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Abstract

We prove performance guarantees of two
algorithms for approximating Q? in batch
reinforcement learning. Compared to classical
iterative methods such as Fitted Q-Iteration—
whose performance loss incurs quadratic de-
pendence on horizon—these methods estimate
(some forms of) the Bellman error and enjoy
linear-in-horizon error propagation, a property
established for the first time for algorithms that
rely solely on batch data and output stationary
policies. One of the algorithms uses a novel
and explicit importance-weighting correction
to overcome the infamous “double sampling”
difficulty in Bellman error estimation, and
does not use any squared losses. Our analyses
reveal its distinct characteristics and potential
advantages compared to classical algorithms.

1 INTRODUCTION

We study value-function approximation for batch-mode
reinforcement learning (RL), which is central to the
success of modern RL as many popular off-policy deep
RL algorithms find their prototypes in this literature.
These algorithms are typically iterative, that is, they
solve a series of optimization problems, aiming to mimic
each step of value- or policy-iteration [Puterman, 2014].

In the setting of general function approximation, how-
ever, not only the iterative style causes instability in
practice, but it also brings several theoretical issues,
which have been made abundantly clear in existing
analyses [e.g., Munos, 2003, 2007; Antos et al., 2008;
Farahmand et al., 2010; Chen and Jiang, 2019]:

(A) Quadratic Dependence on Horizon The perfor-
mance loss of most iterative methods incur quadratic
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dependence on the effective horizon, i.e.,O( 1
(1−γ)2 ), and

this is tight for the popular Approximate Value/Policy
Iteration (AVI/API) [Scherrer and Lesner, 2012]. One
typical way this occurs in AVI analyses is through the
use of (some fine-grained variants of) the following result
from Singh and Yee [1994], that the performance loss of
a policy greedy w.r.t. some Q is bounded by

2‖Q−Q?‖∞
1− γ

, (1)

and translating ‖Q − Q?‖ to the quantities that the
algorithm actually optimizes incurs at least another
factor of horizon. Such a quadratic dependence is
significantly worse than the ideal linear dependence, the
best one could hope for [Scherrer, 2014].

While linear-in-horizon algorithms exist, they often
require interactive access to the environment (to collect
new data using policies of the algorithm’s choice), or
the knowledge of transition probabilities to compute the
true expectation in the Bellman operators,1 and few of
them apply to the batch learning setting.2 Are there
batch algorithms for Q? that incur linear-in-horizon
dependence?

(B) Characterization of Distribution Shift One of
the central challenges in RL is the distribution shift,
that the computed policy may induce a state (and
action) distribution different from what it is trained
on. Existing analyses characterize this effect using the
concentrability coefficients [Munos, 2007], with a typical
definition being the density ratio (or importance weights)
between the state distribution induced at a particular
time step by some non-stationary policy and the data
distribution. These “per-step” definitions can be very

1At the minimum, two i.i.d. next-states must be drawn
from the same state-action pair, known as the double sampling
trick [Baird, 1995], which is unrealistic in non-simulator
problems.

2Exceptions exist when we are allowed to output complex
non-stationary policies; see Section 3 for details.
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loose even in the uncontrolled setting (Section 5.2) and
sometimes very complicated [Farahmand et al., 2010].
Are there algorithms whose distribution shift effects are
characterized by elegantly and tightly defined quantities?

(C) Function Approximation Assumptions Existing
analyses require strong expressivity assumptions on the
function classes, such as approximate closedness under
Bellman update [see inherent Bellman errors; Munos and
Szepesvári, 2008]. Are there algorithms with provable
guarantees under somewhat weaker conditions?

(D) Squared-to-Average Conversion Most batch RL
algorithms heavily rely on the squared loss, but bounding
the performance loss (which we eventually care about)
with squared-loss objectives (which we optimize) often
goes through multiple relaxations, including adding
point-wise absolute values and communicating between
`1 and `2 norms with Jensen’s inequality, reflecting a
significant gap between the actual objective (maximizing
return) and the surrogate squared loss. Moreover, we
know such indirectness is not necessary in RL from
the policy-gradient type algorithms [Sutton et al., 2000;
Williams, 1992; Kakade and Langford, 2002], but they
cannot be applied in batch mode due to on-policy roll-
outs. Are there batch algorithms whose loss functions
are more directly connected to the expected return?

In this paper we present novel analyses of two al-
gorithms, MSBO (which has been analyzed by Chen
and Jiang [2019]) and MABO (which is novel), and
provide positive answers to all questions above. A
simple telescoping argument (Section 4) shows that both
algorithms enjoy linear-in-horizon error propagation—
which immediately improves the previous bound of Chen
and Jiang [2019] for MSBO—and the distribution shift
effects can be characterized by simple notions of con-
centrability coefficients that are significantly tighter than
previous per-step definitions, which address (A) and
(B). By carefully examining the difference between
the two algorithms, we further show that MABO, a
novel algorithm that uses explicit importance-weighting
correction and plain average objectives (without squared
loss) does not suffer from the looseness of squared-
to-average conversion, and comes with automatically
augmented expressivity for its importance-weight class,
addressing (C) and (D).

2 PRELIMINARIES

2.1 MARKOV DECISION PROCESSES (MDPS)

An (infinite-horizon discounted) MDP [Puterman, 2014]
is a tuple (S, A, P , R, γ, d0): S and A are the finite
state and the finite action spaces, respectively, whose

cardinalities can be arbitrarily large. P : S × A →
∆(S) is the transition function (we use ∆(·) to denote
the probability simplex), R : S × A → [0, Rmax]
is the reward function, and γ ∈ [0, 1) is a parameter
that characterizes how rewards are discounted over time.
d0 ∈ ∆(S) is the initial state distribution.

A (stochastic) policy, π : S → ∆(A), induces a random
trajectory s0, a0, r0, s1, a1, r1, . . . with the following
generative process: s0 ∼ d0, at ∼ π(·|st), rt =
R(st, at), st+1 ∼ P (·|st, at), ∀t ≥ 0. The ultimate
goodness of a policy is measured by the expected
discounted return (w.r.t. the initial state distribution),
defined as J(π) := E[

∑∞
t=0 γ

trt|s0 ∼ d0, π]. There
always exists a policy π? that maximizes the expected
return for any initial state distribution.

It will be useful to define the (state-)value function
V π(s) := E[

∑∞
t=0 γ

trt|s0 = s, π] and the Q-function
Qπ(s, a) := E[

∑∞
t=0 γ

trt|s0 = s, a0 = a, π]. Let
V ? and Q? be the shorthand for V π

?

and Qπ
?

. All
value functions are bounded in [0, Vmax], where Vmax :=
Rmax/(1 − γ). It is also known that the greedy policy
of Q?, defined as πQ?(s) = argmaxa∈AQ

?(s, a),3 is an
optimal policy π?.

Define the Bellman optimality operator: (T Q)(s, a) :=
R(s, a) + γEs′∼P (·|s,a)[maxa′∈AQ(s′, a′)] for any Q ∈
RS×A. Q? is the unique fixed point of T , that is,
T Q? = Q?. We also use Q(s, π) as the shorthand
for
∑
a∈A π(a|s)Q(s, a). Another concept crucial to

this paper is the normalized discounted state occupancy:
dπ(s) := (1 − γ)

∑∞
t=0 γ

t Pr [st = s|s0 ∼ d0, π] . The
state-action occupancy dπ(s, a) is defined similarly and
satisfies dπ(s, a) = dπ(s)π(a|s).

2.2 BATCH VALUE-FUNCTION APPROXIMATION

Setup We are concerned with approximating Q? in the
batch RL setting, where a dataset D consisting of n
(s, a, r, s′) tuples is given, and we cannot interact with
the MDP to obtain new data. We adopt the following
data generation protocol from Chen and Jiang [2019],
that the tuples are i.i.d.4 as (s, a) ∼ µ, r = R(s, a),
s′ ∼ P (·|s, a), and µ is fully supported on S ×A.

Function Approximation We assume access to a func-
tion class Q ⊂ [0, Vmax]S×A, and focus on algorithms
that approximate Q? with some Q ∈ Q and output

3With a slight abuse of notations we treat deterministic
policies—which are stochastic policies that put all probability
mass on a single action for each state—as of type S → A.

4In reality, the transition tuples extracted from the same
trajectory are in general dependent, which can be handled by
concentration inequalities for dependent processes with mixing
assumptions [see e.g., Antos et al., 2008].



Table 1: Algorithms considered in this paper, all of which require Q? ∈ Q (definitions of approximation error differ).
Q, F andW are defined in Section 2.2, Section 5 and Section 6. The concentrability coefficient of FQI can be found at
Eq.(5), and its details are in Appendix B. Those of MSBO and MABO are in Theorem 5 and Theorem 8, respectively.

Algorithm Style Requirement on
helper class

Horizon
dependence

Concentrability
coefficient

Related
practical algorithm

FQI Iterative + Sq-loss ∀Q ∈ Q, T Q ∈ Q 1/(1−γ)2 Per-step-based
DQN

[Mnih et al., 2015]

MSBO Minimax + Sq-loss ∀Q ∈ Q, T Q ∈ F 1/(1−γ) Occupancy-based
SBEED

[Dai et al., 2018]

MABO Minimax + Avg-loss
∀Q ∈ Q,

wdπQ/µ ∈ sp(W)
1/(1−γ) W-based

Kernel-loss
[Feng et al., 2019]

its greedy policy πQ. This automatically implies a
policy class ΠQ := {πQ : Q ∈ Q}, from which the
output policy will be chosen. Some algorithms require
additional function classes, which we introduce later. We
assume all function classes have finite cardinalities for
simplicity when analyzing statistical errors, as they are
not our main focus and extension to continuous classes
with e.g., finite VC-type dimensions [Natarajan, 1989]
are standard.

A representative algorithm for this setting is Fitted
Q-Iteration (FQI) [Ernst et al., 2005], which can be
viewed as the theoretical prototype of the popular DQN
algorithm [Mnih et al., 2015]: After initializing Q0 ∈ Q
arbitrarily, we iteratively compute Qt as

Qt = argmin
Q∈Q

`D(Q;Qt−1), (2)

where `D(Q;Q′) :=

1

n

∑
(s,a,r,s′)∈D

(
Q(s, a)− r − γ max

a′∈A
Q′(s′, a′)

)2

.(3)

We will discuss the relationship between FQI (and
iterative methods in general) and algorithms we analyze.

Marginalized Importance Weights We define the
importance weight of any policy π to be the ratio between
its normalized discounted state-action occupancy and the
data distribution: wdπ/µ(s, a) := dπ(s,a)

µ(s,a) . Such functions
are of vital importance to us, as in Section 6 we model
them with function approximation to explicitly correct
distribution mismatch. Their norms also characterize
the exploratoriness of the data distribution, which are
closely related to the concentrability coefficients in prior
analyses [Munos, 2007; Antos et al., 2008; Farahmand
et al., 2010; Chen and Jiang, 2019].

Additional Notations We use the shorthand Eµ[·] for
the population expectation of function of (s, a, r, s′)
drawn from the data distribution, and ED[·] for its
sample-based approximation. When the function

only depends on (s, a), we further omit the func-
tion arguments for brevity; for example, Eµ[Q2] :=
E(s,a)∼µ[Q(s, a)2]. It will also be convenient to define
the µ-weighted 2-norm ‖ · ‖22,µ := Eµ[(·)2].

3 RELATED WORK

Linear-in-horizon Analyses As mentioned in the in-
troduction, most of the existing linear-in-horizon results
do not apply to the setting of batch learning with
general function approximation. For example, Munos
[2007, Section 5.2] points out that AVI enjoys linear-
in-horizon error propagation if it happens to converge.5

Unfortunately, AVI—and iterative methods in general—
has no convergence guarantees (and known to diverge
with simple linear classes) unless used with very re-
stricted choices of function approximators [see e.g.,
averagers; Gordon, 1995]. As another example, linear-
in-horizon error can be achieved if one can directly
minimize the Bellman error [e.g., Geist et al., 2017],
but computing that requires knowledge of the transition
probabilities. We refer the readers to Scherrer [2014] and
the references therein for further results of this kind.

The only exceptions we are aware of are the non-
stationary versions of AVI/API [e.g., Scherrer and
Lesner, 2012], when the algorithm is allowed to output a
periodic non-stationary policies consisting of Ω(1/(1−γ))
stationary policies. For a typical value of γ = 0.99 this
translates to 100 policies, and we believe such a com-
plexity is responsible for the clever idea not being picked
up in practice despite its appealing theoretical properties.
In contrast, we establish linear-in-horizon guarantees for
batch algorithms that output simple stationary policies.

Clean and Tight Concentrability Coefficients The

5Our paper provides a novel explanation of this result: when
FQI (which is a concrete instantiation of the abstract AVI
procedure) happens to converge, Chen and Jiang [2019] shows
that its solution coincides with that of MSBO, which we show
enjoys linear-in-horizon error propagation whatsoever.



situation of concentrability coefficients is very similar.
The best definition is ‖wdπ?/µ‖∞, enjoyed by e.g.,
CPI [Kakade and Langford, 2002] (see also Agarwal
et al. [2019]). However, concrete instantiations of these
abstract algorithms (in a way that preserve their the-
oretical properties) typically require on-policy Monte-
Carlo roll-outs, which are not available in the batch
setting. The same constant has been associated with
an abstract Bellman error minimization procedure [Geist
et al., 2017], but the algorithm only searches over valid
value-functions (instead of arbitrary functions produced
by the function approximator). While our definition is
worse than theirs by a maximum over policies under
consideration, it is still significantly tighter and cleaner
than the per-step definitions in most previous analyses of
AVI/API [Szepesvári and Munos, 2005; Munos, 2007;
Antos et al., 2008; Farahmand et al., 2010]. In fact, we
show in Appendix B that even in a simple uncontrolled
setting, our occupancy-based definition can be 1/(1−γ)

multiplicatively tighter than any per-step definitions.

MSBO The first algorithm we analyze, MSBO, is
essentially the analogy of Modified BRM [Antos et al.,
2008] (which approximates Qπ) in the context of
approximating Q?. To our knowledge, the algorithm
is first analyzed by Chen and Jiang [2019], and we
improve their loss bound by 1/(1−γ) (which translates to
1/(1−γ)2 improvement in sample complexity). It is also
worth pointing out that Dai et al. [2018] has derived a
closely related algorithm and demonstrated its empirical
effectiveness with deep neural nets.

MABO Our second algorithm, MABO, is presented
and described in such a general form for the first time.
That said, the algorithmic idea can be found in several
recent works: Just as MSBO is the Q?-counterpart of
Modified BRM, MABO is the Q?-counterpart of the
MQL algorithm for off-policy evaluation [Uehara et al.,
2019]. Another closely related work is kernel loss [Feng
et al., 2019], which becomes similar to MABO when
the implicit maximization in the RHKS is interpreted as
searching over an importance weight class (this connec-
tion is pointed out by Uehara et al. [2019]). Finally, the
average Bellman error is first used by Jiang et al. [2017]
for PAC-exploration with function approximation, and
MABO can be viewed as the batch analogy of their
OLIVE algorithm, using importance weights to mimic
the data collected by different exploration policies.

4 TELESCOPING PERFORMANCE
DIFFERENCE

We present the important telescoping lemmas that enable
the nice guarantees of the algorithms to be introduced

and analyzed later. We start with a simple telescoping
lemma, which has also been used in recent off-policy
evaluation literature [e.g., Uehara et al., 2019]. Unless
otherwise specified, the full proofs of the results in the
main text can be found in Appendix A.

Lemma 1. For any policy π and any Q ∈ RS×A,

Ed0 [Q(s, π)]− J(π) =
Edπ [Q(s, a)− r − γQ(s′, π)]

1− γ
.

Proof Sketch. J(π) =
Edπ [r]
1−γ , so we can remove them

from both sides. The remaining terms cancel out by
telescoping, which is essentially the Bellman equation
for dπ found in the dual linear program of MDPs.

Using this lemma, we prove the following performance
difference bound, which is central to the nice guarantees
we are able to prove for MSBO and MABO. The coarse-
grained, `∞ version of Theorem 2 for the specific choice
of π = π? has been given by Williams and Baird [1993],
and some of the technical insights can be found in the
derivations of Munos [2007]. Still, we present the results
in a general and agnostic fashion, and their applications
to the analyses of MSBO and MABO are also novel.

Theorem 2 (Telescoping Performance Difference). For
any policy π and any Q ∈ RS×A,

J(π)− J(πQ) ≤ Edπ [T Q−Q]

1− γ
+

EdπQ [Q− T Q]

1− γ
.

Proof Sketch. Note that

J(π)− J(πQ) ≤ J(π)− Es∼d0 [Q(s, π)]

+ Es∼d0 [Q(s, πQ)]− J(πQ),

as the sum of the two terms added on the RHS is non-
negative due to greediness of πQ. Invoking Lemma 1 on
Qwith π and πQ, respectively, yields Edπ [T πQ−Q] and
EdπQ [Q−T πQQ] (up to a horizon factor). These policy-
specific Bellman errors can be bounded by the optimality
error using the greediness of πQ.

As the result shows, the difference between J(πQ) and
that of any π is controlled by the average Bellman
errors E(·)[T Q − Q] under the distributions dπ and
dπQ , with only one factor of horizon. This is in sharp
contrast to the typical analyses for AVI sketched in the
introduction (Eq.(1)), and immediately hints at a linear-
in-horizon error propagation for algorithms that control
(an upper bound) of the average Bellman errors, and we
only need to consider dπ and dπQ when characterizing
distribution shift effects. In Appendix C, we also
illustrate that iterative methods (such as FQI) fail to
control the Bellman error—which is in contrary to the
popular folklore belief that they do—and explain in part
their quadratic dependence on horizon.



In addition, the average Bellman errors Edπ [T Q − Q]
do not have absolute values inside the expectation, and
the errors at different (s, a) pairs with opposite signs
may cancel with each other. This property is often
ignored in previous works, as they add absolute values
(and use Jensen’s to bound `1 with `2 norms) anyway
when analyzing algorithms that optimize squared-loss,
just as we will do to MSBO. However, we emphasize
that it is important to state this theorem in such a
primitive form for the analysis of MABO, which directly
estimates such average Bellman errors (allowing sign
cancellations) using importance weights. Any absolute
value relaxations [e.g., Williams and Baird, 1993] will
immediately make the result useless for MABO.

We conclude this section with some useful corollaries of
Theorem 2, which may also be of independent interest
on their own.

Corollary 3 (Two-side Performance Difference Bound).
For any Q, f ∈ RS×A,

|J(πf )− J(πQ)| ≤ 2 max

{
Edπf [T Q−Q]

1− γ

+
EdπQ [Q− T Q]

1− γ
,
EdπQ [T f − f ]

1− γ
+

Edπf [f − T f ]

1− γ

}
.

Corollary 4 (Performance Loss w.r.t. a Class). ∀Q ∈ Q,

max
π∈ΠQ

J(π)− J(πQ) ≤
2 maxπ∈ΠQ |Edπ [T Q−Q]|

1− γ
.

5 MSBO

We present the performance guarantee of the first
algorithm, Minimax Squared Bellman Optimality Error
Minimization (MSBO), which uses another helper class
F ⊂ [0, Vmax]S×A to model T Q for any Q ∈ Q,
seeking to form an (approximately) unbiased estimate of
the Bellman error ‖Q− T Q‖22,µ:

Q̂ = argmin
Q∈Q

max
f∈F

(`D(Q;Q)− `D(f ;Q)) , (4)

where `D(·; ·) is defined in Eq.(3). To give some intu-
itions, `D(Q;Q) over-estimates ‖Q − T Q‖22,µ (which
is why the double sampling trick was invented in the
first place [Baird, 1995]), and the amount of over-
estimation can be captured by minf∈F `D(f ;Q) if F
is a rich function class satisfying T Q ∈ F , ∀Q ∈ Q;
see Antos et al. [2008]; Chen and Jiang [2019] for further
intuitions. We now state the guarantee of the algorithm.

Theorem 5 (Improved error bound of MSBO). Let Q̂ be
the output of MSBO. W.p. at least 1− δ,

max
π∈ΠQ

J(π)− J(πQ̂) ≤ 2
√

2Ceff

1− γ

(√
εsq
Q +

√
εsq
Q,F

)

+

√
Ceff

1− γ
O

(√
V 2

max ln |Q||F|δ

n
+

4

√
V 2

max ln |Q|δ
n

εsq
Q

+
4

√
V 2

max ln |Q||F|δ

n
εsq
Q,F

)
,

where

Ceff := max
π∈ΠQ

‖wdπ/µ‖22,µ. εsq
Q := min

Q∈Q
‖Q− T Q‖22,µ.

εsq
Q,F := max

Q∈Q
min
f∈F
‖f − T Q‖22,µ.

This result improves over the bound of Chen and Jiang
[2019] in several aspects, which we explain below.
Furthermore, their bound for MSBO is structurally the
same as that for FQI when F is set as Q, and while
we are able to improve the bound for MSBO, some of
the improvements cannot be enjoyed by FQI (see the
argument of Scherrer and Lesner [2012]), creating a gap
between performance guarantees of the two algorithms.

In the rest of this section, we explain the result and
discuss its significance in detail. We also include a high-
level sketch of the proof at the end, deferring the full
proof to Appendix A.

5.1 ERRORS TERMS AND OPTIMALITY

εsq
Q measures the violation of the realizability assumption
Q? ∈ Q, and when the assumption holds exactly we have
εsq
Q = 0 as ‖Q? − T Q?‖ = 0. Similarly, εsq

Q,F measures
the violation of the assumption that T Q ∈ F ,∀Q ∈ Q.
These definitions are directly taken from Chen and Jiang
[2019] and consistent with prior literature [e.g., Antos
et al., 2008]. The statistical error term withinO(·) is also
the same as Chen and Jiang [2019], which consists of a
n−1/2 fast rate term and two n−1/4 terms which vanish
as the approximation errors εsq

Q and εsq
Q,F go to 0. The

novelty of the bound is in the multiplicative constants in
front of these errors.

Regarding the optimality guarantee (LHS of the bound),
note that we compete with maxπ∈ΠQ J(π) as the optimal
value. Slightly modifying the analyses will immediately
allow us to compete with any policy π even if it is not
in ΠQ (e.g., π?), as long as we include the policy in the
definition of Ceff .



5.2 CONCENTRABILITY COEFFICIENT

The distribution shift effects are characterized by Ceff in
our bound. Not only this definition is much simpler, it
is also tighter than previous definitions in two ways, and
we start with the minor one: we use a weighted square
of wdπ/µ rather than its `∞ norm, the latter of which is
more common in literature [Munos, 2007; Munos and
Szepesvári, 2008; Antos et al., 2008; Chen and Jiang,
2019]. It is easy to show that the squared version is
tighter [Farahmand et al., 2010]: for example, consider
the `∞ version of our Ceff , which should be defined as

C∞ := max
π∈ΠQ

‖wdπ/µ‖∞.

One can easily show that Ceff is tighter: for any π ∈ ΠQ,

‖wdπ/µ‖22,µ = Eµ[w2
dπ/µ] ≤ Eµ[C∞wdπ/µ] = C∞.

The second improvement, which is much more signif-
icant, is the departure from “per-step” definitions. In
all analyses of AVI/API, the concentrability coefficient
takes the form of

Cper-step :=

∞∑
t=0

β(t)Ct, Ct := max
π
‖wdπ,t/µ‖∞, (5)

where dπ,t is the marginal distribution of (st, at). β(t)
is a series of non-negative coefficients that sum up to 1.
Different versions of Cper-step differ in β(t), the policy
space considered in maxπ (typically non-stationary
policies concatenated using policies from ΠQ

⋃
{π?}),

and sometimes replacing ‖·‖∞ with ‖·‖22; see Farahmand
et al. [2010] for a detailed discussion. While it is
difficult to directly compare this quantity to ours due to
its complication, we show that in a simplest uncontrolled
scenario where there is no distribution shift at all, any
per-step definition will be at least 1/(1 − γ) looser than
ours. We include an intuitive but informal statement
below, and defer the detailed discussions to Appendix B.

Proposition 6 (Informal). Consider an uncontrolled
deterministic problem (there is only 1 action) formed
by a long chain of states. Let µ = dπ where π is the
only policy. C∞ = Ceff = 1, and any definition of
Cper-step ≥ 1/(1− γ).

5.3 HORIZON DEPENDENCE

We now verify that the bound has linear dependence on
horizon. Doing so can be tricky given the complicated
expression, and we provide 3 verification methods
following the conventions in the literature [Scherrer,
2014]: The first one is to observe that FQI has quadratic
dependence on horizon and our bound for MSBO has
a 1/(1−γ) net improvement over FQI [Chen and Jiang,

2019]. The second one is to read the expression, and
count the explicit dependence; while the statistical error
depends on Vmax = Rmax/(1 − γ), such a dependence
is superficial and not produced by error accumulation
over multi-stage decision-making, and is never counted
in the literature.6 The third method is to consider the
fully realizable case (εsq

Q = εsq
Q,F = 0) and calculate the

sample complexity. Since the statistical rate is 1/
√
n,

an algorithm with linear-in-horizon error propagation
should have O(1/(1 − γ)2) sample complexity, which
we show below. This contrasts theO(1/(1−γ)4) sample
complexity of FQI [Chen and Jiang, 2019].
Corollary 7 (Improved sample complexity of MSBO).
Let εsq

Q = εsq
Q,F = 0. For any ε, δ > 0, Eq.(4) satisfies

maxπ∈ΠQ J(π) − J(πQ̂) ≤ ε · Vmax w.p. ≥ 1 − δ, if

n = O
(
Ceff ln

|Q||F|
δ

ε2(1−γ)2

)
.

5.4 PROOF SKETCH

We sketch the high-level proof here, deferring the details
to Appendix A; this analysis is relatively straightforward
due to existing work (compared to MABO, which is
novel). To bound J(π) − J(πQ̂) for any π ∈ ΠQ, we
invoke Theorem 2, which produces two average Bellman
error terms of form |Edπ [T Q̂− Q̂]|. Then

|Edπ [T Q̂− Q̂]| = |Eµ[wdπ/µ · (T Q̂− Q̂)]|

≤
√
Eµ[w2

dπ/µ]Eµ[(T Q̂− Q̂)2] ≤
√
Ceff‖T Q̂− Q̂‖2,µ.

The last step follows from Cauchy-Schwarz for random
variables, and the term ‖T Q̂ − Q̂‖2,µ is well-studied
by Chen and Jiang [2019] and we directly use their result.

6 MABO

We introduce and analyze our second (and novel)
algorithm, Minimax Average Bellman Optimality Error
Minimization (MABO), which directly estimates the
average Bellman errors (allowing sign cancellations)
that show up in the telescoping results from Section 4
by explicit importance-weighting correction. Doing so
requires an additional function approximatorW to model
the marginalized importance weights (see Section 2.2),
W ⊂ RS×A, in addition to the Q class that models Q?.
Given Q andW , the algorithm is

Q̂ = argmin
Q∈Q

max
w∈W

|LD(Q,w)| , (6)

where LD(Q,w) :=

ED
[
w(s, a)

(
r + γmax

a′
Q(s′, a′)−Q(s, a)

)]
.

6See Jiang and Agarwal [2018] for a deeper discussion.



It is important to point out that we only use the
single sample estimate of Bellman error (i.e., no double
sampling), but we obtain an unbiased estimate of average
Bellman error thanks to not using the squared loss (un-
like `D(Q;Q) in MSBO, which is an over-estimation).
To see how LD(Q,w) is related to the average Bellman
errors, simply consider its population version:

Lµ(Q,w) := ED[LD(Q,w)]

= E(s,a)∼µ [w(s, a) ((T Q)(s, a)−Q(s, a))] , (7)

thus Lµ(Q,wdπ/µ) = Edπ [T Q−Q]. Therefore, as long
as W realizes wdπ/µ for all π ∈ ΠQ (this assumption
will be relaxed), maxw∈W |Lµ(Q,w)| will control the
suboptimality gap of πQ, which is the intuition for the
algorithm.

We now state the guarantee of this algorithm. For
convenience, we will use Eµ[w·(T Q−Q)] as a shorthand
for Eq.(7) in the rest of this paper.

Theorem 8 (Error bound of MABO). Let Q̂ be the
output of MABO. W.p. 1− δ,

max
π∈ΠQ

J(π)− J(πQ̂) ≤ 2

1− γ

(
εavg
Q + εavg

Q,W + εstat,n

)
.

where

εavg
Q := min

Q∈Q
max
w∈W

|Eµ[w · (T Q−Q)]| ,

εavg
Q,W := max

π∈ΠQ
inf
w∈

sp(W)

max
Q∈Q

∣∣∣∣Eµ[(wdπ/µ − w) · (T Q−Q)
]∣∣∣∣,

εstat,n := 2Vmax

√
2Ceff,W ln

2|Q||W|
δ

n +
4C∞,WVmax ln

2|Q||W|
δ

3n ,

Ceff,W := max
w∈W

‖w‖22,µ, C∞,W := max
w∈W

‖w‖∞,

and sp(W) is the linear span ofW using coefficients with
(at most) unit `1 norm, i.e.,

sp(W) :=
{∑

w∈W α(w)w :
∑
w∈W |α(w)| ≤ 1

}
.

In the rest of this section, we explain the bound and
discuss its significance.

6.1 ERROR TERMS AND AUGMENTED
EXPRESSIVITY

Similar to εsq
Q for MSBO, εavg

Q also measures the
violation of Q? ∈ Q, though in a different manner: we
measure Q’s worst-case average Bellman error on any
w ∈ W .

The situation of εavg
Q,W is a little more special. Despite

that we provide intuition for MABO by requiring that
wdπQ/µ ∈ W,∀Q ∈ Q, it turns out we only need
a much more relaxed version of this assumption (and
can measure violation against the relaxed version):
thanks to the linearity of LD(Q, ·), we are automatically
approximatingwdπQ/µ from an augmented class sp(W).7

Moreover, the loss LD(Q,w) is “scale-free” w.r.t. w,
i.e., it is completely equivalent to replace W with any
cW := {cw : w ∈ W}, for any c 6= 0. Therefore, we
may rescale W arbitrarily in the theorem to obtain the
sharpest bound.

To help develop further intuition, we illustrate the idea
using a familiar tabular example: Consider the case
where |S| and |A| are manageable and we use a tabular
function class Q := [0, Vmax]S×A. It is easy to
see that we can recover the standard tabular model-
based algorithm (a.k.a. certainty-equivalence, or C-E)
by using W = {(s, a) 7→ 1(s = s∗, a = a∗) :
s∗ ∈ S, a∗ ∈ A}, i.e., a set of |S × A| indicator
functions. This is because the lowest possible value
for the objective is 0, achieving which requires that
|LD(Q,w)| = 0,∀w ∈ W . This set of |W| = |S × A|
equations is essentially the Bellman equation for each
state-action pair in the empirical MDP, which can and
can only be satisfied by the C-E solution. While the
C-E solution incurs no approximation error, W clearly
fails to realize wdπQ/µ for all Q ∈ Q. The reason, as
we have already explained earlier, is because sp(W)—
which now becomes the tabular function space—can
model any importance weights with proper scaling.

As a final remark, given any w ∈ sp(W) and the target
importance weight wdπQ/µ, we measure their distance
by projecting their difference using T Q − Q for the
worst-case Q ∈ Q. If we treat it as approximating
distribution dπ with (µ · w)(s, a) := µ(s, a)w(s, a),
then this measure is essentially the Integral Probability
Metric [Müller, 1997] between dπ and µ · w using a
discriminator class induced by Q.

6.2 CONCENTRABILITY COEFFICIENTS

Our Ceff,W and C∞,W are defined in a way similar
to Ceff and C∞ in Section 5, except that we consider
w ∈ W , i.e., the functions provided by the function
approximatorW instead of the true importance weights
wdπQ/µ themselves. While these two sets of coefficients
are not directly comparable, we provide some insights
about their relationship.

On one hand, if we choose W = {wdπQ/µ : Q ∈ ΠQ},

7Similar properties have been recognized regarding the
policy evaluation counterpart of MABO [Uehara et al., 2019].



which precisely satisfies the expressivity assumption,
then Ceff,W = Ceff and C∞,W = C∞. Given thatW is
likely to include other functions as well, we might con-
clude that Ceff,W and C∞,W are in general greater. On
the other hand, to satisfy εavg

Q,W = 0 we only need sp(W)
to be the above-mentioned class, and the actualW could
be smaller and simpler. Also, since Ceff,W and C∞,W
only occur in the statistical error term in Theorem 8
(which is in sharp contrast to Theorem 5, where Ceff

also amplifies approximation errors), the damage caused
by w ∈ W with unnecessarily large magnitude can
be mitigated by proper regularization (see e.g., Kallus
[2016]; Hirshberg and Wager [2017]; Su et al. [2019] for
how importance weights can be regularized in contextual
bandits). Given these competing considerations, we
suggest that it is reasonable to treat Ceff,W ≈ Ceff ,
C∞,W ≈ C∞.

6.3 HORIZON DEPENDENCE

The linear dependence on horizon of Theorem 8 can be
verified in a way similar to Section 5.3, and we only
include the sample complexity of MABO when all the
expressivity assumptions are met exactly. The sample
complexity contains two terms corresponding to the slow
rate (n−1/2) and the fast rate (n−1) terms in εstat,n, and
when C∞,W is not too much larger than Ceff,W ,8 the fast
rate term is dominated and the sample complexity is very
similar to that of MSBO.

Corollary 9 (Sample complexity of MABO). Suppose
εavg
Q = εavg

Q,W = 0. The output of MABO Eq.(6), satisfies
maxπ∈ΠQ J(π)− J(πQ̂) ≤ ε · Vmax w.p. 1− δ, if

n = O
((

Ceff,W

ε2(1− γ)2
+

C∞,W
ε(1− γ)

)
ln
|Q||W|
δ

)
.

6.4 PROOF SKETCH OF THEOREM 8

We conclude the section by a high-level proof sketch.
With Theorem 2, it suffices to control |Edπ [T Q̂ − Q̂]|
= |Eµ[wdπ/µ · (T Q̂ − Q̂)]| for the worst-case π ∈
ΠQ. Fixing any π, the first step is to peel off the
approximation error ofW: for anyw ∈ sp(W), we have

|Eµ[wdπ/µ · (T Q̂− Q̂)]|

≤ |Eµ[(wdπ/µ − w)(T Q̂− Q̂)]|+ |Eµ[w · (T Q̂− Q̂)]|

≤ max
Q∈Q

|Eµ[(wdπ/µ − w)(T Q−Q)]|+ |Eµ[w · (T Q̂− Q̂)]|.

So if we choosew as the one that achieves the infimum in
the definition of εavg

Q,W , denoted as ŵ, then the first term

8E.g., Ceff,W = C∞,W when W only contains indicator
functions (e.g., in the tabular scenario in Section 6.2).

is bounded by εavg
Q,W . The second term is much closer to

the loss function of MABO, and can be handled as

|Eµ[ŵ · (T Q̂− Q̂)]| ≤ sup
w∈sp(W)

|Eµ[w · (T Q̂− Q̂)]|

= max
w∈W

|Eµ[w · (T Q̂− Q̂)]|.

Crucially, using the linearity of Eµ[w · (·)] in w and
the norm constraints of sp(·), we are able to replace
supw∈sp(W) with maxw∈W , leading to the augmented
expressivity discussed in Section 6.1; see Eq.(11) in
Appendix A for a detailed argument. Then with similar
strategies, we peel off the approximation error ofQ from
|Eµ[ŵ · (T Q̂ − Q̂)]|. The rest of the analysis handles
statistical errors using generalization error bounds.

7 FURTHER COMPARISONS AND
DISCUSSIONS

In the previous sections we have analyzed MSBO and
MABO, showing that they enjoy linear-in-horizon error
propagation and cleanly and tightly defined concentra-
bility coefficients, which answers (A) and (B) in the
introduction. Still, MSBO bears significant similarities
to classical AVI/API algorithms9 in the use of squared
loss and the expressivity requirement on function ap-
proximation ((C) and (D)). In this section we compare its
guarantee (Theorem 5) to that of MABO (Theorem 8),
and discuss the potential advantages of MABO (which
is novel and understudied), as well as its limitations,
compared to currently popular algorithms. The recurring
theme of the comparisons—as we will see below—is the
pros and cons of implicit (e.g., FQI and MSBO) and
explicit (MABO) distribution corrections.

7.1 ROBUSTNESS AGAINST MISSPECIFIED Q

We compare the robustness of the two algorithms against
misspecified Q, that is, how much we pay when Q? /∈
Q. Omitting the common horizon factor, MSBO pays

O(
√
Ceff · εsq

Q ) and MABO pays O(εavg
Q ). Again, they

are not directly comparable, but we can still offer some
useful insights. Imagine the scenario ofW = {wdπQ/µ :
Q ∈ Q} (as we did in Section 6.2), then

εavg
Q = min

Q∈Q
max
π∈ΠQ

∣∣Eµ[wdπ/µ · (T Q−Q)]
∣∣ (8)

≤ min
Q∈Q

max
π∈ΠQ

√
Eµ[w2

dπ/µ] · Eµ[(T Q−Q)2] =
√
Ceff · εsq

Q .

Here the second step follows from Cauchy-Schwarz,
which we also used in Section 5.4. As we can see, ifW

9Recall that FQI coincides with MSBO using F = Q when
FQI converges [Chen and Jiang, 2019], and in this sense MSBO
can be viewed as a best-case scenario for FQI.



is specified “just right”, MABO’s guarantee never suffers
more than that of MSBO on misspecified Q, and any
looseness from Cauchy-Schwarz10 enters the gap. On
the other hand, such an advantage of MABO may be
weakened ifW includes additional functions that do not
correspond to real importance weights.

Another difference between MSBO and MABO is that
MSBO pays

√
Ceff in front of

√
εsq
Q , whereas MABO

does not pay any concentrability coefficients in its
approximation error terms, thanks to explicit distribution
correction. While Eq.(8) might leave the impression that
the difference is superficial, the inequality only relaxes
εavg
Q (apart from the nice choice of W) hence unfairly

favors MSBO, and there are scenarios where the
√
Ceff

difference is real: for example, consider the scenario
where Q has uniformly low error across all distributions,
and Q′ has small Bellman error on µ but (up to

√
Ceff

times) higher errors on e.g., dπ′
Q

. In this case, MABO
clearly prefers Q over Q′ due to explicit distribution
correction, whereas MSBO is indifferent between them
and can suffer the poor performance of Q′.

7.2 STATISTICAL RATES

The n−1/2 terms in Theorems 5 and 8 match each other
if we treat Ceff ≈ Ceff,W (see Section 6.2). MABO
suffers another C∞,W/n term, whereas C∞ does not
enter the guarantee of MSBO; this is an (unfortunately)
inevitable consequence of explicit importance weighting
and concentration inequalities. On the other hand, the
term fades away quickly with n and will be of minor
issue with sufficient data. Finally, MSBO suffers two
n−1/4 terms, and although they can be absorbed by
the worse between the fast rate and the approximation
error terms in Big-Oh notations [Chen and Jiang, 2019,
Appendix C], doing so worsens the constant.

7.3 ASSUMPTIONS ON THE HELPER CLASSES

A characteristic shared by MSBO and MABO is the use
of a helper class (F for MSBO and W for MABO) to
assist the estimation of the Bellman error. These helper
classes also take the heaviest expressivity burdens in
their corresponding algorithms: whileQ is only required
to capture Q?, F andW are required to capture T Q and
wdπQ/µ, respectively, for all Q ∈ Q.

While F andW model completely different objects, we
note that W enjoys a superior property that F does not
have, that is we essentially approximate the importance
weights from sp(W), allowing simple W to have high
expressivity. This property crucially comes from the

10See (D) in the introduction.

linearity of the average Bellman error loss, which is
another advantage of the average loss over the squared
loss.

To further illustrate the representation power of sp(W),
we provide the following result, showing that in MDPs
with low-rank dynamics (which are often sufficient
conditions that allow an exploratory11 µ to exist in the
first place [Chen and Jiang, 2019]), there exists very
simple (in the sense of low statistical complexity)W that
satisfies εavg

Q,W = 0.

Proposition 10. Suppose the rank of the MDP’s transi-
tion matrix is k. Then,

1. For any choice of Q, there exists W with cardinality
|W| ≤ (k + 1)|Q|, such that εavg

Q,W = 0.

2. Let the transition matrix P = ΦP ′, where Φ ∈
R|S×A|×k and let φ(s, a)> denote its (s, a)-th row.
For the choice of Q = {(s, a) 7→ R(s, a) +
γφ(s, a)>θ : θ ∈ Rk}, there exists W with
cardinality |W| ≤ k + 1 such that εavg

Q,W = 0.

The formal definitions and proofs are deferred to Ap-
pendix D. In the first claim (general case), W has low
statistical capacity despite scaling with |Q|, as we need
to pay ln |Q| anyway by using the Q class, and the
dependence of |W| on |Q| is not a significant burden.
In the second claim, which is the more restricted “linear
MDP” setting recently studied by e.g., Yang and Wang
[2019], we are able to bring |W| down to as low as k+1;
it is also interesting to point out that we cannot guarantee
wdπQ/µ ∈ sp(W), but using the linear structure of Q we
can still prove that εavg

Q,W = 0. Finally, we emphasize that
the existence of such a simpleW does not imply that we
are guaranteed to find it for every problem, as the design
of function approximation always requires appropriate
prior knowledge and inductive biases.

8 CONCLUSIONS

We analyze two algorithms, MSBO and MABO, which
enjoy linear-in-horizon error propagation, a property
established for the first time for batch algorithms
outputting stationary policies. MABO uses a novel
importance-weight correction to handle the difficulty of
Bellman error estimation, and our analyses reveal its
distinct properties and potential advantages compared to
classical squared-loss-based algorithms.
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APPENDIX

A DETAILED PROOFS

Lemma 1 (Evaluation error lemma, restated). For any policy π and any Q ∈ RS×A,

Ed0 [Q(s, π)]− J(π) =
Edπ [Q(s, a)− r − γQ(s′, π)]

1− γ
.

Proof of Lemma 1. Since J(π) =
Edπ [r]
1−γ , we remove these terms from both sides, and prove the rest of the identity.

E(s,a,r,s′)∼dπ [Q(s, a)− γQ(s′, π(s′))]

1− γ

=
∑
s,a

∞∑
t=0

γt Pr(st = s, at = a|s0 ∼ d0, π)Q(s, a)−
∑
s,a

∞∑
t=1

γt Pr(st = s|s0 ∼ d0, π)Q(s, π(s))

=
∑
s,a

∞∑
t=0

γt Pr(st = s, at = a|s0 ∼ d0, π)Q(s, a)−
∑
s,a

∞∑
t=1

γt Pr(st = s, at = a|s0 ∼ d0, π)Q(s, a)

=
∑
s,a

Pr(s0 = s, a0 = a|s0 ∼ d0, π)Q(s, a) = Es∼d0 [Q(s, π(s))],

where the first equation follows from the definition of dπ , the second equation follows from the definition of
Q(s, π(s)).

Theorem 2 (Telescoping Performance Difference, restated). For any policy π and any Q ∈ RS×A,

J(π)− J(πQ) ≤ Edπ [T Q−Q]

1− γ
+

EdπQ [Q− T Q]

1− γ
.

Proof of Theorem 2.

J(π)− J(πQ) = J(π)− Es∼d0 [Q(s, π(s))]︸ ︷︷ ︸
(I)

+Es∼d0 [Q(s, π(s))]− Es∼d0 [Q(s, πQ(s))]︸ ︷︷ ︸
(II)

+ Es∼d0 [Q(s, πQ(s))]− J(πQ)︸ ︷︷ ︸
(III)

.

These three terms can be bound separately as follows.

(I) = J(π)− Es∼d0 [Q(s, π)]

=
1

1− γ
Edπ [r + γQ(s′, π)−Q(s, a)]

≤ 1

1− γ
Edπ

[
r + γ max

a′∈A
Q(s′, a′)−Q(s, a)

]
=

1

1− γ
Edπ [T Q−Q] .

The second equation follows from Lemma 1, and the last step follows from marginalizing out r and s′ by conditioning
on (s, a) using law of total expectation.

For (II),

(II) = Es∼d0 [Q(s, π(s))]− Es∼d0 [Q(s, πQ(s))] = Es∼d0
[
Q(s, π(s))−max

a
Q(s, a)

]
≤ 0.



Finally, (III), which is handled similarly to (I).

(III) = Es∼d0 [Q(s, πQ)]− J(πQ)

=
1

1− γ
EdπQ [Q(s, a)− r − γQ(s′, πQ)]

=
1

1− γ
EdπQ

[
Q(s, a)− r − γmax

a′
Q(s′, a′)

]
=

1

1− γ
E(s,a,s′)∼dπQ [Q− T Q] ,

where the third equation follows from the definition of πQ being greedy w.r.t. Q. The result follows by putting all
three parts together.

Theorem 5 (Improved error bound of MSBO, restated). Let Q̂ be the output of MSBO. W.p. at least 1− δ,

max
π∈ΠQ

J(π)− J(πQ̂) ≤ 2
√

2Ceff

1− γ

(√
εsq
Q +

√
εsq
Q,F

)
+

√
Ceff

1− γ
O


√
V 2

max ln |Q||F|δ

n
+

4

√
V 2

max ln |Q|δ
n

εsq
Q +

4

√
V 2

max ln |Q||F|δ

n
εsq
Q,F

 ,

where

Ceff := max
π∈ΠQ

‖wdπ/µ‖22,µ.

εsq
Q := inf

Q∈Q
‖Q− T Q‖22,µ.

εsq
Q,F := sup

Q∈Q
inf
f∈F
‖f − T Q‖22,µ.

Proof of Theorem 5. We use π? to denote argmaxπ∈ΠQ
J(π). By applying Theorem 2, we can obtain

max
π∈ΠQ

J(π)− J(πQ̂) ≤
Edπ?

[
T Q̂− Q̂

]
1− γ

+
Edπ

Q̂

[
Q̂− T Q̂

]
1− γ

=
Eµ
[
wdπ?/µ ·

(
T Q̂− Q̂

)]
1− γ

+
Eµ
[
wdπ

Q̂
/µ ·
(
Q̂− T Q̂

)]
1− γ

(a)
≤

√
E(s,a)∼µ

[(
wdπ?/µ(s, a)

)2]E(s,a)∼µ

[(
(T Q̂)(s, a)− Q̂(s, a)

)2
]

1− γ

+

√
E(s,a)∼µ

[(
wdπ

Q̂
/µ(s, a)

)2
]
E(s,a)∼µ

[(
(T Q̂)(s, a)− Q̂(s, a)

)2
]

1− γ
(b)
≤ 2
√
Ceff

1− γ
‖Q− T Q‖2,µ . (9)

where (a) follows from the Cauchy-Schwarz inequality for random variables (|EXY | ≤
√

E[X2]E[Y 2]) and (b)
follows from the definition of Ceff .

We then directly adopt the upper bound on
∥∥∥Q̂− T Q̂∥∥∥

2,µ
from Chen and Jiang [2019]:

∥∥∥Q̂− T Q̂∥∥∥2

2,µ
≤

16V 2
max ln 2|Q|

δ

3n
+ 2ε2 + ε3 +

√√√√8V 2
max ln 2|Q|

δ

n

(
10V 2

max ln 2|Q|
δ

3n
+ 2ε2 + ε3

)
,



where, ε2 =
43V 2

max ln 8|Q||F|
δ

n
+

√
239V 2

max ln 8|Q||F|
δ

n
εsq
Q,F + εsq

Q,F ,

and, ε3 = εsq
Q +

√
8V 2

max ln 2|F|
δ

n
εsq
Q +

4V 2
max ln 2|Q|

δ

3n
. (10)

By substitute Eq.(9) into Eq.(10) and adapt the the proof of Theorem 17 in Chen and Jiang [2019], we have

max
π∈ΠQ

J(π)− J(πQ̂) ≤ 2
√
Ceff

1− γ

∥∥∥Q̂− T Q̂∥∥∥
2,µ

≤ 2
√
Ceff

1− γ

(√
2εsq
Q +

√
2εsq
Q,F

)
+

2
√
Ceff

1− γ


√

24V 2
max ln 2|Q|

δ

n
+

√
172V 2

max ln 8|Q||F|
δ

n


+

2
√
Ceff

1− γ

 4

√
32V 2

max ln 2|Q|
δ

n
εsq
Q +

4

√
3824V 2

max ln 8|Q||F|
δ

n
εsq
Q,F

 .

Theorem 8 (Error bound of MABO, restated). Let Q̂ be the output of MABO. W.p. 1− δ,

max
π∈ΠQ

J(π)− J(πQ̂) ≤ 2

1− γ

(
εavg
Q + εavg

Q,W + εstat,n

)
.

where

εavg
Q := min

Q∈Q
max
w∈W

|Eµ[w · (T Q−Q)]| ,

εavg
Q,W := max

π∈ΠQ
inf

w∈sp(W)
max
Q∈Q

∣∣∣∣Eµ[(wdπ/µ − w) · (T Q−Q)
]∣∣∣∣,

εstat,n := 2Vmax

√
2Ceff,W ln

2|Q||W|
δ

n +
4C∞,WVmax ln

2|Q||W|
δ

3n ,

Ceff,W := max
w∈W

‖w‖22,µ, C∞,W := max
w∈W

‖w‖∞,

and sp(W) is the linear span ofW using coefficients with (at most) unit `1 norm, i.e.,

sp(W) :=
{∑

w∈W α(w)w :
∑
w∈W |α(w)| ≤ 1

}
.

Proof of Theorem 8. Let π?Q := argmaxπ∈ΠQ
J(π). By Theorem 2, we have

max
π∈ΠQ

J(π)− J(πQ̂) ≤
Edπ?Q

[
T Q̂− Q̂

]
1− γ

+
Edπ

Q̂

[
Q̂− T Q̂

]
1− γ

≤
2 maxπ∈ΠQ

∣∣∣Lµ(Q̂, wdπ/µ)
∣∣∣

1− γ
.

We now bound
∣∣∣Lµ(Q̂, wdπ/µ)

∣∣∣ for any policy π ∈ ΠQ. Let

ŵdπ/µ := argmin
w∈sp(W)

max
Q∈Q

∣∣∣Eµ [(wdπ/µ − w) · (T Q̂− Q̂)]∣∣∣ ,
and we obtain ∣∣∣Lµ(Q̂, wdπ/µ)

∣∣∣ =
∣∣∣Eµ [(wdπ/µ − ŵdπ/µ) · (T Q̂− Q̂)]+ Eµ

[
ŵdπ/µ ·

(
T Q̂− Q̂

)]∣∣∣
≤
∣∣∣Eµ [(wdπ/µ − ŵdπ/µ) · (T Q̂− Q̂)]∣∣∣+

∣∣∣Eµ [ŵdπ/µ · (T Q̂− Q̂)]∣∣∣



= εavg
Q,W +

∣∣∣Eµ [ŵdπ/µ · (T Q̂− Q̂)]∣∣∣ ,
where the last equation follows from the definition of εavg

Q,W .

To bound the remaining term, we first need a helper lemma that supw∈sp(W) |f(·)| = maxw∈W |f(·)| for any linear
function f(·): consider any w ∈ sp(W), which can be written as w =

∑
i αiwi, where wi ∈ W,∀i and

∑
i |αi| ≤ 1.

For linear f(·) and any w ∈ sp(W) we have

|f(w)| =

∣∣∣∣∣f
(∑

i

αiwi

)∣∣∣∣∣ =

∣∣∣∣∣∑
i

αif(wi)

∣∣∣∣∣ ≤∑
i

|αi| |f(wi)| ≤ sup
w′∈W

|f(w′)|. (11)

So supw∈sp(W) |f(·)| ≤ maxw∈W |f(·)|. On the other hand, since W ⊂ sp(W), we conclude that
supw∈sp(W) |f(·)| = maxw∈W |f(·)| for linear f(·).

With this preparation, now we are ready to bound
∣∣∣Eµ [ŵdπ/µ · (T Q̂− Q̂)]∣∣∣. Note that

εavg
Q := min

Q∈Q
max
w∈W

|Eµ[w · (T Q−Q)]| = min
Q∈Q

sup
w∈sp(W)

|Eµ[w · (T Q−Q)]| ,

so we have∣∣∣Eµ [ŵdπ/µ · (T Q̂− Q̂)]∣∣∣ =
∣∣∣Eµ [ŵdπ/µ · (T Q̂− Q̂)]∣∣∣− min

Q∈Q
sup

w∈sp(W)

|Eµ [w · (T Q−Q)]|+ εavg
Q ,

At this point, we peeled off all the approximation errors from
∣∣∣Lµ(Q̂, wdπ/µ)

∣∣∣, and it remains to bound the estimation
error ∣∣∣Eµ [ŵdπ/µ · (T Q̂− Q̂)]∣∣∣− inf

Q∈Q
sup

w∈sp(W)

|Eµ [w · (T Q−Q)]| .

Let Q̃ := argminQ∈Q supw∈sp(W) |Eµ [w · (T Q−Q)]| andW1 := {aw : a ∈ [−1, 1], w ∈ W}.∣∣∣Eµ [ŵdπ/µ · (T Q̂− Q̂)]∣∣∣− inf
Q∈Q

sup
w∈sp(W)

|Eµ [w · (T Q−Q)]|

≤ sup
w∈sp(W)

∣∣∣Eµ [w · (T Q̂− Q̂)]∣∣∣− sup
w∈sp(W)

∣∣∣Eµ [w · (T Q̃− Q̃)]∣∣∣
= sup

w∈sp(W)

∣∣∣Eµ [w · (T Q̂− Q̂)]∣∣∣− sup
w∈sp(W)

∣∣∣E(s,a,r,s′)∼D

[
w(s, a)

(
r + max

a′
Q̂(s′, a′)− Q̂(s, a)

)]∣∣∣
+ sup
w∈sp(W)

∣∣∣E(s,a,r,s′)∼D

[
w(s, a)

(
r + max

a′
Q̂(s′, a′)− Q̂(s, a)

)]∣∣∣− sup
w∈sp(W)

∣∣∣Eµ [w · (T Q̃− Q̃)]∣∣∣
(a)
≤ sup

w∈sp(W)

∣∣∣Eµ [w · (T Q̂− Q̂)]− E(s,a,r,s′)∼D

[
w(s, a)

(
r + max

a′
Q̂(s′, a′)− Q̂(s, a)

)]∣∣∣
+ sup
w∈sp(W)

∣∣∣E(s,a,r,s′)∼D

[
w(s, a)

(
r + max

a′
Q̂(s′, a′)− Q̂(s, a)

)]∣∣∣− sup
w∈sp(W)

∣∣∣Eµ [w · (T Q̃− Q̃)]∣∣∣
(b)
≤ sup

w∈W

∣∣∣Eµ [w · (T Q̂− Q̂)]− E(s,a,r,s′)∼D

[
w(s, a)

(
r + max

a′
Q̂(s′, a′)− Q̂(s, a)

)]∣∣∣︸ ︷︷ ︸
(I)

(12)

+ sup
w∈W

∣∣∣E(s,a,r,s′)∼D

[
w(s, a)

(
r + max

a′
Q̃(s′, a′)− Q̃(s, a)

)]
− Eµ

[
w(s, a)

(
T Q̃− Q̃

)]∣∣∣︸ ︷︷ ︸
(II)

.

where (a) follows form supx |f(x)|−supx |g(x)| ≤ supx |f(x)−g(x)| and (b) follows from Eq.(11) and the following
argument:

sup
w∈sp(W)

∣∣∣E(s,a,r,s′)∼D

[
w(s, a)

(
r + max

a′
Q̂(s′, a′)− Q̂(s, a)

)]∣∣∣− sup
w∈sp(W)

∣∣∣Eµ [w · (T Q̃− Q̃)]∣∣∣



≤ sup
w∈W

∣∣∣E(s,a,r,s′)∼D

[
w(s, a)

(
r + max

a′
Q̂(s′, a′)− Q̂(s, a)

)]∣∣∣− sup
w∈W1

∣∣∣Eµ [w · (T Q̃− Q̃)]∣∣∣
≤ sup

w∈W

∣∣∣E(s,a,r,s′)∼D

[
w(s, a)

(
r + max

a′
Q̂(s′, a′)− Q̂(s, a)

)]∣∣∣− sup
w∈W

∣∣∣Eµ [w · (T Q̃− Q̃)]∣∣∣
≤ sup

w∈W

∣∣∣E(s,a,r,s′)∼D

[
w(s, a)

(
r + max

a′
Q̃(s′, a′)− Q̃(s, a)

)]∣∣∣− sup
w∈W

∣∣∣Eµ [w · (T Q̃− Q̃)]∣∣∣
≤ sup

w∈W

∣∣∣E(s,a,r,s′)∼D

[
w(s, a)

(
r + max

a′
Q̃(s′, a′)− Q̃(s, a)

)]
− Eµ

[
w ·
(
T Q̃− Q̃

)]∣∣∣ ,
where the first inequality follows from Eq.(11) and the fact thatW1 ⊆ sp(W), the second inequality follows from the
linearity of Eµ

[
w ·
(
T Q̃− Q̃

)]
, the third inequality follows from the fact that Q̂ optimizes maxw∈W |LD(·, w)|, and

the last inequality follows from supx |f(x)| − supx |g(x)| ≤ supx |f(x)− g(x)|.

Now, since the only difference between term (I) and term (II) is the choice of Q and w, it suffices to provide a uniform
deviation bound that applies to all w ∈ W and Q ∈ Q. Before applying concentration bounds, it will be useful to
first verify the boundedness of the random variables: w(s, a) ∈ [−C,C], and r + γmaxa′ Q(s′, a′) − Q(s, a) ∈
[−Vmax, Vmax] (recall that we assumed Q ∈ [0, Vmax]). Therefore, by Bernstein’s inequality and the union bound,
w.p. at least 1− δ we have that for any w ∈ W and Q ∈ Q,∣∣∣∣∣Eµ [w · (T Q−Q)]− 1

n

n∑
i=1

[
w(si, ai)

(
ri + γmax

a′
Q(s′i, a

′)−Q(si, ai)
)]∣∣∣∣∣

≤

√
2Varµ [w(s, a) (r + γmaxa′ Q(s′, a′)−Q(s, a))] ln 2|Q||W|

δ

n
+

2C∞,WVmax ln 2|Q||W|
δ

3n

(a)
≤ Vmax

√
2Ceff,W ln 2|Q||W|

δ

n
+

2C∞,WVmax ln 2|Q||W|
δ

3n
=
εstat,n

2
, (13)

where (a) is obtained by the following argument:

Varµ

[
w(s, a)

(
r + γmax

a′
Q(s′, a′)−Q(s, a)

)]
≤ Eµ

[
w(s, a)2

(
r + γmax

a′
Q(s′, a′)−Q(s, a)

)2
]

≤ V 2
maxEµ

[
w(s, a)2

]
≤ V 2

maxCeff,W .

Substituting Eq.(13) into Eq.(12), we obtain that the both of term (I) and term (II) in Eq.(12) can be simultaneously
bounded by εstat,n/2 w.p. 1− δ . Therefore, we bound maxπ∈ΠQ J(π)− J(πQ̂) w.p. 1− δ as follows

max
π∈ΠQ

J(π)− J(πQ̂) ≤ 2

1− γ

(
εavg
Q + εavg

Q,W + εstat,n

)
.

B COMPARISON BETWEEN PER-STEP VS. OCCUPANCY-BASED CONCENTRABILITY
COEFFICIENTS

We provide an example to illustrate the limitation of the per-step concentrability coefficients (Proposition 6). Consider
a deterministic chain MDP, where there are L+1 states, {s0, s1, s2, . . . , sL}. There is only one action, which we omit
in the notations. s0 is the deterministic initial state, and each sl transitions to sl+1 under the only action for 0 ≤ l < L.
sL is an absorbing state (i.e., it transitions to itself). The reward function is inconsequential.

There is only one possible policy π for this MDP, and we let the data distribution µ = dπ . The occupancy-based
concentrability coefficient is always 1 (either C∞ or Ceff), which agrees with the intuition that there is no distribution
shift. Since the per-step definitions (Eq.(5)) are always the convex combinations of Ct = maxπ ‖wdπ,t/µ‖∞ for t ≥ 0,
we can assert that it is never lower than mint Ct however the combination coefficients are chosen.



Now we calculate Ct for this MDP:

Ct =

{
1

µ(st)
= 1

(1−γ)γt , 0 ≤ t < L
1

µ(sL) = 1
γL
, t ≥ L

Replacing ‖ · ‖∞ with ‖ · ‖22,µ gives exactly the same results. (When the distribution on the enumerator is a point
mass, ‖ · ‖22,µ of the importance weight is the same as ‖ · ‖∞.) Therefore, as long as L is sufficiently large so that
1
γL
≥ 1

(1−γ) , we have Ct ≥ 1/1−γ for all t, and the per-step concentrability coefficient is at least 1/1−γ. As a final
remark, since the MDP only has 1 policy, the result has no dependence on the choice of policy class in maxπ in the
definition of concentrability coefficient, so we have virtually covered all existing definitions in the AVI/API literature.

C ON ITERATIVE METHODS’ LACK OF CONTROL OF BELLMAN ERRORS

We demonstrate that iterative methods fail to directly control the Bellman error on the data distribution µ. Consider a
two-state deterministic MDP with just 1 action, where s1 transitions to s2, and s2 is absorbing. The reward is always
0.

We use the tabular representation for this MDP, where Q = [Q(s1, a), Q(s2, a)]>. Assume our batch data D only
contains transition tuples of form (s1, a, 0, s2), and no data points from (s2, a2) are present. We first show how FQI
behave on this example. Given the update rule of FQI (Eq.(2)),

Qt ∈ argmin
Q

`D(Q;Qt−1) = {[Q(s1, a), Q(s2, a)]> : Q(s1, a) = γQt−1(s2, a)}.

Therefore, with very update, Q(s1, a) will obtain the old value of γQ(s2, a) from the previous iteration, whereas the
new value of Q(s2, a) will be set arbitrarily. Since the mean square Bellman error is ‖Qt − T Qt‖22,µ = (Qt(s1, a)−
γQt(s2, a))2, its value can be arbitrarily away from 0 and do not become smaller over iterations. In comparison, it
is easy to verify that MSBO and MABO do not suffer from this issue: although there is also arbitrariness in their
outputs due to insufficient data coverage, their outputs will always satisfy Q(s1, a) = γQ(s2, a) and hence imply zero
Bellman error on µ.

As a final remark, it should be noted that the counterexample holds because µ is non-exploratory andCeff = C∞ =∞,
which breaks the assumption for all algorithms considered in this paper. Although ‖Q − T Q‖2µ,2 will be controlled
by FQI when µ is exploratory, this is an indirect consequence of FQI finding Q ≈ Q?, and our example illustrates that
these iterative methods do not directly control the Bellman error on the data distribution.

D EXISTENCE OF SIMPLEW IN LOW-RANK MDPS (PROPOSITION 10)

Claim 1: General Low-rank Case Consider an MDP whose transition matrix P ∈ R|S×A|×|S| satisfies rank(P ) =
k. Let there be a total of N policies in ΠQ, and we stack νπ ∈ R|S| for all π ∈ ΠQ as a matrix: Mν :=[
νπ1

· · · νπN
]>

; all vectors in this proof are treated as column vectors. We first argue that rank(Mν) ≤ k + 1.

Let νπ,t(s) be the marginal distribution of st under π. Also let Π ∈ R|S|×|SA| be the standard matrix representation
of a policy π, that is, Πs′,(s,a) := 1(s = s′, a = π(s)). It is known that ν>π,t = d>0 (ΠP )t, which shows that ν>π,t is in

the row-space of
[
P
d>0

]
for any π and t. Since νπ = (1− γ)

∑∞
t=0 γ

tνπ,t, the same holds for νπ . Therefore, we have

rank(Mν) ≤ rank(
[
P
d>0

]
) ≤ k + 1. For convenience, let k′ := k + 1.

Then, following a determinant(volume)-maximization argument similar to Chen and Jiang [2019, Proposition 10],
we can find k′ rows from Mν , denoted as η1, . . . , ηk′ , which satisfies the following: for any i = 1, . . . , N , there
exists α1, . . . , αk′ , such that νπi =

∑k′

j=1 αj · k′ · ηj , and |αj | ≤ 1/k′ for j = 1, . . . , k′. This implies that
{νπ1

, . . . , νπN } ⊆ sp({η′1, . . . , η′k′}), where η′i := k′ηi. Now consider sp({η′1, . . . , η′k′} × ΠQ, where the Cartesian
product produces k′|ΠQ| pairs of state-action functions, defined as η′ × π := ((s, a) 7→ η′(s) · 1(a = π(s))).
We claim that {dπ1 , . . . , dπN } ⊂ sp({η′1, . . . , η′k′} × ΠQ: for any πi, since νπi can be expressed as the linear
combination of {η′1, . . . , η′k′} with coefficients satisfying the norm constraints, dπi = νπi ×πi is also the combination
of {η′1 × πi, . . . , η′k′ × πi} with exactly the same coefficients.



Since µ is supported on the entire S × A, we have wdπ/µ = diag(µ)−1dπ . Putting all results together, it suffices to
chooseW = {diag(µ)−1(η′i × πQ) : i ∈ [k′], Q ∈ Q}, and |W| ≤ (k + 1)|ΠQ|.

Remark on the |Q| Dependence in the General Case The annoying dependence on |Q| comes from the fact that
we hope the state-action occupancy vectors of different policies to have low-rank factorization (which is satisfied in
the more restricted case; see Claim 2). In general low-rank MDPs, however, only state occupancy factorizes and the
state-action one does not; a counter-example can be easily shown in contextual bandits:

Consider an MDP with 2 actions per state. d0 is uniform among |S|−1 states, all of which transition deterministically
to the last state, which is absorbing. This MDP essentially emulates a contextual bandit. Since all states share exactly
the same next-state distribution, the rank of the transition matrix is 1 regardless of how large |S| is. Now consider a
policy space ΠQ, where each policy takes action a1 in one of the |S| − 1 states, and takes a2 in all other states; there
are |S| − 1 such policies. It is easy to show that the matrix consisting of state-action occupancy dπ for all policies in
ΠQ has full-rank |S| − 1, which cannot be bounded by the rank of the transition matrix when |S| is large.

Given this difficulty, our strategy is to first find the policies whose state occupancy vectors span the entire low-
dimensional space, and take their Cartesian product with ΠQ to handle the actions, which results in the |Q| dependence.
As we will see below, we can avoid paying |Q| when the Q class is more structured.

Claim 2: Restricted Case of Knowing the Left Factorization Matrix as Features [Yang and Wang, 2019] Here
we consider the setting of P = ΦP ′, where Φ ∈ R|S×A|×k and φ(s, a)> denotes its (s, a)-th row. For the choice
of Q = {(s, a) 7→ R(s, a) + γφ(s, a)>θ : θ ∈ Rk}, note that any Q ∈ Q is in the column space of Φ+ := [Φ R],
where the reward function R is treated as an |S × A| × 1 vector. Yang and Wang [2019, Proposition 2] shows that it
is realizable and closed under Bellman update, i.e., T Q ∈ Q,∀Q ∈ Q. Therefore, the Bellman error Q− T Q is also
in the column space of Φ+. Let φ+(s, a)> be the (s, a)-th row of Φ+, and θ+

Q and θ+
TQ be the coefficients such that

Q = φ+(s, a)>θ+
Q and T Q = φ+(s, a)>θ+

TQ.

Fixing any π, consider

Eµ[(w − wdπ/µ) · (T Q−Q)]

= Eµ[(w − wdπ/µ) · (φ+(s, a)>(θ+
Q − θ

+
TQ))]

= (w − wdπ/µ)>diag(µ)Φ+(θ+
Q − θ

+
TQ).

According to the definition of εavg
Q,W , to achieve εavg

Q,W = 0 it suffices to have the following: for every π ∈ ΠQ, there
exists w ∈ sp(W), such that Eµ[(w − wdπ/µ) · (Q − T Q)] = 0 for any Q ∈ Q. Given the linear structure of Q and
T Q, we can relax the last statement to its sufficient condition:

(w − wdπ/µ)>diag(µ)Φ+ = 0>k+1,

where 0 is the all-zero vector. The rest of the proof is very similar to Claim 1: we simply stack w>dπ/µdiag(µ)Φ+ ∈
R1×(k+1) together into a |ΠQ| × (k + 1) matrix, use the determinant-maximization argument to select its rows, and
formW with the corresponding wdπ/µ after proper rescaling.

Remark Since Q is closed under Bellman update in this setting, one may also use Q as the helper class F for
MSBO. However, the complexity of F in this case only matches that ofW in the more general case (Claim 1) and is
significant worse than what we can achieve here (|W| ≤ k + 1).
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