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A PRELIMINARIES

Subsequences And Subpaths. A subsequence of a
path p is obtained by deleting some nodes from p with-
out changing the order of the remaining nodes. For a
path p = 〈X1, X2, . . . , Xm〉, the subpath from Xi to
Xk (1 ≤ i ≤ k ≤ m) is the path p(Xi, Xk) =
〈Xi, Xi+1, . . . , Xk〉.

Concatenation. We denote concatenation of paths by
⊕, so that for a path p = 〈X1, X2, . . . , Xm〉, p =
p(X1, Xr)⊕ p(Xr, Xm), for 1 ≤ r ≤ m.

D-separation. If X and Y are d-separated given Z in a
DAG D, we write X ⊥D Y|Z.

Possible Descendants. If there is a possibly causal path
from X to Y , then Y is a possible descendant of X . We
use the convention that every node is a possible descen-
dant of itself. The set of possible descendants of X in G
is PossDe(X,G). For a set of nodes X ⊆ V, we let
PossDe(X,G) = ∪X∈X) PossDe(X,G).

Bayesian And Causal Bayesian Networks. If a den-
sity f over V is consistent with DAG D = (V,E),
then (D, f) form a Bayesian network. Let F be a set
of density functions made up of all interventional densi-
ties f(v′|do(x)) for any X ⊂ V and V′ = V \X that
are consistent with D (F also includes all observational
densities consistent with D), then (D,F) form a causal
Bayesian network.

Rules Of The Do-calculus (Pearl, 2009). Let X,Y,Z
and W be pairwise disjoint (possibly empty) sets of
nodes in a DAG D = (V,E) Let DX denote the graph
obtained by deleting all edges into X from D. Similarly,
let DX denote the graph obtained by deleting all edges
out of X in D and let DXZ denote the graph obtained by
deleting all edges into X and all edges out of Z inD. Let
(D,F) be a causal Bayesian network, the following rules
hold for densities in F.

Rule 1 (Insertion/deletion of observations). If Y ⊥DX

Z|X ∪W, then

f(y|do(x),w) = f(y|do(x), z,w). (1)

Rule 2. If Y ⊥DXZ
Z|X ∪W, then

f(y|do(x), do(z),w) = f(y|do(x), z,w). (2)

Rule 3. If Y ⊥D
XZ(W)

Z|X ∪W, then

f(y|do(x),w) = f(y|do(x), do(z),w), (3)

where Z(W) = Z \An(W,DX).

A.1 EXISTING RESULTS

Theorem A.1 (Wright’s rule Wright, 1921). Let X =
AX+ε, where A ∈ Rk×k, X= (X1, . . . , Xk)

T and ε =
(ε1, . . . , εk)

T is a vector of mutually independent errors
with means zero. Moreover, let Var(X) = I. Let D =
(X,E), be the corresponding DAG such that Xi → Xj

in D if and only if Aji 6= 0. A nonzero entry Aji is
called the edge coefficient of Xi → Xj . For two distinct
nodes Xi, Xj ∈ X, let p1, . . . , pr be all paths between
Xi and Xj in D that do not contain a collider. Then
Cov(Xi, Xj) =

∑r
s=1 πs, where πs is the product of all

edge coefficients along path ps, s ∈ {1, . . . , r}.
Theorem A.2 (c.f. Theorem 3.2.4 Mardia et al., 1980).
Let X = (X1

T ,X2
T )T be a p-dimensional multivari-

ate Gaussian random vector with mean vector µ =

(µ1
T , µ2

T )T and covariance matrix Σ =

[
Σ11 Σ12

Σ21 Σ22

]
,

so that X1 is a q-dimensional multivariate Gaussian ran-
dom vector with mean vector µ1 and covariance ma-
trix Σ11 and X2 is a (p − q)-dimensional multivariate
Gaussian random vector with mean vector µ2 and co-
variance matrix Σ22. Then E[X2|X1 = x1] = µ2 +
Σ21Σ

−1
11 (x1 − µ1).



Algorithm 2: PTO algorithm (Jaber et al., 2018)

input : DAG or CPDAG G = (V,E).
output : An ordered list B = (B1, . . . ,Bk), k ≥ 1

of the bucket decomposition of V in G.

1 Let ConComp be the bucket decomposition of V
in G;

2 Let B be an empty list;
3 while ConComp 6= ∅ do
4 Let C ∈ ConComp;
5 Let C be the set of nodes in ConComp that

are not in C;
6 if all edges between C and C are into C in G

then
7 Add C to the beginning of B;
8 end
9 end

10 return B;

Lemma A.3 (c.f. Lemma C.1 of Perković et al., 2017,
Lemma 8 of Perković et al., 2018). Let X and Y be dis-
joint node sets in a MPDAG G. Suppose that there is
a proper possibly causal path from X to Y that starts
with an undirected edge in G, then there is one such
path q = 〈X,V1, . . . , Y 〉, X ∈ X, Y ∈ Y in G and
DAGs D1,D2 in [G] such that the path in D1 consist-
ing of the same sequence of nodes as q is of the form
X → V1 → · · · → Y and in D2 the path consist-
ing of the same sequence of nodes as q is of the form
X ← V1 → · · · → Y .

Lemma A.4 (Lemma 3.2 of Perković et al., 2017). Let
p∗ be a path from X to Y in a MPDAG G. If p∗ is
non-causal in G, then for every DAG D in [G] the corre-
sponding path to p∗ in D is non-causal. Conversely, if p
is a causal path in at least one DAG D in [G], then the
corresponding path to p in G is possibly causal.

Lemma A.5 (Lemma 3.5 of Perković et al., 2017). Let
p = 〈V1, . . . , Vk〉 be a definite status path in a MPDAG
G. Then p is possibly causal if and only if there is no
Vi ← Vi+1, for i ∈ {1, . . . , k − 1} in G.

Lemma A.6 (Lemma 3.6 of Perković et al., 2017). Let
X and Y be distinct nodes in a MPDAG G. If p is a pos-
sibly causal path from X to Y in G, then a subsequence
p∗ of p forms a possibly causal unshielded path from X
to Y in G.

Lemma A.7 (c.f. Lemma 1 of Jaber et al., 2018). Let
G = (V,E) be a CPDAG or DAG and let B =
(B1, . . . ,Bk), k ≥ 1, be the output of PTO(G) (Algo-
rithm 2). Then for each i, j ∈ {1, . . . k}, Bi and Bj are
buckets in V and if i < j, then Bi < Bj.

Lemma A.8 (c.f. Lemma E.6 of Henckel et al., 2019).

Let X and Y be disjoint node sets in an MPDAG G and
suppose that there is no proper possibly causal path from
X to Y that starts with an undirected edge in G. Let D
be a DAG in [G]. Then Forb(X,Y,G) ⊆ De(X,G).

B PROOFS FOR SECTION 3.1 OF THE
MAIN TEXT

Proof of Proposition 3.2. This proof follows a similar
reasoning as the proof of Theorem 2 of Shpitser and
Pearl (2006) and proof of Theorem 57 of Perković et al.
(2018).

By Lemma A.3, there is a proper possibly causal path
q = 〈X,V1, . . . , Y 〉, k ≥ 1, X ∈ X, Y ∈ Y in G and
DAGs D1 and D2 in [G] such that X → V1 → · · · → Y
is in D1 and X ← V1 → · · · → Y is in D2 (the special
case when k = 1 is X ← Y ).

Consider a multivariate Gaussian density over V with
mean vector zero, constructed using a linear structural
causal model (SCM) with Gaussian noise. In particu-
lar, each random variable A ∈ V is a linear combina-
tion of its parents in D1 and a designated Gaussian noise
variable εA with zero mean and a fixed variance. The
Gaussian noise variables {εA : A ∈ V}, are mutually
independent.

We define the SCM such that all edge coefficients except
for the ones on q1 are 0, and all edge coefficients on q1
are in (0, 1) and small enough so that we can choose the
residual variances so that the variance of every random
variable in V is 1.

The density f of V generated in this way is consis-
tent with D1 and thus, f is also consistent with G and
D2 (Lauritzen et al., 1990). Moreover, f is consistent
with DAGD11 that is obtained fromD1 by removing all
edges except for the ones on q1. Analogously, f is also
consistent with DAG D21 that is obtained from D2 by
removing all edges except for the ones on q2. Hence, let
f1(v) = f(v) and let f2(v) = f(v).

Let f1(v′|do(x)) be an interventional density consistent
with D11. Similarly let f2(v′|do(x)) be an interven-
tional density consistent with D21. Then f1(v′|do(x))
and f1(v′|do(x)) are also interventional densities con-
sistent with D1 and D2, respectively. Now, f1(y|do(x))
is a marginal interventional density of Y that can be cal-
culated from the density f1(v′|do(x)) and the analagous
is true for f2(y|do(x)) and f2(v′|do(x)).

In order to show that f1(y|do(x)) 6= f2(y|do(x)), it suf-
fices to show that f1(y|do(x = 1)) 6= f2(y|do(x = 1))
for at least one Y ∈ Y when all X variables are set to
1 by a do-intervention. In order for f1(y|do(x = 1)) 6=



f2(y|do(x = 1)) to hold, it is enough to show that the ex-
pectation of Y is not the same under these two densities.
Hence, let E1[Y | do(X = 1)] denote the expectation of
Y , under f1(y|do(X = 1)) and let E2[Y | do(X = 1)]
denote the expectation of Y, under f2(y|do(X = 1)).

Since Y is d-separated from X in D21
X

we can use Rule
3 of the do-calculus (see equation (3)) to conclude that
E2[Y | do(X = 1)] = E[Y ] = 0. Similarly, since Y
is d-separated from X in D11

X , we can use Rule 2 of the
do-calculus (see equation (2)) to conclude that E1[Y |
do(X = 1)] = E[Y |X = 1]. By Theorems A.2 and
A.1, E[Y | X = 1] = Cov(X,Y ) = a, where a is
the product of all edge coefficients on q1. Since a 6= 0,
E1[Y | do(X = 1)] 6= E2[Y | do(X = 1)]. �

C PROOFS FOR SECTION 3.2 OF THE
MAIN TEXT

Lemma C.1. Let D be any subset of V in MPDAG G =
(V,E). Then the call to algorithm PCO(D,G) will
complete. Meaning that, at each iteration of the while
loop in PCO(D,G) (Algorithm 1), there is a bucket C
among the remaining buckets in ConComp (the bucket
decomposition of V) such that all edges between C and
ConComp \C are into C in G.

Proof of Lemma C.1. Let C1, . . . ,Ck be the buckets
in ConComp at some iteration of the while loop in the
call to PCO(D,G). Suppose for contradiction that there
is no bucket Ci, i ∈ {1, . . . , k} such that all edges be-
tween Ci and ∪kj=1Cj \ Ci are into Ci. We will show
that this leads to the conclusion that G is not acyclic (a
contradiction).

Consider a directed graph G1 constructed so that each
bucket in ConComp represents one node in G1. Mean-
ing, a bucket Ci, i ∈ {1, . . . , k} is represented by a node
Ci in G1. Also, let Ci → Cj , i, j ∈ {1, . . . , k}, be in G1
if A→ B is in G and A ∈ Ci, B ∈ Cj .

Since there is no bucket Ci in ConComp such that all
edges between Ci and ∪kj=1Cj \Ci are into Ci, there is
either a directed cycle in G1, or Cl → Cr and Cr → Cl

is in G1 for some l, r ∈ {1, ..., k}. For simplicity, we
will refer to both previously mentioned cases as directed
cycles.

Let us choose one such directed cycle in G1, that is, let
Cr1 → · · · → Crm → Cr1 , 2 ≤ m ≤ k, r1, . . . , rm ∈
{1, . . . , k}, be in G1. Let Ai ∈ Cri and Bi+1 ∈ Cri+1

,
for all i ∈ {1, . . . ,m− 1}, such that Ai → Bi+1 is in G.
Additionally, let Am ∈ Crm , and B1 ∈ Cr1 such that
Am → B1 is in G.

Since A1 → B2 is in G and B2 and A2 are in the same

bucket Cr2 in G, by Lemma C.2, A1 → A2. The same
reasoning can be applied to conclude that Ai → Ai+1 ,
for all i ∈ {1, ...,m−1} and also that Am → A1 is in G.
Thus, A1 → A2 → · · · → Am → A1, a directed cycle
is in G, a contradiction. �

Proof of Lemma 3.5. Lemma C.2 and Lemma A.7 to-
gether imply that Algorithm 2 can be applied to a
MPDAG G and also that the output of PTO(G) is the
same as that of PCO(V,G). Furthermore, PTO(G) =
PCO(V,G) = (B1, . . . ,Br) r ≥ k, where for all i, j ∈
{1, . . . , r}, Bi and Bj are buckets in V in G, and if i < j,
then Bi < Bj with respect to G.

The statement of the lemma then follows directly from
the definition of buckets (Definition 3.3) and Corollary
3.4, since for each l ∈ {1, . . . , k}, there exists s ∈
{1, . . . , r} such that Bl = D ∩ Bs and (B1, . . . ,Bk)
is exactly the output of PCO(V,G). �

Lemma C.2. Let B be a bucket in V in MPDAG G =
(V,E) and let X ∈ V, X /∈ B. If there is a causal path
from X to B in G, then for every node B ∈ B there is a
causal path from X to B in G.

Proof of Lemma C.2. Let p be a shortest causal path
from X to B in G. Then p is of the form X → . . . A →
B, possibly X = A and A /∈ B.

Let B′ ∈ B, B′ 6= B and let q = 〈B = W1, . . . ,Wr =
B′〉, r > 1 be a shortest undirected path from B to B′ in
G. It is enough to show that there is an edge A → B′ is
in G.

Since A → B − W2, by the properties of MPDAGs
(Meek, 1995, see Figure 2 in the main text), A→W2 or
A−W2 is in G. SinceA /∈ B,A→W2 is in G. If r = 2,
we are done. Otherwise, A → W2 −W3 − · · · −Wk is
in G and and we can apply the same reasoning as above
iteratively until we obtain A→Wk is in G. �

D PROOFS FOR SECTION 3.3 OF THE
MAIN TEXT

The proof of Theorem 3.6 is given in the main text. Here
we provide proofs for the supporting results.

Lemma D.1. Let X and Y be disjoint node sets in V
in MPDAG G = (V,E) and suppose that there is no
proper possibly causal path from X to Y that starts with
an undirected edge in G. Further, let (B1, . . .Bk) =
PCO(An(Y,GV\X),G), k ≥ 1.

(i) For i ∈ {1, . . . , k}, there is no proper possibly
causal path from X to Bi that starts with an undi-
rected edge in G.



(ii) For i ∈ {2, . . . , k}, let Pi = (∪i−1j=1Bi)∩Pa(Bi,G).
Then for every DAG D in [G] and every interven-
tional density f consistent with D we have

f(bi|bi−1, . . . ,b1, do(x)) = f(bi|pi, do(x)).

(iii) For i ∈ {2, . . . , k}, let Pi = (∪i−1j=1Bi)∩Pa(Bi,G).
For i ∈ {1, . . . , k}, let Xpi

= X∩Pa(Bi,G). Then
for every DAG D in [G] and every interventional
density f consistent with D we have

f(bi|pi, do(x)) = f(bi|pi, do(xpi
)).

Additionally, f(b1|do(x)) = f(b1|do(xp1)).

(iv) For i ∈ {2, . . . , k}, let Pi = (∪i−1j=1Bi)∩Pa(Bi,G).
For i ∈ {1, . . . , k}, let Xpi

= X∩Pa(Bi,G). Then
for every DAG D in [G] and every interventional
density f consistent with D we have

f(bi|pi, do(xpi
)) = f(bi|pa(bi,G)),

for values pa(bi,G) of Pa(bi,G) that are in agree-
ment with x.

Proof of Lemma D.1. (i): Suppose for a contradiction
that there is a proper possibly causal path from X to
Bi that starts with an undirected edge in G. Let p =
〈X, . . . , B〉, X ∈ X, B ∈ Bi, be a shortest such path in
G. Then p is unshielded in G (Lemma A.6).

Since B ∈ An(Y,GV\X) there is a causal path q from
B to Y in G that does not contain a node in X. No node
other thanB is both on q and p (otherwise, by definition p
is not possibly causal from X to B). Hence, by Lemma
D.2, p ⊕ q is a proper possibly causal path from X to
Y that starts with an undirected edge in G, which is a
contradiction.

(ii): Let Ni = (∪i−1j=1Bj) \ Pa(Bi,G). If
Bi ⊥DX

Ni | (X ∪ Pi), then by Rule 1 of the do
calculus: f(bi|bi−1, . . . ,b1, do(x)) = f(bi|pi, do(x))
(see equation (1)).

Suppose for a contradiction that there is a path from Bi

to Ni that is d-connecting given X ∪ Pi in DX. Let
p = 〈Bi, . . . , N〉, Bi ∈ Bi, N ∈ Ni be a shortest such
path. Let p∗ be the path in G that consists of the same
sequence of nodes as p in DX.

First suppose that p is of the form Bi → . . . N . Since
Bi ∈ Bi and Ni ⊆ (∪i−1j=1Bj), p is not causal from Bi to
N (Lemma 3.5). Hence, let C be the closest collider to
Bi on p, that is, p has the form Bi → · · · → C ← . . . N .
Since p is d-connecting given X ∪Pi in DX, C must be
an ancestor of Pi in DX. However, then there is a causal
path from Bi ∈ Bi to Pi ⊆ (∪i−1j=1Bj) which contradicts
Lemma 3.5.

Next, suppose that p is of the form Bi ← A . . .N ,
A /∈ Bi. Since Pa(Bi,G) ⊆ (X ∪ Pi) and since p
is d-connecting given (X ∪ Pi), Bi − A is in G and
A /∈ (X ∪Pi).

Note that p∗ cannot be undirected, since that would im-
ply that N ∈ Bi and contradict Lemma 3.5. Hence, let
B be the closest node to Bi on p∗ such that p∗(B,N)
starts with a directed edge (possibly B = A). Then p∗ is
either of the form Bi − A− · · · − L− B → R . . .N or
of the form Bi −A− · · · − L−B ← R . . .N .

Suppose first that p∗ is of the formBi−A−· · ·−L−B →
R . . .N . Then B /∈ (X∪Pi ∪Bi) otherwise, p is either
blocked by X ∪ Pi, or a shorter path could have been
chosen.

Let (B
′

1, . . .B
′

r) = PCO(V,G), r ≥ k. Let l ∈
{i, . . . , r} such that B

′

l ∩ Bi 6= ∅, then Bi, B ∈ B
′

l

and N ∈ (∪l−1j=1B
′

j). Now consider subpath p(B,N).
By Lemma 3.5, p(B,N) cannot be causal from B to N .
Hence, there is a collider on p(B,N) and we can derive
the contradiction using the same reasoning as above.

Suppose next that p∗ is of the form Bi −A− · · · − L−
B ← R . . .N . Then either R → L or R − L is in G
(Meek, 1995, see Figure 4 in the main text). Then 〈L,R〉
is also an edge in DX otherwise, L or R is in X and a
non-collider on p, so p would be blocked by X ∪Pi.

Hence, q = p(Bi, L)⊕〈L,R〉⊕p(R,N) is a shorter path
than p in DX. If L and R have the same collider/non-
collider status on q on p, then q is also d-connecting given
X ∪Pi, which would contradict our choice of p. Hence,
the collider/non-collider status of L or R, is different on
p and q. We now discuss the cases for the change of
collider/non-collider status of L and R and derive a con-
tradiction in each.

Suppose that L is a collider on q, and a non-collider on
p. This implies thatW → L→ B ← R is a subpath of p
and L← R is in DX. Even though L is not a collider on
p, B is a collider on p and L ∈ An(B,DX). Since p is
d-connecting given X∪Pi, De(B,DX)∩ (X∪Pi) 6= ∅.
However, then also De(L,DX) ∩ (X ∪ Pi) 6= ∅ and
q is also d-connecting given X ∪ Pi and a shorter path
between Bi and Ni than p, which is a contradiction.

The contradiction can be derived in exactly the same way
as above in the case whenR is a collider on q, and a non-
collider on p. Since B ← R is in DX, R cannot be
anything but a non-collider on q, so the only case left to
consider is if L is a non-collider on q and a collider on p.

For L to be a non-collider on q and a collider on p, W →
L← B ← R must be a subpath of p and L→ R should
be in DX. But then there is a cycle in DX, which is a
contradiction.



(iii): We will show that f(bi|pi, do(x)) =
f(bi|pi, do(xpi

)). The simpler case, f(b1|do(x)) =
f(b1|(xp1) follows from the same proof, when Bi is
replaced by B1 and Pi is removed.

Let Xni
= X \ Pa(Bi,G) and let X

′

ni
= Xni

\
An(Pi,DXpi

). That is X ∈ X
′

ni
if X ∈ Xni

and if
there is no causal path from X to Pi in D that does not
contain a node in Xpi

.

Note that Pa(Bi,G) = Xpi
∪ Pi. By Rule 3 of the

do-calculus, for f(bi|pi, do(x)) = f(bi|pi, do(xpi
))

to hold, it is enough to show that Bi ⊥D
Xpi

X
′
ni

Xni
|Pa(Bi,G) (see equation (3)).

Suppose for a contradiction that there is a d-connecting
path from Bi to Xni

in D
Xpi

X′
ni

. Let p = 〈Bi, . . . , X〉,
Bi ∈ Bi, X ∈ Xni

, be a shortest such path in D
Xpi

X′
ni

.

Let p∗ be the path in G that consists of the same sequence
of nodes as p in D

Xpi
X′

ni

. This proof follows a very

similar line of reasoning to the proof of (ii) above.

Let (B
′

1, . . .B
′

r) = PCO(V,G), r ≥ k. Let l ∈
{i, . . . , r} such that B

′

l ∩ Bi 6= ∅, then Bi ∈ B
′

l and
Pa(Bi,G) ⊆ (∪i−1j=1Bj).

Suppose that p is of the form Bi → . . . X . If X ∈ X
′

ni
,

then p is not a causal path since p is a path in D
Xpi

X′
ni

.

Otherwise, X ∈ An(Pi,DXpi
) and so any causal path

from Bi to X would need to contain a node in Xpi
and

hence, would be blocked by Pa(Bi,G). Thus, p is not a
causal path from Bi to X .

Hence, let C be the closest collider to Bi on p, that is,
p has the form Bi → · · · → C ← . . . X . Since p is
d-connecting given Pa(Bi,G), C is be an ancestor of
Pa(Bi,G) in D

Xpi
X′

ni

. However, this would imply that

there is a causal path from Bi ∈ B
′

l to Pa(Bi,G) ⊆
(∪i−1j=1Bj) in DXpi

, which contradicts Lemma 3.5.

Next, suppose that p is of the form Bi ← A . . .X ,
A /∈ Bi. Since p is d-connecting given Pa(Bi,G),
A /∈ Pa(Bi,G). Hence, Bi −A is in G.

Then A ∈ B
′

l. Note that by (i) above, X ∩ B
′

l = ∅, so
p∗ is not an undirected path in G. Hence, let B be the
closest node to Bi on p∗ such that p∗(B,X) starts with a
directed edge (possibly B = A). Then p∗ is either of the
form Bi − A − · · · − L − B → R . . .X or of the form
Bi −A− · · · − L−B ← R . . .X .

Suppose first that p∗ is of Bi − A − · · · − L − B →
R . . .X . Then B ∈ B

′

l and so B /∈ X. Since p is d-
connecting given Pa(Bi,G), B /∈ Pa(Bi,G) and addi-
tionally, B /∈ Bi otherwise, a shorter path could have

been chosen.

Now consider subpath p(B,X). There is at least one
collider on p(B,X). Since B,Bi ∈ B

′

l, the same rea-
soning as above can be used to derive a contradiction in
this case.

Suppose next that p∗ is of the form Bi −A− · · · − L−
B ← R . . .X . Then either R → L or R − L is in G
(Meek, 1995, see Figure 4 in the main text). We first
show that in either case, edge 〈L,R〉 is also in D

Xpi
X′

ni

.

Since L ∈ B
′

l and since X ∩B
′

l = ∅, L /∈ X. Hence, if
R→ L is in G, R→ L is in D

Xpi
X′

ni

. If R − L is in G,

then R ∈ B
′

l and since X ∩B
′

l = ∅, R /∈ X, so 〈L,R〉
is in D

Xpi
X′

ni

.

Hence, q = p(Bi, L) ⊕ 〈L,R〉 ⊕ p(R,X) is a shorter
path than p in D

Xpi
X′

ni

. If L and R have the same

collider/non-collider status on q on p, then q is also d-
connecting given Pa(Bi,G), which would contradict our
choice of p. Hence, the collider/non-collider status of L
or R, is different on p and q. We now discuss the cases
for the change of collider/non-collider status of L and R
and derive a contradiction in each.

Suppose that L is a collider on q, and a non-collider
on p. This implies that W → L → B ← R is
a subpath of p and L ← R are in D

Xpi
X′

ni

. Even

though L is not a collider on p, B is a collider on p and
L ∈ An(B,D

Xpi
X′

ni

). Since p is d-connecting given

Pa(Bi,G), De(B,D
Xpi

X′
ni

) ∩ Pa(Bi,G) 6= ∅. How-

ever, then also De(L,D
Xpi

X′
ni

) ∩ Pa(Bi,G) 6= ∅ and q

is also d-connecting given Pa(Bi,G) and a shorter path
between Bi and Xni

than p, which is a contradiction.

The contradiction can be derived in exactly the same way
as above in the case whenR is a collider on q, and a non-
collider on p. Since B ← R is in D

Xpi
X′

ni

, R cannot be

anything but a non-collider on q, so the only case left to
consider is if L is a non-collider on q and a collider on p.

For L to be a non-collider on q and a collider on p, W →
L← B ← R must be a subpath of p and L→ R should
be in D

Xpi
X′

ni

. But then there is a cycle in D
Xpi

X′
ni

,

which is a contradiction.

(iv):. If Bi ⊥DXpi
Xpi
|Pi, then f(bi|pi, do(xpi

)) =

f(bi|pa(bi,G)) by Rule 2 of the do calculus (equation
(2)).

Suppose for a contradiction that there is a d-connecting
path from Bi to Xpi

in DXpi
. Let p = 〈Bi, . . . , X〉,

Bi ∈ Bi, X ∈ Xpi
, be a shortest such path in DXpi

. Let



p∗ be the path in G that consists of the same sequence of
nodes as p in DX. This proof follows a very similar line
of reasoning to the proof of (ii) above.

Let (B
′

1, . . .B
′

r) = PCO(V,G), r ≥ k. Let l ∈
{i, . . . , r} such that B

′

l ∩ Bi 6= ∅, then Bi ∈ B
′

l and
by (i) above, Xpi

⊆ (∪l−1j=1B
′

j).

Suppose that p is of the form Bi → . . . X . Since Bi ∈
B

′

l and Xpi
⊆ (∪l−1j=1B

′

j), by Lemma 3.5, there is at least
one collider on p. Hence, let C be the closest collider to
Bi on p, that is, p has the form Bi → · · · → C ← . . . X .
Since p is d-connecting given Pi in DXpi

, C is be an
ancestor of Pi in DXpi

. However, this would imply that

there is a causal path from Bi ∈ Bi to Pi ⊆ (∪i−1j=1Bj)
in DXpi

, which contradicts Lemma 3.5.

Next, suppose that p is of the form Bi ← A . . .X , A /∈
Bi. Since p is a path in DXpi

, A /∈ Xpi
. Additionally,

since p is d-connecting given Pi,A /∈ Pi. Hence,Bi−A
is in G.

Then A ∈ B
′

l and since X ∈ (∪l−1j=1B
′

j), p
∗(A,X) is not

an undirected path in G. Hence, let B be the closest node
to Bi on p∗ such that p∗(B,X) starts with a directed
edge (possibly B = A). Then p∗ is either of the form
Bi − A − · · · − L − B → R . . .X or of the form Bi −
A− · · · − L−B ← R . . .X .

Suppose first that p∗ is of Bi − A − · · · − L − B →
R . . .X . Then B ∈ B

′

l and since Xpi
⊆ (∪l−1j=1B

′

j),
B /∈ Xpi

. Since p is d-connecting given Pi, B /∈ Pi

and additionally, B /∈ Bi otherwise, a shorter path could
have been chosen.

Now consider subpath p(B,X). Since B,Bi ∈ B
′

l, the
same reasoning as above can be used to derive a contra-
diction in this case.

Suppose next that p∗ is of the form Bi −A− · · · − L−
B ← R . . .X . Then either R → L or R − L is in G
(Meek, 1995, see Figure 4 in the main text). Since R →
B is in DXpi

, R /∈ Xpi
. Since L ∈ B

′

l, L /∈ Xpi
, so

〈L,R〉 is also in DXpi
.

Hence, q = p(Bi, L)⊕〈L,R〉⊕p(R,X) is a shorter path
than p in DXpi

. If L and R have the same collider/non-
collider status on q on p, then q is also d-connecting given
Pi, which would contradict our choice of p. Hence,
the collider/non-collider status of L or R, is different on
p and q. We now discuss the cases for the change of
collider/non-collider status of L and R and derive a con-
tradiction in each.

Suppose that L is a collider on q, and a non-collider on
p. This implies that W → L → B ← R is a subpath
of p and L ← R are in DXpi

. Even though, L is not a

collider on p,B is a collider on p and L ∈ An(B,DXpi
).

Since p is d-connecting given Pi, De(B,DXpi
) ∩ Pi 6=

∅. However, then also De(L,DXpi
) ∩ Pi 6= ∅ and q is

also d-connecting given Pi and a shorter path between
Bi and Xpi

than p, which is a contradiction.

The contradiction can be derived in exactly the same way
as above in the case whenR is a collider on q, and a non-
collider on p. Since B ← R is in DXpi

, R cannot be
anything but a non-collider on q, so the only case left to
consider is if L is a non-collider on q and a collider on p.

For L to be a non-collider on q and a collider on p, W →
L← B ← R must be a subpath of p and L→ R should
be in DXpi

. But then there is a cycle in DXpi
, which is a

contradiction. �

Lemma D.2. Let X,Y and Z be distinct nodes in
MPDAG G = (V,E). Suppose that there is an un-
shielded possibly causal path p fromX to Y and a causal
path q from Y to Z in G such that the only node that p
and q have in common is Y . Then p ⊕ q is a possibly
causal path from X to Z.

Proof of Lemma D.2. Suppose for a contradiction that
there is an edge Vq → Vp, where Vq is a node on q and
Vp is a node on p (additionally, Vp 6= Y 6= Vq). Then
p(Vp, Y ) cannot be a causal path from Vp to Y since oth-
erwise there is a cycle in G. So p(Vp, Y ) takes the form
Vp − Vp+1 . . . Y .

Let D be a DAG in [G], that contains Vp → Vp+1. Since
p(Vp, Y ) is an unshielded possibly causal path in G, it
corresponds to Vp → · · · → Y in D. Then Vq → Vp →
· · · → Y and q(Y, Vq) form a cycle inD, a contradiction.
�

Proof of Corollary 3.7. The first statement in Corollary
3.7 follows from the proof of Theorem 3.6 when replac-
ing Y with V and X with empty set.

For the second statement in Corollary 3.7, note that since
there are no undirected edgesX−V in G, whereX ∈ X
and V ∈ V′, some of the buckets Vi, i ∈ {1, . . . , k} in
the bucket decomposition of V will contain only nodes in
X. Hence, obtaining the bucket decomposition of V′ =
V \X is the same as leaving out buckets Vi that contain
only nodes in X from V1, . . . ,Vk. The statement then
follows from Theorem 3.6 when taking Y = V′. �

E PROOFS FOR SECTION 4 OF THE
MAIN TEXT

Proof of Proposition 4.2. If the causal effect of X on
Y is not identifiable in G, by Theorem 3.6, there is a
proper possibly causal path from X to Y that starts with



an undirected edge in G. Then by Theorem 4.1, there is
no adjustment set relative to (X,Y ) in G.

Hence, suppose that there is no proper possibly causal
path fromX to Y that starts with an undirected edge in G
and consider Pa(X,G). By Theorem 4.1, it is enough to
show that Pa(X,G) satisfies the generalized adjustment
criterion relative to (X,Y).

If G is a DAG, Pa(X,G) is an adjustment set relative to
(X,Y ) by Theorem 3.3.2 of Pearl (2009). Hence, sup-
pose that G is not a DAG.

Since G is acyclic, Pa(X,G) ∩ De(X,G) = ∅. Addi-
tionally, by Lemma A.8, Forb(X,Y,G) ⊆ De(X,G).
Hence, Pa(X,G) satisfies Pa(X,G) ∩ Forb(X,Y,G) =
∅, that is, condition 2 in Theorem 4.1 relative to (X,Y )
in G.

Consider a non-causal definite status path p from X to
Y . If p is of the form X ← . . . Y in G, then p is blocked
by Pa(X,G). If p is of the form X → . . . Y , then p
contains at least one collider C ∈ De(X,G) and since
Pa(X,G) ∩De(X,G) = ∅, p is blocked by Pa(X,G).

Lastly, suppose that p is of the formX−. . . Y . Since p is
a non-causal path from X to Y and since p is of definite
status in G, by Lemma A.5, there is at least one edge
pointing towardsX on p. LetD be the closest node toX
on p such that p(D,Y ) is of the form D ← . . . Y in G.
Then by Lemma A.5, p(X,D) is a possibly causal path
from X to D so let p′ be an unshielded subsequence of
p(X,D) that forms a possibly causal path from X to D
in G (Lemma A.6). Additionally, p is of definite status,
so D must be a collider on p.

In order for p to be blocked by Pa(X,G) it is enough
to show that De(D,G) ∩ Pa(X,G) = ∅. Suppose for a
contradiction that E ∈ De(D,G) ∩ Pa(X,G). Let qbe
a directed path from D to E in G. Then p′ and q sat-
isfy Lemma D.2 in G, so p′ ⊕ q is a possibly causal path
from X to E. By definition of a possibly causal path in
MPDAGs, this contradicts that E ∈ Pa(X,G). �

Lemma E.1. Let X and Y be disjoint node sets in an
MPDAG G = (V,E). If there is no possibly causal path
from X to Y in G, then for any observational density f
consistent with G we have

f(y|do(x)) = f(y).

Proof of Lemma E.1. Lemma E.1 follows from Lemma
A.4 and Rule 3 of the do-calculus of Pearl (2009) (see
equation (3)). �
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