
8 Appendix: Proofs

Lemma 4. Suppose ⇤ is a deterministic uniformly least favorable distribution for composite vs. simple test (H0 vs. h1)
under M = (S,⇥,~⇡). Then for any n 2 N, ⇤ is also a uniformly least favorable distribution for testing H0 vs. h1

under M = (Sn
,⇥,~⇡) with n i.i.d. samples.

Proof: Let Spt(⇤) = {h⇤
0}. For any n 2 N and any h0 2 H0, we define a random variable Xn,h0 : Sn ! R, where

for any Pn 2 Sn, Pr(Pn) = ⇡h0(Pn) =
Q

V 2Pn
⇡h0(V ), and Xn,h0(Pn) = logRatioh

⇤
0 ,h1 . It follows that

Xn,h0 = Xh0 +Xh0 + · · ·+Xh0| {z }
n

By Lemma 3, for any h0 2 H0, Xh
⇤
0

weakly dominates Xh0 . Because first-order stochastic dominance is preserved
under convolution [Deelstra and Plantin, 2014], we have that Xn,h

⇤
0

weakly dominates Xn,h0 . The lemma follows
after applying Lemma 3. ⇤

Remarks. Lemma 4 is an extension of Theorem 2.3 by Reinhardt Reinhardt [1961] to finite models. Reinhardt’s
theorem requires that for any constant t, with measure 0 we have ⇡h

⇤
0
(P ) = t⇡h1(P ). This is an important assumption

in Reinhardt’s proof because it assumes away cases with Ratio(P ) = k↵ so that the most powerful test is deterministic.
Unfortunately, this assumption does not hold for finite models and we must deal with randomized tests.

Lemma 5 Under a Mallows’ model, for any ', any K 2 N, any a 2 A, any W 2 L(A), and any C
0
, C ✓ A such

that C dominates C 0 w.r.t. W , we have ⇡W ({P : wP (C 0 � a) � K})  ⇡W ({P : wP (C � a) � K}).

Proof: We first prove the lemma for a special case where C and C
0 differ in only one alternative, that is, |C�C

0| = 1.
Let c 2 C such that c 62 C

0. Let c0 2 C
0 such that c0 62 C. Because C dominates C 0 in W , we have c �W c

0.

Let P = {P 2 L(A) : wP (C � a) � K} and P 0 = {P 2 L(A) : wP (C 0 � a) � K}. We define the following
permutation M over L(A). For any P 2 L(A), if c �P a �P c

0 then M(P ) is the ranking that is obtained from P

by switching c and c
0; otherwise M(P ) = P . Because |C � C

0| = 1, it follows that for any P 2 P � P 0, we must
have c �P a �P c

0 and (C � C
0) �P a. Therefore, M(P � P 0) = P 0 � P .

We now prove that ⇡W (P � P 0) > ⇡W (P 0 � P). For any P 2 P � P 0, we have c �P a �P c
0, which means that

⇡W (P ) � ⇡W (M(P ))/' because c �W c
0. Therefore, ⇡W (P�P 0) > ⇡W (P 0�P) because M(P�P 0) = P 0�P .

We have ⇡W (P) = ⇡W (P \ P 0) + ⇡W (P � P 0) � ⇡W (P \ P 0) + ⇡W (P 0 � P) = ⇡W (P 0).

Therefore, the lemma holds for the case where |C � C
0| = 1. For general C and C

0, because C dominates C 0, there
exists a sequence of sets C = C0, C1, . . . , Cl = C

0 such that for all 0  i  l � 1, (i) Ci dominates Ci+1; (ii)
|Ci � Ci+1| = 1. It follows that ⇡W ({P : wP (C � a) � K}) � ⇡W ({P : wP (C1 � a) � K}) � · · · � ⇡W ({P :
wP (C 0 � a) � K}). ⇤

Theorem 2 (Characterization of all UMP non-winner tests under Mallows). Given a Mallows’ model MMa with
m � 2 and n � 2, there exists a UMP test for H0 = La�others vs. H1 for all 0 < ↵ < 1 if and only if there exists
B ✓ A such that H1 ✓ LB�a.

Moreover, when H1 ✓ LB�a, f↵,a,B defined in Theorem 1 is a UMP test.

Proof: The “if” part. We note that f↵,a,B does not depend on the orderings among alternatives in B in h1. It follows
that for all h1 2 H1, f↵,a,B is a level-↵ most powerful test for H0 vs. {h1}, which means that f↵,a,B is a UMP test.

The “only if” part. Suppose there exist B,B
0 such that B 6= B

0 and there exist two rankings h1
1 = [B � a � others]

and h
2
1 = [B0 � a � others] in H1. W.l.o.g. suppose B0�B 6= ;. Let ↵ denote the number such that K↵ = n|B|�0.5,

�↵ = 0, and let f↵,a,B denote the most powerful test for H0 vs. h1
1 guaranteed by Theorem 1. Because K↵ is not an

integer, there does not exist Pn such that wPn
(B � a) = K↵. This means that f↵,a,B is the unique most powerful

level-↵ test for H0 vs. h1
1. We observe that for any Pn, f↵,a,B(Pn) is either 0 or 1, and f↵,a,B(Pn) = 1 if and only if

a is ranked below B in all n rankings in Pn. It follows that f↵,a,B must be the unique level-↵ UMP test for H0 vs. H1.



By Theorem 1, any most powerful level-↵ test, in particular f↵,a,B , must agree with f↵,a,B0 except for the threshold
cases wPn

(B0 � a) = K
0
↵

for some K
0
↵

. Choose arbitrary b
0 2 B

0 � B and b 2 B. Let P ⇤
n

be composed of n
copies of [B � a � others] and let P 0

n
be composed of n � 1 copies of [b0 � B � a � others] and one copy

of [b0 � (B � {b}) � a � others]. Because wP⇤
n
(B � a) = n|B| > K↵, we have f↵,a,B(P ⇤

n
) = 1. This

means that the threshold K
0
↵

for f↵,a,B0 is no more than wP⇤
n
(B0 � a) = n|B \ B

0|. Because n � 2, we have
wP 0

n
(B0 � a) � n(|B \ B

0| + 1) � 1 > n|B \ B
0| = wP 0

n
(B0 � a), which means that f↵,a,B(P 0

n
) = 1. However,

wP 0
n
(B � a) = n|B|� 1 < n|B|, which is a contradiction because for any profile Pn, f↵,a,B(Pn) = 1 if and only if

B � a in all n rankings in Pn. ⇤

Theorem 4. Let MMa denote a Mallows’ model with n = 1, any m � 4, and any ' < 1/m. There exists 0 < ↵ < 1
such that no level-↵ UMP test exists for H0 = (L(A)�H1) vs. H1 = La�others.

Proof: By Lemma 10, if a UMP test exists then f̄↵,a is also a UMP test. Therefore, it suffices to prove that f̄↵,a is not
a level-↵ UMP test. To this end, we explicitly construct a test f and prove that the rankings assigned value 1 are more
cost-effective than that under f̄↵,a.

Let V1, V2, . . . , Vm, V
0
2 2 L(A) denote m + 1 rankings defined as follows. For any j  m, let Vj = [aj � others],

where alternatives in “others” are ranked w.r.t. the increasing order of their subscripts. In other words, Vj is obtained
from V1 by raising alternative aj to the top position. We let V 0

3 = [a3 � a1 � a4 � a2 � others].

We consider the following critical function f . For any V 2 La�others, we let f(V ) = 1. For any Vj with j 6= 3, let
f(Vj) = 1. We then let f(V3) = f(V 0

3) = 1+'
m

1+'
. Let ↵ denote the size of f at V2. That is, ↵ = Size(f, V2). Let

T = ⇡V2(La�others). It follows that
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Figure 1: Kentall-Tau distance for some rankings over four alternatives.

For any j, j
⇤ � 2 such that j 6= j

⇤, it is not hard to verify that KT(Vj , Vj⇤) = j + j
⇤ � 2. Moreover, KT(V3, V

0
3) = 1,

KT(V2, V
0
3) = 4, KT(V4, V

0
3) = 4, and for any j � 5, we have KT(V 0

3 , Vj) = j +2. Therefore, we have the following
calculations of Size(f, V3), Size(f, V 0

3), and Size(f, V4) (see Figure 1 for distances between V2, V3, V
0
3 , V4). We note

that T = ⇡V2(La�others) = ⇡V3(La�others) = ⇡V
0
3
(La�others) = ⇡V4(La�others) due to symmetry.

Size(f, V3)� T / '
3 + 1+'

m

1+'
(1 + ') + '

5 +
P

j=5 '
KT(V3,Vj)  1 + '

3 + (m� 3)'5

Size(f, V 0
3)� T / '

4 + 1+'
m

1+'
(1 + ') + '

4 +
P

j=5 '
KT(V 0

3 ,Vj)  1 + 2'4 + (m� 4)'6

Size(f, V4)� T / '
4 + 1+'

m

1+'
('4 + '

5) + 1 +
P

j=5 '
KT(V4,Vj)  1 + 2'4 + (m� 4)'7

For any other h0
0 2 H0, we have Size(f, h0

0)�T  m'. Because ' < 1/m, we have Size(f) = ↵. Let P denote a pro-
file that is composed of {V2, V4, . . . , Vm} [ 1+'

m

1+'
{V3, V

0
3}. We next prove that RatioV2,V1(P ) > RatioV2,V1(Tm�2).



Let Zm =
Q

m

l=1
1�'

m

1�'
denote the Mallows normalization factor for m alternatives. We have

RatioV2,V1(Tm�2) =
⇡V1(Tm�2)

⇡V2(Tm�2)

=
'Zm�1

Zm�2 + '2(Zm�1 � Zm�2)

=
'

Zm�1

Zm�2

1 + '2(Zm�1

Zm�2
� 1)

=
'+ '

2 + · · ·+ '
m�1

1 + '3 + '4 + · · ·+ 'm
<

1

'

RatioV2,V1(P ) =
'+ '

2 + · · ·+ '
m�1 + '

m+2

1 + '3 + '4 + · · ·+ 'm + 'm+3

>
'+ '

2 + · · ·+ '
m�1

1 + '3 + '4 + · · ·+ 'm

=RatioV2,V1(Tm�2)

We note that Size(f̄↵,a, V2) = ↵. This means that Power(f̄↵,a, V1) = ⇡V1(Tm�1) + ↵RatioT2,T1(Tm�2) <

⇡V1(Tm�1) + ↵RatioT2,T1(P ) = Power(f, V1). This means that f̄↵,a is a not a level-↵ UMP. The theorem follows
after Lemma 10. ⇤

Theorem 5. Let MMa denote a Mallows’ model with n = 1 and any m � 4. There exists ✏ > 0 such that for any
' > 1� ✏ and any ↵, f̄↵,a is a UMP test for H0 = (L(A)�H1) vs. H1 = La�others.

Proof: We first verify that when K↵ = m � 1, f̄↵,a is a UMP test. For any h1 2 H1, let h⇤
0 2 H0 denote the

ranking that is obtained from h1 by moving a down for one position. It is not hard to check that for any V 2 L(A),
Ratioh

⇤
0 ,h1(V )  1/', and for all V 2 H1 we have Ratioh

⇤
0 ,h1(V ) = 1/'. This means that for any level-↵ test for

H0 vs. h1, the power cannot be more than ↵/'. We note that f̄↵,a is a level-↵ test whose power is exactly ↵/'. This
means that for all h1 2 H1, f̄↵,a is a most powerful test for H0 vs. h1. Therefore, when K↵ = m� 1, f̄↵,a is a UMP
test.

For any ↵ such that K↵  m � 2, we will prove that for any h1 2 H1, f̄↵,a is a most powerful level-↵ test for H0

vs. h1. This is done in the following steps. Step 1. Find a least favorable distribution ⇤h1
↵

whose support is the set of
all rankings where a is ranked at the second position. Step 2. Verify that f̄↵,a is the likelihood ratio test w.r.t. ⇤h1

↵
, and

step 3. verify that the two conditions in Lemma 2 holds for ⇤h1
↵

.

Step 1. The main challenge is that in general there does not exist a uniformly least favorable distribution. For different
↵ we define different ⇤h1

↵
as follows. For any ↵, we let s↵ denote the smallest Borda score of the ranking V such

that f̄↵,a(V ) > 0. We have that s↵  m � 2. Let the support of ⇤h1
↵

be Tm�2, which is the set of rankings where
a is ranked at the second position. We will solve the following system of linear equations to determine ⇤h1

↵
. For any

h
⇤
0 2 Tm�2 there is a variable x[h0, s↵].

8V 2 Ts↵
,

X

h
⇤
02Tm�2

Ratio�1
h
⇤
0 ,h1

(V ) · x[h⇤
0, s↵] = m (LPh1

s↵
)

We note that as ' ! 1, Ratio�1
h
⇤
0 ,h1

(V ) =
⇡h

⇤
0
(V )

⇡h1 (V ) = '
KT(h⇤

0 ,V )�KT(h1,V ) ! 1. Because there are m variables and m

equations, as ' ! 1 the solution to LPh1
s↵

converges to ~1. Therefore, there exists ✏ > 0 such that for all ' > 1� ✏, the
linear systems {LPh1

s
: s  m � 1, h1 2 H1} all have strictly positive solutions. Let {x⇤[h⇤

0, s↵]|V 2 Ts↵
} denote a

solution to LPh1
s↵

. For any h
⇤
0 2 Tm�2, we let ⇤h1

↵
(h⇤

0) =
x
⇤[h⇤

0 ,s↵]P
h02Tm�2

x⇤[h0,s↵] .

Step 2. To simplify notation we let LR↵ = LR
↵,⇤

h1
↵ ,h1

denote the likelihood ratio test and let Ratio = Ratio
⇤

h1
↵ ,h1

denote the likelihood ratio function w.r.t. distribution ⇤h1
↵

for H0 vs. h1. To prove LR↵ = f̄↵,a, we first prove that
for any V 2 L(A) where a is not ranked at the bottom position, Ratio(V ) > Ratio(Down1

a
(V )), where we recall that



Down1
a
(V ) is the ranking obtained from V by moving a down for one position.

P
h
⇤
02Tm�2

⇤h1
↵
(h⇤

0) · ⇡h
⇤
0
(Down1

a
(V ))

P
h
⇤
02Tm�2

⇤h1
↵ (h⇤

0) · ⇡h
⇤
0
(V )

=

P
h
⇤
02Tm�2

⇤h1
↵
(h⇤

0) · 'KT(h⇤
0 ,Down1

a
(V ))

P
h
⇤
02Tm�2

⇤h1
↵ (h⇤

0) · 'KT(h⇤
0 ,V )

>

P
h
⇤
02Tm�2

⇤h1
↵
(h⇤

0) · 'KT(h⇤
0 ,V ) · 'KT(V,Down1

a
(V ))

P
h
⇤
02Tm�2

⇤h1
↵ (h⇤

0) · 'KT(h⇤
0 ,V )

=' =
⇡h1(Down1

a
(V ))

⇡h1(V )

The strict inequality holds because of (1) triangle inequality for Kentall-Tau distance, and (2) for any ranking
V where the top-ranked alternative in h

⇤
0 is ranked right below a, we have KT(h⇤

0, V ) + KT(V,Down1
a
(V )) >

KT(h⇤
0,Down1

a
(V )), and (3) for all h⇤

0 2 Tm�2, ⇤h1
↵
(h⇤

0) > 0.

It follows from the strict inequality that

Ratio(V ) =
⇡h1(V )

P
h
⇤
02Tm�2

⇤h1
↵ (h⇤

0) · ⇡h
⇤
0
(V )

>
⇡h1(Down1

a
(V ))

P
h
⇤
02Tm�2

⇤h1
↵ (h⇤

0) · ⇡h
⇤
0
(Down1

a
(V ))

=Ratio(Down1
a
(V ))

Moreover, for any V, V
0 2 Ts↵

we have Ratio(V ) = Ratio(V 0) by verifying LPh1
s↵

. Therefore, for any V 2 Ti with
i < s↵, we can move up the position of a one by one until we reach the (m � s↵)-th position. Let V ⇤ 2 Ts↵

denote this ranking. It follows that Ratio(V ) < Ratio(V ⇤). Similarly for any V
0 2 Ti with i > s↵ we have

Ratio(V 0) > Ratio(V ⇤) for any V
⇤ 2 Ts↵

. This means that for any V where a is ranked above the (m � s↵)-th
position, we have LR↵(V ) = 1; for any V where a is ranked below the (m� s↵)-th position, we have LR↵(V ) = 0;
for any V where a is ranked at the (m� s↵)-th position, we have that LR↵(V ) is the same and is between 0 and 1. It
follows that LR↵ = f̄↵,a.

Step 3. Due to the symmetry f↵,a among alternatives in A � {a}, for any i  m � 2 and any h0, h
0
0 2 Ti, we have

Size(f̄↵,a, h0) = Size(f̄↵,a, h0
0). Therefore, condition (i) in Lemma 2 is satisfied. Choose arbitrary h

m�2
0 2 Tm�2.

For any i  m� 3, let hi

0 2 Ti denote the ranking obtained from h
i+1
0 by moving a down for one position. To verify

condition (ii) in Lemma 2, it suffices to prove that for any i  m� 3 and any K 2 N, we have

⇡
h
m�2
0

({V : Bordaa(V ) � K})
� ⇡h

i

0
({V : Bordaa(V ) � K}) (2)

We will prove a slightly stronger lemma.

Lemma 8 Under Mallows’ model, for any m, any ', any W 2 L(A), any b, c 2 A such that b �W c, and any K, we
have ⇡W ({V : Bordab(V ) � K}) � ⇡W ({V : Bordac(V ) � K}).

Proof: The proof is similar to the proof of Lemma 5. It suffices to prove the lemma for the case where b and c are
adjacent in W . Let P = {V 2 L(A) : Bordab(V ) � K} and P 0 = {V 2 L(A) : Bordac(V ) � K}. It follows
that P \ P 0 is the set of rankings where both b and c are ranked within top m � K positions; P � P 0 is the set of
rankings where b is ranked within top m�K positions but c is not; and P 0�P is the set of rankings where c is ranked
within top m�K positions but b is not. We let M be a permutation that switches b and c. It is not hard to check that
M is a bijection between (P � P 0) and (P 0 � P), and because b and c are adjacent in W , for any V 2 P , we have
KT(M(V ),W ) = KT(V,W ) + 1, which means that ⇡W (V ) = ⇡(M(V ))/'. Therefore, we have



⇡W ({V : Bordab(V ) � K})� ⇡W ({V : Bordac(V ) � K})
=⇡W (P)� ⇡W (P 0) = ⇡W (P � P 0)� ⇡W (P 0 � P)

=⇡W (P � P 0)� ⇡W (M(P � P 0))

=(
1

'
� 1)⇡W (P � P 0) � 0

This proves the lemma. ⇤
Let W be an arbitrary ranking and let Mi denote a permutation such that Mi(hi

0) = W . We have ⇡h
i

0
({V :

Bordaa(V ) � K}) = ⇡Mi(hi

0)
({V : BordaMi(a)(V ) � K}). We note that Mi(a) is the alternative that is ranked

at the (m � i)-th position in W . Inequality (2) follows after applying Lemma 8. This means that condition (ii) in
Lemma 2 is also satisfied. Therefore, by Lemma 2, f̄↵,a is a level-↵ most powerful test for H0 vs. h1. Since f̄↵,a does
not depend on h1, it is a level-↵ UMP test for H0 vs. H1. ⇤

Lemma 6. For any MX and MY , suppose ⇤X is a least favorable distribution for composite vs. simple test (H0,X

vs. x1) under MX . Given y1 2 ⇥Y , let ⇤⇤ be the distribution over H0,X ⇥⇥Y where for all x 2 H0,X , ⇤⇤(x, y1) =
⇤X(x). Then ⇤⇤ is a least favorable distribution for H0,X ⇥⇥Y vs. (x1, y1) under MX ⌦MY .

Proof: Let x1
0, . . . , x

K

0 2 ⇥X denote the support of ⇤X . The theorem is proved by applying Lemma 2. For any
0 < ↵ < 1 and any P = (PX , PY ) 2 SX ⇥ SY , we have the following calculation. In this proof Ratio stands for
Ratio⇤⇤,(x1,y1) and LR↵ stands for LR↵,⇤⇤,(x1,y1).

Ratio(PX , PY ) =
⇡x1,y1(P )

P
K

k=1 ⇤
⇤(xk

0 , y1)⇡(xk

0 ,y1)(P )

=
⇡x1(PX) · ⇡y1(PY )P

K

k=1 ⇤
⇤(xk

0 , y1)⇡x
k

0
(PX) · ⇡y1(PY )

=
⇡x1(PX)

P
K

k=1 ⇤(x
k

0)⇡
k
x0
(PX)

= Ratio⇤,x1(PX)

It follows that for any pair of samples (PX , PY ), (P 0
X
, P

0
Y
) 2 SX ⇥SY , Ratio(PX , PY ) � Ratio(P 0

X
, P

0
Y
) if and only

if Ratio⇤,x(PX) � Ratio⇤,x(P 0
X
). This means that for any (PX , PY ), LR↵(PX , PY ) = LR↵,⇤,x1(PX). Therefore,

for any x0 2 H0,X , we have

Size(LR↵, (x0, y1))

=
X

(PX ,PY )2SX⇥SY

⇡x0(PX)⇡y1(PY )LR↵(PX , PY )

=
X

(PX ,PY )2SX⇥SY

⇡x0(PX)⇡y1(PY )LR↵,⇤,x1(PX)

=
X

PX2SX

⇡x0(PX)LR↵,⇤,x1(PX)

=Size(LR↵,⇤,x1 , x0)

Therefore, by Lemma 2, for any (x⇤
0, y1) 2 Spt(⇤⇤), we have Size(LR↵, (x0, y1)) = Size(LR↵,⇤,x1 , x0) = ↵ because

x
⇤
0 2 Spt(⇤); for any (x0, y) 2 H0,X ⇥⇥Y , we have Size(LR↵, (x0, y)) = Size(LR↵,⇤,x1 , x0)  ↵. This means that

the two conditions in Lemma 2 are satisfies, which proves the theorem. ⇤

Lemma 7. For any model MX and any t 2 N, suppose ⇤ is a uniformly least favorable distribution for composite
vs. simple test (H0 vs. h1) under MX . Then Ext(⇤, h1, t) is a uniformly least favorable distribution for Ext(H0, h1, t)

vs. ~h1 in (MX)t.



Proof: Again the proof is done by applying Lemma 2. We first prove a claim that characterizes samples whose
likelihood ratio is no more than a given threshold. To this end, it is convenient to use the inverse of the likelihood
ratio. To simplify notation, in this proof we let ⇤⇤ = Ext(⇤, h1, t), let H⇤

0 = Ext(H0, h1, t), let LR↵ = LR
↵,⇤⇤,~h1

,
Ratio = Ratio⇤⇤,~h1

.

Claim 1 For any k↵ and any ~x 2 St,
P

t

j=1 Ratio�1
⇤,h1

(xj) = t · Ratio�1(~x).

Proof: we have Ratio�1(~x) = 1
t
·
P

t

j=1

P
h02H0

⇤(h0)·⇡(h0,[~h1]�j)
(~x)

⇡~h1
(~x)

= 1
t
·
P

t

j=1

P
h02H0

⇤(h0)·⇡h0 (xj)·⇡[~h1]�j
(xj)

⇡h1 (xj)·⇡[~h1]�j
(xj)

= 1
t

P
t

j=1 Ratio�1
⇤,h1

(xj) ⇤
The next lemma proves the following: For any ~z 2 H

⇤
0 and any j  t, suppose the j-th component is not in Spt(⇤) [

{h1}. If we fix all components except j-th in ~z and change the j-th component to h
⇤
0 2 Spt(⇤), then the size of LR↵

will increase. If we further change the j-th component to h1, then the size of LR↵ will further increase.

Lemma 9 For any 0  ↵  1, any j  t, any ~z�j 2 ⇥t�1, any h0 2 H0, and any h
⇤
0 2 Spt(⇤), we have

Size(LR↵, (h0, ~z�j))  Size(LR↵, (h⇤
0, ~z�j))  Size(LR↵, (h1, ~z�j)).

Proof: For any ~z�j 2 ⇥n�1, we have

Size(LR↵, (h0, ~z�j)) = ⇡(h0,~z�j)({~x 2 St : Ratio(~x) > k
⇤
↵
})

+ �
⇤
↵
⇡(h0,~z�j)({~x 2 St : Ratio(~x) = k

⇤
↵
})

For any ~x, we let Sum(~x) =
P

t

l=1 Ratio�1
⇤,h1

(xl) and for any j  t, we let Sum(~x�j) =
P

l 6=j
Ratio�1

⇤,h1
(xl). By

Claim 1, we have

⇡(h0,~z�j)({~x 2 St : Ratio(~x) > k
⇤
↵
})

=⇡(h0,~z�j)({~x 2 St : Sum(~x) < t/k
⇤
↵
})

=⇡(h0,~z�j)({~x 2 St : Sum(~x�j) + Ratio�1
⇤,h1

(xj) < t/k
⇤
↵
})

=

Z
t/k

⇤
↵

0

X
~x�j2St�1:Sum(~x�j)=p

X
xj :Ratio�1

⇤,h1
(xj)<t/k⇤

↵
�p

⇡(h0,~z�j)(~x)dp

=

Z
t/k

⇤
↵

0
⇡~z�j

({~x�j 2 St�1 : Sum(~x�j) = p})

· ⇡h0({xj : Ratio�1
⇤,h1

(xj) < t/k
⇤
↵
� p})dp

=

Z
t/k

⇤
↵

0
Q(~z�j , p) · ⇡h0({xj : Ratio�1

⇤,h1
(xj) < t/k

⇤
↵
� p})dp

where Q(~z�j , p) = ⇡~z�j
({~x�j 2 St�1 : Sum(~x�j) = p}). Given p and �

⇤
↵

, let ↵0 denote the size of the likelihood
ratio test LR↵0,⇤,h1 , where the threshold k↵0 is 1/(t/k⇤

↵
� p) and �↵0 = �

⇤
↵

. We have

Size(LR↵, (h0, ~z�j)) =

Z
t/k

⇤
↵

0
Q(~z�j , p) · Size(LR↵0,⇤,h1 , h0)dp (3)

We note that in Equation (3), ↵0 is a function of t, p, k⇤
↵

, and �
⇤
↵

. Because ⇤ is a uniformly least favorable distribution,
it follows from Lemma 2 that for any h

⇤
0 2 Spt(⇤) and any h0 2 (H0 � Spt(⇤)), we have

Size(LR↵0,⇤,h1 , h0)  ↵
0  Size(LR↵0,⇤,h1 , h

⇤
0)



Then by Equation (3), for any h0 2 (H0 � Spt(⇤)) and any h
⇤
0 2 Spt(⇤), we have

Size(LR↵, (h0, ~z�j))

=

Z
t/k

⇤
↵

0
Q(~z�j , p) · Size(LR↵0,⇤,h1 , h0)dp


Z

t/k
⇤
↵

0
Q(~z�j , p) · Size(LR↵0,⇤,h1 , h

⇤
0)dp

=Size(LR↵, (h
⇤
0, ~z�j))

To prove the last inequality in the lemma, we prove a claim that holds for any least favorable distribution and the
corresponding likelihood ratio test. The Size(·) function in the claim is extended to h1 2 H1 in the natural way.

Claim 2 For any model, any composite vs. simple test (H0 vs. h1), suppose ⇤ is a level-⌘ least favorable distribution.
Then we have Size(LR⌘, h1) � ⌘ = Size(LR⌘, h

⇤
0 ). 4

Proof: For the sake of contradiction suppose this is not true, that is, for any h
⇤
0 2 Spt(⇤) we have Size(LR⌘, h1) <

⌘ = Size(LR⌘, h
⇤
0). It follows that k⌘  1, otherwise we have

Size(LR⌘, h1)

=
X

P2S:Ratio(P )>k⌘

⇡h1(P ) + �⌘

X

P2S:Ratio(P )=k⌘

⇡h1(P )

�
X

P2S:Ratio(P )>k⌘

⇡⇤(P ) · k⌘ + �⌘

X

P2S:Ratio(P )=k⌘

⇡⇤(P ) · k⌘

>

X

P2S:Ratio(P )>k⌘

⇡⇤(P ) + �⌘

X

P2S:Ratio(P )=k⌘

⇡⇤(P ) = ⌘,

which is a contradiction. Therefore, we have

1

=Size(LR⌘, h1) +
X

P2S:Ratio(P )<k⌘

⇡h1(P )

+ (1� �⌘)
X

P2S:Ratio(P )=k⌘

⇡h1(P )

<⌘ +
X

P2S:Ratio(P )<k⌘

⇡⇤(P ) · k⌘

+ (1� �⌘)
X

P2S:Ratio(P )=k⌘

⇡⇤(P ) · k⌘

⌘ + k⌘(1� Size(LR⌘, h
⇤
0 ))  1,

which is a contradiction. ⇤
Applying Claim 2 to LR↵0,⇤,h1 , we have

Size(LR↵, (h
⇤
0, ~z�j))

=

Z
t/k

⇤
↵

0
Q(~z�j , p) · Size(LR↵0,⇤,h1 , h

⇤
0)dp


Z

t/k
⇤
↵

0
Q(~z�j , p) · Size(LR↵0,⇤,h1 , h1)dp

=Size(LR↵, (h1, ~z�j))

4We recall that h⇤
0 is the combined H0 by ⇤.



This finishes the proof of Lemma 9. ⇤
It follows from Lemma 9 that for any j  t and any h

⇤
0 2 Spt(⇤), we have that Size(LR↵, (h⇤

0, [~h1]�j)) is the same.
Due to symmetry, for any ~h⇤

0 2 H
⇤
0 , Size(LR↵, h

⇤
0) is the same and is therefore equivalent to ↵. This verifies condition

(i) in Lemma 2.

Condition (ii) in Lemma 2 is verified by recursively applying Lemma 9. Given any ~h0 2 H
⇤
0 � Spt(⇤⇤), there must

exist j  t such that [~h0]j 6= h1. We then change [~h0]j to an arbitrary h
⇤
0 2 Spt(⇤), then change the other components

of ~h0 to h1 one by one. Each time we make the change the size of LR↵ does not decrease according to Lemma 9.
At the end of the process we obtain (h⇤

0, [~h1]j) 2 Spt(⇤⇤), at which the size of LR↵ is ↵. The theorem follows after
applying Lemma 2. ⇤
We now define a test f̄↵,a for H0 = (L(A) �H1) vs. H1 = La�others and prove that if a UMP test exists, then f̄↵,a

must also be a UMP test. For any V 2 L(A) and any alternative a 2 A, we let Bordaa(V ) denote the Borda score
of a in V . That is, Bordaa(V ) is the number of alternatives that are ranked below a in V . For any V 2 L(A), we let

f̄↵,a(V ) =

8
<

:

1 if Bordaa(V ) > K↵

0 if Bordaa(V ) < K↵

�↵ if Bordaa(V ) = K↵

, where K↵ and �↵ are chosen so that the size of f̄↵,a is ↵. In other words,

f̄↵,a calculates the Borda score of a in the input profile, and if it is larger than a threshold K↵ then H0 is rejected. It
is not hard to see that f̄↵,a equals to f↵0,a with a possibly different level ↵0 (defined in Theorem 3).

Lemma 10 If there exists a level-↵ UMP test for H0 = (L(A)�H1) vs. H1 = La�others, then f̄↵,a is also a level-↵
UMP test.

Proof: Let f↵ denote a level-↵ UMP test. For any permutation M over A� {a}, we let M(f↵) denote the test such
that for any V 2 L(A), M(f↵)(V ) = f↵(M(V )). Because the Kendall-Tau distance is invariant to permutations,
we have that for any h0 2 H0, Size(f↵, h0) = Size(M(f↵),M(h0)), and for any h1 2 H1, Power(f↵, h1) =
Power(M(f↵),M(h1)). Therefore Size(M(f↵)) = ↵. Also because the multi-set of {Power(f↵, h1) : h1 2 H1}
is the same as the multi-set {Power(M(f↵), h1) : h1 2 H1}, for all h1 2 H1, we must have Power(f↵, h1) =
Power(M(f↵), h1), otherwise there exists h1 2 H1 such that Power(f↵, h1) < Power(M(f↵), h1), which contradicts
the assumption that f↵ is UMP.

It follows that for any permutation M over A�{a}, M(f↵) is also UMP. Therefore, f̄↵ = 1
(m�1)!

P
M

M(f↵) is also
UMP. We note that for any V, V

0 where a has the same Borda score, there exists a permutation M over A � {a} so
that M(V ) = V

0. This means that f̄↵(V ) = f̄↵(V 0).

We now prove that f̄↵ must be f̄↵,a as in the statement of the Lemma. More precisely, we will prove that for any V, V
0

such that Bordaa(V ) > Bordaa(V 0), if f̄↵(V 0) > 0 then f̄↵(V ) = 1. Suppose for the sake of contradiction that this
is not true, and there exist V, V 0 such that s1 = Bordaa(V ) > Bordaa(V 0) = s2, f̄↵(V 0) > 0, and f̄↵(V ) < 1. For
any s  m � 1, we let Ts denote the set of rankings where the Borda score of a is s. That is, Ts = {V 2 L(A) :
Bordaa(V ) = s}. We will prove that for any s1 > s2, Ts1 as a whole is more “cost effective” than Ts2 as a whole for
any h0 2 H0 against any h1 2 H1. More precisely, we will prove that Ratioh0,h1(Ts1) > Ratioh0,h1(Ts2).

For any s  m� 2 and any h0 2 Ts, let h1 denote the ranking in Tm�1 = H1 that is obtained from ✓ by raising a to
the top position. For any Vs1 2 Ts1 , we let Downs1�s2

a
(Vs1) 2 Ts2 denote the ranking that is obtained from Vs1 by



moving a down for s1 � s2 positions, that is, from the (m� s1)-th position to the (m� s2)-th position. We have

⇡h0(Ts2)

⇡h0(Ts1)

=

P
V 2Ts2

⇡h0(V )
P

V 2Ts1
⇡h0(V )

=

P
V 2Ts1

⇡h0(Downs1�s2
a

(V ))
P

V 2Ts1
⇡h0(V )

=

P
V 2Ts1

'
KT(h0,Downs1�s2

a
(V ))

P
V 2Ts1

'KT(h0,V )

>

P
V 2Ts1

'
KT(h0,V ) · 'KT(V,Downs1�s2

a
(V ))

P
V 2Ts1

'KT(h0,V )

='
s1�s2 =

⇡h1(Ts2)

⇡h1(Ts1)

The inequality is due to triangle inequality for Kendall-Tau distance. It is strict because for any V 2 Ts1 where the
top-ranked alternative in h0 is ranked between the (m� s1)-th and (m� s2)-th position, KT(h0,Downs1�s2

a
(V )) <

KT(h0, V ) + KT(V,Downs1�s2
a

(V )). Therefore, ⇡h0 (Ts2 )
⇡h0 (Ts1 )

>
⇡h1 (Ts2 )
⇡h1 (Ts1 )

, which means that Ratioh0,h1(Ts1) =
⇡h1 (Ts1 )
⇡h0 (Ts1 )

>
⇡h1 (Ts2 )
⇡h0 (Ts2 )

= Ratioh0,h1(Ts2).

Therefore, we can find sufficiently small ✏, � > 0, and replace ✏Ts2 by �Ts1 without changing the size. This will
increase the power of f̄↵ because Ts1 is strictly more cost effective than Ts2 , which contradicts the assumption that f̄↵
is a UMP test. Therefore, f̄↵ = f̄↵,a, which proves the lemma. ⇤


