiXj)

 ,

and ν is the vector of all first and second order moments of η. Now, define w : R5 → R1 as

w


a1
a2
a3
a4
a5

 =
a5 − a1a2√

a3 − a21
√
a4 − a22

.

Note that we have w(E[η]) = ρij and w(E[η̂]) = ρ̂ij . Applying the Delta method with w gives
√
n(ρ̂ij − ρij)

D−→ N 1(0, τij(ν)), (S.18)

where
τij(ν) = ∇w(E[η])TA5(ν)∇w(E[η]). (S.19)

Carrying out the multiplication gives the asymptotic variance τij(ν) parameterized by elements of ν. In the case of the
dropout model, any moments of X are linear in moments of Z, for example,

E[XiX
2
kXj ] = qiqkqj E[ZiZkZj ].

Furthermore, any moments of Z, which is a Gaussian random variable, can be written as polynomials in the first and
second order moments of Z, i.e., the elements of µ and Σ. Hence, after imposing the constraint that µ = 0, we can
reparameterize τij(ν) in terms of Σ as

τ̄ij(Σ) =
1

qiqj
+

2(
σij√

σii
√
σjj

)2

qiqj
−

9(
σij√

σii
√
σjj

)2

4qj
−

9(
σij√

σii
√
σjj

)2

4qi
+

(
σij√

σii
√
σjj

)2

2
+ (

σij√
σii
√
σjj

)4,

where σkl = (Σ)kl. The details of the computation are included in the Supplementary Mathematica Notebook. Now,
using ρij =

σij√
σii
√
σjj

we can reparameterize τ̄ij(Σ) once more to obtain

τ̃ij(ρij) =
1

qiqj
+

2ρ2ij
qiqj

−
9ρ2ij
4qj
−

9ρ2ij
4qi

+
ρ2ij
2

+ ρ4ij .

Hence, in the µ = 0 case, we can rewrite (S.18) as
√
n(ρ̂ij − ρij)

D−→ N 1(0, τ̃ij(ρij)).
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In order to find a variance stabilizing transform for ρij , we can now solve

zij(ρ) =

∫
1√
τ̃ij(ρ)

dρ+ C

with C chosen such that zij(0) = 0. Then, by Corollary 1, we have
√
n
(
zij(ρ̂ij)− zij(ρij)

)
D−→ N 1(0, 1).

There is no closed form for zij(ρ) in this case. However, it can written as

zij(ρ) = −i

√
1− 8qiqjρ2

z+

√
1 +

8qiqjρ2

z−

∫ i arcsin 2ρ

√
2qiqj
z+

0

(1 + z+
z−

sin2 θ)−
1
2 dθ√

(
2qiqj
z+

)(
4+(8−9qi−9qj+2qiqj)ρ2+4qiqjρ4

qiqj
)

, (S.20)

where i =
√
−1, and

z+ = +8− 9qi − 9qj + 2qiqj +
√
−64qiqj + (8− 9qi − 9qj + 2qiqj)2,

z− = −8 + 9qi + 9qj − 2qiqj +
√
−64qiqj + (8− 9qi − 9qj + 2qiqj)2.

The integral that appears in the expression of zij(ρ) is the elliptic integral of the first kind, and can be computed
numerically.

F.2 Conditions for the Dropout Stabilizing Transform

As mentioned in Section 4, the dropout stabilizing transform only exists when µ = 0 and K = ∅. If the derivation was
done with non-zero means, it would not have been possible to reparameterize the asymptotic variance of the correlations
τij(ν) in terms of only the correlation ρij to satisfy the conditions of Corollary 1. In Figure S.1, we demonstrate the
dependence of τij(ν) from equation (S.19) for fixed ρij on σ := σii = σjj , which are elements of ν, when µ 6= 0.
This can be additionally verified through the Supplementary Mathematica notebook. Figures S.1 (a)-(e) show that
τij is still dependent on elements of ν, even for a fixed correlation ρij for q 6= 1 when µ 6= 0, and hence a transform
of the kind in Corollary 1 does not exist for µ 6= 0. For q = 1, i.e. no dropout, the dropout model reduces to the
measurement-error-free Gaussian, and τij no longer depends on µ and σ for fixed ρij . In this case, a transform of the
kind in Corollary 1 does exist and as shown in Lehmann (1998), it is the Fisher’s z-transform.

F.3 Derivation of the Dropout Normalizing Transform

In this section we give a way to compute the dropout normalizing transform corresponding to Corollary 2 under the
dropout model. We begin by showing how to compute the asymptotic variance of the partial correlations, τij·K(ν).

In the proof of Lemma S.2, we showed that if we know the continuous function Aρ(ν) such that
√
n(ρ̂− ρ)

D−→ N |ρ|
(

0, Aρ(ν)
)
, (S.21)

then we can recursively compute the function τij·K(ν) beginning with the matrix Aρ(ν). Hence, to give a way to
compute τij·K for the dropout model, it is sufficient to describe the elements of the matrix Aρ(ν) and thus we find a
formula for each element of the Aρ(ν) matrix. First, recall that the elements of Aρ(ν) correspond to the covariances of
the sample correlations of the latent variables Z estimated in step 3 of Algorithm 1. That is, each element of Aρ(ν)
will correspond to the asymptotic covariance of

√
nρ̂ab and

√
nρ̂cd for some a, b, c, d ∈ [p] such that a 6= b and c 6= d.

There are three different cases for each entry in Aρ(ν), corresponding to different cases of a, b, c, d:

(a) {a, b} = {c, d} are distinct, and the element is along the diagonal, corresponding to the asymptotic variance
of
√
nρ̂ab,

(b) a 6∈ {c, d} and b ∈ {c, d},
(c) all of a, b, c, d are distinct.
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(a) µ = 2 (b) µ = 2 (c) µ = 2

(d) µ = 1 (e) µ = 1 (f) µ = 1

(g) µ = 0 (h) µ = 0 (i) µ = 0

Figure S.1: Plots of τij·∅ when ρij is fixed to 0.5, µ ∈ {0, 1, 2}, with σ allowed to vary. This shows that we cannot
reparameterize τij as a function of only ρij for non-zero mean, unless q = 1. For q = 1 the transform corresponding to
Corollary 1 is the Fisher’s z-transform.

To analyze all three cases, it is sufficient to take four arbitrary, but fixed distinct i, j, k, l ∈ [p]. We begin by noting that
for the dropout model, we can write

ρ̂i,j =
µ̂ij − µ̂iµ̂j√

µ̂ii − µ̂2
i

√
µ̂jj − µ̂2

j

=

1
qiqj

E[η̂ij ]− 1
qi
E[η̂i]

1
qj

E[η̂j ]√
1
qi
E[η̂ii]− ( 1

qi
E[η̂i])2

√
1
qj

E[η̂jj ]− ( 1
qj

E[η̂j ])2

=
E[η̂ij ]− E[η̂i]E[η̂j ]√

qi E[η̂ii]− E[η̂i]2
√
qj E[η̂jj ]− E[η̂j ]2

. (S.22)

Define
ρ̂ = (ρ̂ij ρ̂ik ρ̂il ρ̂jk ρ̂jl ρ̂kl)

T ,

as the vector of estimated correlations of Xi, Xj , Xk, Xl obtained from E[η̂] by (S.22). Similarly, let

ρ = (ρij ρik ρil ρjk ρjl ρkl)
T

be the analogous vector of true correlations. In the next part of the derivation, we will apply the Delta method to the
vectors of moments of the monomials in Xi, Xj Xk, and Xl of Assumption (A2), to obtain the asymptotic distribution
of the vector ρ̂, as in the proof of Lemma S.1, We begin by defining the vector of relevant monomials in Xi, Xj , Xk,
and Xl

η =
(
ηi ηj ηk ηl ηii ηij ηik ηil ηjj ηjk ηjl ηkk ηkl ηll

)T
9



where the components are defined for our model in equation (S.16). Then, by the Central Limit Theorem, we have
√
n(E[η̂]− E[η])

D−→ N 14

(
0, A14(ν)

)
(S.23)

where A14(ν) is the covariance matrix of the vector η, and ν is the vector of all first and second order moments of η. To
obtain the convergence result stated in Lemma S.1, we define the function wρ : R14 → R6 based on (S.22) such that
wρ(E[η]) = ρ and wρ(E[η̂]) = ρ̂. Then

√
n(ρ̂− ρ)

D−→ N6

(
0,∇wρ(E[η])TA14(ν)∇wρ(E[η])

)
. (S.24)

Since the moments in η are included in the vector of moments ν, we can define

A6(ν) := ∇wρ(E[η])TA14(ν)∇wρ(E[η]). (S.25)

The explicit form of A6(ν) can be found by carrying out the matrix multiplication in (S.25). Before performing the
matrix multiplication, we note that for the dropout model, we can write any moment of X as a linear function of a
moment of Z, for example,

E[XiX
2
kXj ] = qiqkqj E[ZiZkZj ].

Furthermore, since Z is a Gaussian random vector and all moments of a Gaussian random vector can be written in
terms of its first and second order moments, we can parameterize the asymptotic covariance with the moments of the
Gaussian Z as

Ā(µ,Σ) := A6(η).

For each entry in A6(η), we list the three cases mentioned previously in terms of the parameterization as Ā(µ,Σ).
The full computation is carried out in the Supplementary Mathematica notebook. We use the notation σij := (Σ)ij to
denote the elements of Σ. For a, b, c, d ∈ {i, j, k, l},

(a) If the element corresponds to the asymptotic covariance of
√
nρ̂ab and

√
nρ̂cd with {a, b} = {c, d}, then it is

equal to

1

σaaσbb

(σaaσbb
qaqb

+ (−µ2
aσbb − µ2

aµ
2
b − 4µaµbσab +

µ4
bσ

2
ab

4σ2
bb

+
µ2
bσ

2
ab

2σbb
)

1

qb

+ (−µ2
bσaa − µ2

aµ
2
b − 4µaµbσab +

µ4
aσ

2
ab

4σ2
aa

+
µ2
aσ

2
ab

2σaa
)

1

qa

+ (µ2
aσbb + µ2

bσaa + µ2
aµ

2
b + 4µaµbσab + 2σ2

ab)
1

qaqb

+ (−µ
4
aσ

2
ab

4σ2
aa

− µ2
aσ

2
ab

2σaa
− µ4

bσ
2
ab

4σ2
bb

− µ2
bσ

2
ab

2σbb
+

σ4
ab

σaaσbb
+ µ2

aµ
2
b + 4µaµbσab +

σ2
ab

2
)

− 9σ2
ab

4
(

1

qa
+

1

qb
)
)
;

(b) If the element corresponds to the asymptotic covariance of
√
nρ̂ab and

√
nρ̂cd with a 6∈ {c, d} and b = d, then

the element is equal to(
2qbσbbσbc(σabσ

2
acσbb − 2σaaσacσbbσbc + σaaσabσ

2
bc)

− σcc(1− qb)µ4
bσaaσabσbc

+ 2(1− qb)µ2
bσaaσbbσccσabσbc

− (1 + qb)σ
2
bbσccσaaσabσbc

+ σccσ
2
bbσaa(σabσbc − 4σacσbb)

− 4σ2
bbσacσcc(qbσ

2
ab + (qb − 1)µ2

bσaa + σbbσaa)

)
1

4qbσ3
bb

√
(σaaσcc)3

;
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(c) If the element corresponds to the asymptotic covariance of
√
nρ̂ab and

√
nρ̂cd with a, b, c, d distinct, then the

element is equal to (
σccσcd(σabσ

2
adσbb − 2σaaσadσbbσbd + σaaσabσ

2
bd)

+ σaaσbb(σadσbcσcc + σacσbdσcc − σacσbcσcc − σadσbcσcd)σdd
− 2σacσadσbb]σccσddσab

+ σ2
acσbbσcdσddσab

+ σaaσbcσddσab(σbcσcd − 2σbdσcc)

)
1

2
√

(σaaσbbσccσdd)3
.

These expressions can be used as the base case of the recursion (S.7), which allows us to indirectly find τij·K for any
i, j ∈ [p] and K ⊆ [p] \ {i, j} under the dropout model.

The dropout normalizing transform is then computed using

ζij·K(ρ̂, ν̂) := ρ̂/
√
τij·K(ν̂).

F.4 Derivation of the Dropout Normalizing Transform with Shrinkage

In this section, we derive the dropout normalizing transform when the partial correlations are estimated from the
shrinkage matrix Λ̂ for a fixed shrinkage coefficient α. The derivation closely follows Section F.3. First recall that from
Section 4

Λ̂ = (1− α)Σ̂ + αŜ

where Ŝ =
∑n
i=1X

(i)X(i)T is covariance matrix of the observations of X . Then, denoting λ̂ij = (Λ̂)ij , we can
express correlations as

ρ̂ij =
λ̂ij√

λ̂ii

√
λ̂jj

(S.26)

where the elements of Λ̂ are

λ̂ij = (1− α)
( 1

qiqj
E[η̂ij ]−

1

qi
E[η̂i]

1

qj
E[η̂j ]

)
+ α

(
E[η̂ij ]− E[η̂i]E[η̂j ]

)
,

λ̂ii = (1− α)
( 1

qi
E[η̂ii]− (

1

qi
E[η̂i])

2
)

+ α
(
E[η̂ii]− E[η̂i]

2
)
, (S.27)

λ̂jj = (1− α)
( 1

qj
E[η̂jj ]− (

1

qj
E[η̂j ])

2
)

+ α
(
E[η̂jj ]− E[η̂j ]

2
)
.

We can define the function wρ of equation (S.24) based on equations (S.26) and (S.27) and proceed as in Section F.3
to derive the corresponding elements of the asymptotic covariance matrix. The derivation of the dropout normalizing
transform with shrinkage, in addition to the result is shown in the Supplementary Mathematica notebook. Note that in
this case, the elements of the asymptotic covariance matrix of

√
nρ̂ will be functions of α.

G Experiments

We include additional simulation results for varying p ∈ {10, 30}, n ∈ {1000, 2000, 10000, 50000} and d ∈ {2, 3, 5}.
Specifically, we evaluate the estimated skeleton as well as the CPDAG in recapitulating the true DAG G using ROC
curves and SHD. For the majority of the settings, the dropout stabilizing transform outperforms the naive Gaussian
CI test applied on the corrupted data. As pointed out in Section 5.1, both dropout transforms tend to outperform the
Gaussian CI test when the number of samples is high. In plotting the ROC curve for the CPDAG for p ∈ {10, 30}, we
consider an undirected edge in the CPDAG a true positive if a directed edge exists in G in either direction, and a false
positive otherwise. We consider a directed edge in the CPDAG a true positive if a directed edge of the same direction
exists in G, and a false positive otherwise.

We also include the inferred gene regulatory network for the pancreatic type II diabetes data set, collected with inDrop
single-cell RNA-seq technology. We use the dropout stabilizing transform and Algorithm 1 to obtain causal relationships
between latent genes.
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(a) Q-Q Plot, Normalizing (b) Q-Q Plot, Normalizing (c) Q-Q Plot, Normalizing

(d) Q-Q Plot, Stabilizing (e) Q-Q Plot, Stabilizing (f) Q-Q Plot, Stabilizing

Figure S.2: Q-Q Plots for empirical distributions of the statistic computed from the dropout normalizing and dropout
stabilizing transforms under the null hypothesis

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure S.3: ROC curves for evaluating the estimated skeleton of the true DAG using dropout stabilizing transform,
dropout normalizing transform, and Gaussian CI test in simulations with p = 10 and n ∈ {1000, 2000, 10000, 50000}
and d ∈ {3, 5}.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure S.4: ROC curves for evaluating the estimated skeleton of the true DAG using dropout stabilizing transform and
Gaussian CI test in simulations with p = 30 and n ∈ {1000, 2000, 10000, 50000} and d ∈ {2, 3}.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure S.5: ROC curves for evaluating the estimated CPDAG of the true DAG using dropout stabilizing transform,
dropout normalizing transform, and Gaussian CI test in simulations with p = 10 and n ∈ {1000, 2000, 10000, 50000}
and d ∈ {3, 5}.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure S.6: ROC curves for evaluating the estimated CPDAG of the true DAG using dropout stabilizing transform and
Gaussian CI test in simulations with p = 30 and n ∈ {1000, 2000, 10000, 50000} and d ∈ {2, 3}.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure S.7: SHD for evaluating the estimated skeleton of the true DAG using dropout stabilizing transform, dropout
normalizing transform, and Gaussian CI test in simulations with p = 10 and n ∈ {1000, 2000, 10000, 50000} and
d ∈ {3, 5}.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure S.8: SHD for evaluating the estimated CPDAG of the true DAG using dropout stabilizing transform, dropout
normalizing transform, and Gaussian CI test in simulations with p = 10 and n ∈ {1000, 2000, 10000, 50000} and
d ∈ {3, 5}.

Figure S.9: Gene regulatory network inferred from the pancreas data set collected with inDrop. Dropout stabilizing
transform was used to learn the causal edges between latent error-free genes.
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