
Supplementary Material: Neural Likelihoods via Cumulative Distribution
Functions

Pawel Chilinski
University College London

pawel.chilinski.14@ucl.ac.uk

Ricardo Silva
University College London and The Alan Turing Institute

ricardo@stats.ucl.ac.uk

S1 RELATED WORK

In this section, we give an overview of the ideas that in-
spired our work and constitute the fundamental building
blocks of our method.

S1.1 MONOTONIC NEURAL NETWORKS FOR
FUNCTION APPROXIMATION

The first approach to model monotonic functions with
neural networks added a penalty term to the learning
objective function (Sill and Abu-Mostafa, 1996). No
hard constraints were imposed, which for our purposes
would mean negative density functions possibly appear-
ing during training and testing. Sill (1997) proposed
a model that encodes a hard monotonicity constraint,
which was deemed necessary to make learning efficient
for monotone regression functions. The inputs were
first transformed linearly into disjoint groups of hidden
units, by using constrained weights which were positive
for increasing monotonicity and negative for decreasing
monotonicity (weight constraints were enforced by ex-
ponentiating each free parameter). The groups were pro-
cessed by a “max” operator and a “min” operator. The
max operator modelled the convex part of the mono-
tone function and the min operator modelled the con-
cave part. The whole model could be learned by gra-
dient descent. Authors proved that their model could ap-
proximate any continuous monotone function with finite
first partial derivative to a desired accuracy. This model
had several hyper-parameters, including the number of
groups or number of hyper-planes within the group.

Lang (2005) proved that if the output and hidden-to-
hidden weights were positive for a single-layer network,
then they could constrain input-to-hidden layers weights
selectively to be positive/negative depending on mono-
tonicity constraints on selected input variables. In this
way, they could choose for which input variables they
want to preserve monotonicity of the output. They also

observed that min/max networks (Sill, 1997) tended to be
more expensive to train than this simple neural network
architecture with constrained weights.

The review by Minin et al. (2010) tested several ap-
proaches on a variety of datasets which exhibited mono-
tonicity on some of the inputs. Authors concluded
that there was no definite winner and the evaluated ap-
proaches excel in different areas and applications.

S1.2 NEURAL DENSITY ESTIMATION

One of the first methods to build conditional density es-
timators using neural networks was the Mixture Den-
sity Networks (MDNs) of Bishop (1994). The main
motivation behind this work was the inability of stan-
dard regression models to summarize multimodal out-
puts with conditional means. MDNs parameterize con-
ditional mixtures of Gaussians where the neural network
outputs mixing probabilities and Gaussian parameters for
each mixture.

Another approach, presented by Wang (1994), trained a
density estimator by fitting a monotonic neural network
to match a smoothed empirical CDF. Unlike our work,
this was solely a smoother that reconstructed the empir-
ical CDF using a function approximator. There was no
likelihood function or supervised signal.

The method presented by Likas (2001) tackles the prob-
lem of normalizing the output of a neural network to di-
rectly approximate density functions. It uses numerical
integration over the domain of the function.

Two methods were presented by Magdon-Ismail et al.
(2002) for unconditional density estimation using neu-
ral networks and CDFs. They both rely on the empirical
CDF as targets to be approximated, with no explicit like-
lihood function being used during training. The reliance
on the empirical CDF to provide training signal also im-
plies that there is no straightforward way of adapting it
to the conditional density estimation problem.

An approach based on the autoregressive factorized rep-
resentation of the density function was presented by
Larochelle and Murray (2011) and Uria et al. (2013).
In the continuous case, the proposed model parameter-
izes each conditional marginal using what is essentially
a MDN (Bishop, 1994). All neural networks that pa-
rameterize the mixtures partially share parameters, in a
way that also speeds up computation as the number of
parameters will grow only linearly with dimensionality.
The model was extended in Uria et al. (2014) to use deep
neural networks to parameterize an ensemble of variable
orderings.

Trentin (2016) observed that using a neural network to
approximate the CDF function, and then differentiating
it to obtain a density function estimate, can give poor
results. This does not affect MONDE, as our objec-
tive function maximizes the likelihood function instead
of directly approximating a measure of distance to the
empirical CDF as done by, e.g., Magdon-Ismail et al.
(2002). His proposal included a model of the density
function that must be normalized numerically. Zhang
(2018) improved on the work of Magdon-Ismail et al.
(2002), which comes from using hard monotonicity con-
straints instead of the penalization approach used by the
other authors.

Dinh et al. (2015) uses a transformation of density for-
mula. This method applies an invertible transformation,
with an easily computable determinant of the Jacobian,
to map data with complex dependencies into simple fac-
torized parametric distributions. The MONDE models
have the advantage of providing a directly computable
CDF, with the disadvantage of not providing a straight-
forward way to sample from the learned distribution.
This estimator was extended by Dinh et al. (2017); Papa-
makarios et al. (2017); Huang et al. (2018); De Cao and
Titov (2019) and others, mainly by using more complex
transformations with tractable Jacobians.

A model that uses efficient parameter sharing to encode
autoregressive dependency structure was applied in Ger-
main et al. (2015). Authors modified the autoencoder
using autoregressive transformations so the output can
represent a valid density function. The model outputs a
binary density by using logistic outputs or mixtures of
parametric models for real valued data. The ideas pre-
sented in this work were used later in Papamakarios et al.
(2017). We use similar parametrization in the autoregres-
sive MONDE model described in section 2.2 with an ad-
ditional constraint on a subset of parameters that have to
be non-negative, so the output of the estimator represents
valid conditional CDFs.

x1 xD. . .

. . .

. . .

. . .
y1

. . .

. . .

. . .

. . .

σ

∂F1(y1|x)
∂y1

x1 xD. . . y1 yK−1. . .

. . .

. . .

. . .
yK

. . .

. . .

. . .

. . .

σ

∂FK(yK |x,y<K)
∂yK

F (yK |x,y<K)

. . .

∏
fK(yK |x,y<K)f1(y1|x)

f(y|x)

Figure S1: Autoregressive MONDE, The Multivariate
Monotonic Neural Density Estimator architecture.

S2 THE MONOTONIC NEURAL
DENSITY ESTIMATOR

S2.1 AUTOREGRESSIVE MONDE

S2.1.1 MADE Implementation Details

We now present implementation details about the model
described in the previous section. Originally, the autore-
gressive model has been implemented as shown in Figure
S1. But this approach has not scaled well to a larger num-
ber of dimensions because each component had its own
independent computational graph. To speed up the train-
ing and decrease the number of parameters, we applied
the ideas of Germain et al. (2015), resulting in the model
presented in Figure 2. Each layer l has its own param-
eter matrix that is constrained in a way such the com-
putational graph can represent valid conditional CDFs
for each dimension, using autoregressive representation.
For example, covariates x and response variables y are
transformed into the first hidden layer according to the
formula

σ(
[
x1 . . . xD y01 . . . y0K

]
×W1) =[

y11,1 y11,2 . . . y11,K y12,1 . . . y1M,K

]
,

where σ(·) is the sigmoid function (with range of (0, 1))
applied elementwise on the vector input; W1 is a con-
strained matrix of size D + K × KM , where D is the
number of dimensions of the covariate vector, K is the
dimension of the response vector and M is the number
ofK-element vectors in the hidden layer; and matrix W1

has following structure,



w1
1,1 w1

1,2 . . . w1
1,K . . . w1

1,KM

w1
2,1 w1

2,2 . . . w1
2,K . . . w1

2,KM

. . .
w1
D,1 w1

D,2 . . . w1
D,K . . . w1

D,KM

w1
D+1,1 w1

D+1,2 . . . w1
D+1,K . . . w1

D+1,KM

. . .
w1
D+K,1 w1

D+K,2 . . . w1
D+K,K . . . w1

D+K,KM


,

where

• w1
i,. ∈ R for i ∈ [1, D],

• w1
D+k,k+mK ∈ R+ ∪ {0} for k ∈ [1,K], m ∈

[0,M − 1],

• w1
D+k1,k2+mK

∈ R for k1 < k2, k1,2 ∈ [1,K],
m ∈ [0,M − 1],

• w1
D+k1,k2+mK

= 0 for k1 > k2, k1,2 ∈ [1,K],
m ∈ [0,M − 1].

Non negative parameters are obtained by squaring the
respective free parameters of the transformation matrix.
We constrain selected parameters to be zero by multi-
plying the parameter matrix elementwise by a mask ma-
trix containing 0 at locations which should be zeroed and
1 otherwise, as in the original MADE implementation.
Each l − 1-th hidden layer is then transformed into the
next l-th hidden layer as follows:

σ(
[
yl−11,1 yl−11,2 . . . yl−11,K yl−12,1 . . . yl−1M,K

]
×Wl) =[

yl1,1 yl1,2 . . . yl1,K yl2,1 . . . ylM,K

]
,

where Wl is a constrained matrix of size KM ×KM ,
wl1,1 wl1,2 . . . wl1,K . . . wl1,KM
wl2,1 wl2,2 . . . wl2,K . . . wl2,KM
. . .

wlKM,1 wlKM,2 . . . wlKM,K . . . wlKM,KM

 ,
such that:

• wlk+m1K,k+m2K
∈ R+ ∪ {0} for k ∈ [1,K],

m1,2 ∈ [0,M − 1],

• wlk1+m1K,k2+m2K
∈ R for k1 < k2, k1,2 ∈ [1,K],

m1,2 ∈ [0,M − 1],

• wlk1+m1K,k2+m2K
= 0 for k1 > k2, k1,2 ∈ [1,K],

m1,2 ∈ [0,M − 1].

The L-th layer outputs a K-dimensional vector in which
each component represents the conditional CDF:

σ(
[
yL−11,1 yL−11,2 . . . yL−11,K yL−12,1 . . . yL−1M,K

]
×

WL) =
[
yL1,1 yL1,2 . . . yL1,K

]
,

where WL is constructed in similar way as hidden to
hidden parameter matrices. The presented composition
of layers constrains the yL output to fulfil requirements
that has to be met by valid autoregressive representation
of the joint CDFs i.e.

• yL1 = tw(y+1) = F1(y1),

• yL2 = tw(y1, y
+
2) = F2(y2|y1),

• . . .

• yLK = tw(y<k, y
+
K) = F1(yk|y<k).

Here, tw represents the final output of the computa-
tional graph of the model as parameterized by w =
W1, ...,WL. By construction, tw(y<k, y

+
k) is nonde-

creasing monotonic on input yk, and unconstrained on
inputs y1 . . . yk−1. Having obtained a parameterization
that computes valid conditional CDFs, we can construct
the density estimator by computing the product of the
derivatives of conditional CDFs with respect to their re-
spective target variables,

f(y|x) = f(y1|x)f(y2|x, y1) . . . f(yk|x,y<k) =

∂F1(y1|x)

∂y1

∂F2(y2|x, y1)

∂y2
. . .

∂FK(yK |x,y<K)

∂yK
.

We optimize parameters w by maximizing expected log-
likelihood using a Monte Carlo estimate i.e. we max-
imize the average log-likelihood over the batch of data
points sampled randomly from the training dataset.

S2.1.2 Finer Remarks

In this section, we give further implementation details for
the autoregressive model.

• We modified the MONDE approach to constrain the
parameters matrices of Germain et al. (2015) by in-
troducing non negative weights. This requirement
is identical to the one used in univariate MONDE
described in Section 2.1.

• Compared to MADE, we have the size of each hid-
den layer being equal to a multiple of the response
vector size. In this way, each layer propagates the
same number of autoregressive blocks of vectors

that are used at the top layer to construct CDFs. This
would be very inefficient for very high dimensional
data. We have also implemented a version of the
estimator which at each hidden layer we sample the
nodes like it is done in MADE.

• To stabilize the learning in the final stages of the
training, we increase the batch size by a factor of
2 whenever we experience numerical problems dur-
ing training (i.e. we use the last good parameters
before gradient computation or network evaluation
resulted in numerical problems, and restart training
with doubled batch size). This method to increase
batch size is inspired by Smith et al. (2018). We
found this to be a very important procedure used
during training so we could achieve results compa-
rable to the ones shown by Huang et al. (2018). We
also increase the batch size after the performance
of the estimator on the validation set does not im-
prove on 10 consecutive training epochs. It remains
to be checked whether introducing techniques like
batch or activation normalization would render this
approach unnecessary.

• We found that using a scaled and translated tanh
to the range of (0, 1) in all layers (hidden and fi-
nal) helps to stabilize the learning process. We
found empirically that using it causes fewer numer-
ical problems than using directly the sigmoid func-
tion. There is at least one possible explanation of
this phenomenon: tanh has larger gradients than a
regular sigmoid but we have not verified it theoret-
ically why it helped with optimization. It was al-
ready tested empirically that using tanh instead of
sigmoid can be beneficial for the final result (for ex-
ample, Liew et al., 2016). We tried using different
non linearities in the hidden layer transformations
such as softsign, softplus, ReLU and sigmoid but
modified tanh led to the best results. We are aware
that the initialization of the parameters can also af-
fect the performance of the model but we have not
performed any extensive study to choose the best
approach to parameter initialization and we leave it
to future work.

• We tried to modify batch normalization (Ioffe and
Szegedy, 2015) which seems to be used in most re-
cent neural density estimators. After trying it with
many datasets we concluded that it sped up the rate
of convergence but we obtained worse results in all
cases compared with MONDE variations not using
it. We think it requires further research and theoret-
ical insight how to modify the batch normalization
to help with training the autoregressive MONDE es-
timator.

x1 xD. . .

. . .

. . .

. . .
y1

. . .

. . .

. . .

. . .

t

∂F1(y1|x)
∂y1

F1(y1|x)

Φ−1

. . .

. . .

. . .

. . .

yK

. . .

. . .

. . .

. . .

t

∂FK(yK |x)
∂yK

FK(yK |x)

Φ−1

. . .

. . .

. . .

. . .

x1 xD. . .

. . .

. . .

. . .

ρ

φρ

∏
f1(y1|x) fK(yK |x)

f(y|x)

Figure S2: Multivariate Monotonic Neural Density Es-
timator with Gaussian Copula Dependency and Parame-
terized Covariance.

• We also trained a version of the model that used
mixture of CDFs at the output of each autoregres-
sive component. It is just an analogue to the Mix-
ture Density Networks, where the base distributions
are MONDE models and convex weights are given
by a NN. This was achieved by the last layer being
constructed from the softmax scaled parameter per
component so we could compute mixture of multi-
ple CDF outputs. We found that by using this ex-
tension we did not obtain statistically significantly
better result so we decided not to include them in
the experiments section.

S2.2 MULTIVARIATE COPULA MODELS

S2.2.1 MONDE Parameterized Covariance

Figure S2 contains a diagram of the MONDE Copula
model with parameterized covariance. It differs from the
MONDE Copula Constant Covariance only by an addi-
tional neural network which encodes the covariance of
the output vector. The neural network maps covariate
vector x into vectors u(x) and d(x) which are then used
to construct a correlation matrix as shown in Equation 5.

S2.2.2 Details

When we were experimenting with MONDE Copula
models, we tried different approaches which were not
used in the final implementation of our algorithms:

• We tried to parameterize the correlation matrix as
proposed by Rapisarda et al. (2007). However, we

x1 xD. . .

. . .

. . .

. . .
y1

. . .

. . .

. . .

. . .

t

∂F1(y1|x)
∂y1

F1(y1|x)

Φ−1

yK

. . .

. . .

. . .

. . .

t

∂FK(yK |x)
∂yK

FK(yK |x)

Φ−1ρ

φρ

∏
f1(y1|x) fK(yK |x)

f(y|x)

Figure S3: Multivariate Monotonic Neural Density Es-
timator with Gaussian Copula Dependency and Con-
stant Covariance, model without two partitions for each
marginal distribution.

x1 xD. . .

. . .

. . .

. . .
y1

. . .

. . .

. . .

. . .

t

∂F1(y1|x)
∂y1

F1(y1|x)

Φ−1

yK

. . .

. . .

. . .

. . .

t

∂FK(yK |x)
∂yK

FK(yK |x)

Φ−1

x1 xD. . .

. . .

. . .

. . .

ρ

φρ

∏
f1(y1|x) fK(yK |x)

f(y|x)

Figure S4: Multivariate Monotonic Neural Density Es-
timator with Gaussian Copula Dependency and Param-
eterized Covariance, model without two partitions for
each marginal distribution.

obtained inferior results compared to the method
presented in Equation 5.

• We tried to pre-train the models with first fitting
each univariate marginal of the model to the uncon-
ditional empirical distributions as given by the data
using the mean squared error objective, followed by
maximizing likelihood objective given by the entire
copula model. This method also did not bring any
improvements in convergence speed nor better final
results. To keep things simple, we drop it from the
final implementation.

• Initially, our multivariate copula models did not
have two vertical partitions for each marginal dis-
tribution (the part of the computational graph that
computes ti(yi,x)). The initial models without two
partitions are shown in Figure S3 and S4 for con-
stant and parametrized covariance respectively. The
final models are presented in Figure 3 and Figure
S2. This extension is constructed in a way so that
the monotonicity of ti with respect to yi is not
destroyed i.e. we allow connections with uncon-
strained weights from the covariate partition into the
partition processing the response variable but not
the other way around. These additional connections
in each of the ti transformations allowed us to ob-
tain better results.

S2.3 PUMONDE

S2.3.1 Architecture Justification

In this section, we show why we chose the proposed
computational graph for PUMONDE model. For sim-
plicity of exposition, we focus on the bivariate case, but
the explanation applies to the general multivariate case.

To obtain a valid distribution function F (y1, y2|x) and
the corresponding density function f(y1, y2|x), we need
to constrain our neural network to meet following condi-
tions:

1. limy1→−∞,y2→−∞ F (y1, y2|x) = 0

2. limy1→+∞,y2→+∞ F (y1, y2|x) = 1

3. ∂2F
∂y1∂y2

∈ R+

4. ∂2F
∂y2k
∈ R for k = 1, 2

To meet constraints 1 and 2, we parameterize the distri-
bution function as the ratio of two non-negative mono-
tonic functions,

Fw(y1, y2 | x) =
t(m(hxy1(y1, hx(x)), hxy2(y2, hx(x))))

t(1, 1)
.

We chose all the transforms of t(·) to be the softplus
function, which we will denote with the symbol s+ for
the rest of this section. There are numerous reasons
for this choice. First, s+ meets the requirement for the
output to be non-negative and monotonically increasing
with respect to its input. It is required by the monotonic-
ity property of the computational graph to use mono-
tonic transformations for all computations transforming
response variables. We also used s+ and not, for exam-
ple, tanh because the second order derivative of s+ with
respect to its input is positive (the softplus function is
convex throughout all of its domain). The second order
derivative of tanh with respect to its input can be nega-
tive, which breaks constraint 3. The multiplication layer
(here symbolically written as m(·)), which can be seen
in the middle of the computation graph, receives positive
valued transformations of y1 and y2 (hxyi(·) uses only
sigmoid non-linearities). This composition allows us to
fulfil constraint 3. This comes from the fact that

∂2s+(σ(g1(y1))× σ(g2(y2)))

∂y1∂y2
=

∂s
′

+(·)× σ(g1(y1))× σ′(g2(y2))× g′2(y2)

∂y1
=

[s
′′

+(·)× σ(g2(y2))× σ(g1(y1)) + s
′

+(·)]×

σ
′
(g1(y1))× g

′

1(y1)× σ
′
(g2(y2))× g

′

2(y2),

where σ(gi(·)) = hxyi(·) and gi is the monotonic trans-
formation with respect of yi using only sigmoids which
contains all but the last transformation of hxyi(·). Sym-
bol s

′

+(·) denotes the derivative of the function with re-
spect to its input from the previous expression in the
equation.

Therefore, that last expression always evaluates to a non-
negative number. We see that, if we used sigmoid or
tanh in the layers following the multiplication layer
(m(·)), we would not be guaranteed to obtain a non-
negative result. Using the sigmoid activation function
before the multiplication layer still allows to meet con-
straint 4 because the second derivative of σ with respect
to its input can be positive and negative (because this
function is convex and concave depending on the input).
It is also imperative that the inputs into the multiplica-
tion layer (outputs of the hxyi(·)s transformations) of
PUMONDE is non-negative, because otherwise it would
break the monotonicity property of the model with re-
spect to response variables.

S2.3.2 Implementation Remarks

We found that using the vanilla softplus activation
can lead to numerical problems in models which have
many layers (we found that the minimum number of

layers at which the computation resulted in numeri-
cal problems also is dependent on dataset itself). Af-
ter running several experiments, we concluded that the
most numerically stable approximation of the softplus is
log (1 + exp (−|x|)) + max(x, 0).

S2.4 COMPUTATIONAL COMPLEXITY

Applying auto differentiation twice on the univariate re-
sponse MONDE (with respect to inputs and then with
respect to parameters) is more costly by a constant fac-
tor than applying it once in the model parameterizing
the pdf directly. The training of the multivariate estima-
tors like PUMONDE mirrors the problem with the exact
inference in dense Markov Networks i.e. it scales ex-
ponentially in the dimensionality of the problem. We
mitigate this issue by exploiting structure in the Gaus-
sian copula and by the use of composite likelihood. In
follow-up work, we want to adapt our method to struc-
tured CDFs which were introduced in Huang and Frey
(2008). PUMONDE can also motivate future message-
passing views of autodiff Minka (2019).

S3 BASELINE MODELS
IMPLEMENTATION

We found that the implementation of models using mix-
ture components like RNADE and MDN requires a few
tricks to make them obtain good results. First, we needed
to tweak the minimum value allowed for the scale pa-
rameters of the Gaussian components. If we allow it to
be arbitrarily small, the models frequently put a lot of
weight on one mixture component which has very high
precision, particularly on finite-resolution data in which
repeated values occur to some extent. This artificially in-
flated the average log-likelihood, sometimes by a large
amount. This is a well known problem with mixture
models. We checked that to achieve the best perfor-
mance of such models, the minimum allowed value of
the mixture weight would have to be adjusted for each
dataset separately. In practice, we set this threshold to be
the smallest one not causing the optimization process to
misbehave, taking into consideration the already large di-
mension of the hyperparameter space we optimize over.

S4 EXPERIMENTS

S4.1 EXPERIMENTS SETUP

We split each dataset into train, validation and test par-
titions. Models are only trained on the train partition.
Hyperparameters are chosen by selecting the best model
with respect to the log-likelihood computed on the vali-

Table 1: Datasets dimensions.

DATA SET OBSERVATIONS X DIM Y DIM

Sin Normal 10000 1 1
Sin T 10000 1 1
Inv Sin Normal 10000 1 1
Inv Sin T 10000 1 1
UCI Redwine 2D 1599 7 2
UCI Redwine Unsupervised 1599 0 9
UCI Whitewine 2D 4898 1 2
UCI Parkinsons 2D 5875 13 2
MV Nonlinear 10000 1 2
UCI Whitewine Unsupervised 4898 0 3
UCI Parkinsons Unsupervised 5875 0 15
ETF 1D 1073 1 1
ETF 2D 1073 2 2
FX All Assets Predicted 28781 16 8
FX EUR And GBP Predicted 28773 32 2
FX EUR Predicted 28749 80 1
Classification (FX) 91910 21 3
UCI Power 2049280 0 6
UCI Gas 1052065 0 8
UCI Hepmass 525123 0 21
UCI Miniboone 36488 0 43
UCI Bsds300 1300000 0 63
Mixture Process 100000 2 3
FX (Bivariate Likelihood) 91549 21 21

dation set. The search is done via exhaustive search over
a predefined grid of hyperparameters. Table 5 shows the
search space that was used for different models and ex-
periments/datasets. We use the early stopping technique
on the validation set to prevent overfitting with patience
of 30 epochs i.e. we stop training when the likelihood on
validation dataset does not improve for 30 consecutive
epochs. The best model on the validation set is chosen
and log-likelihoods of test points are computed. We com-
pare the models performance by running pairwise t-tests
on these values or use other performance metric adequate
for a given experiment. We use the ADAM (Diederik
and Jimmy, 2015) version of stochastic gradient descent
to optimize the models. We tried different parameters of
the optimizer but we settled with default ones that are
used in the Tensorflow i.e. beta 1=0.9, beta 2=0.999,
epsilon=1e − 07. The learning rate and the batch size
were set as given in Table 5. In some of the experiments,
we used a modified learning process where we increase
the batch size with a pre-defined schedule. We give the
rationale behind using it in Section S2.1.2.

S4.2 EXPERIMENTS

All dimensions of the datasets used in our experiments
are provided in Table 1. Experiments described in Sec-
tions S4.3, S4.4 and S4.5 have datasets arranged in a way
to test the model performance on the following learning
tasks: 1) unconditional/unsupervised: dim(x) = 0 and
dim(y) > 0, 2) univariate: dim(x) > 0 and dim(y) =
1, 3) small dimensional multivariate: dim(x) > 0 and
dim(y) > 1 probability density functions. In other ex-
periments the dimensionality of the response and covari-
ate vectors depends on the task performed.

S4.3 SYNTHETIC DATA

Results from experiments with synthetic data are shown
in Table 2. The table displays the average log-likelihood
computed on the test partition of the dataset. In each
row, we highlight the best result for the model which
achieved significantly better average log-likelihood than
the rest of the models. We use three datasets in this ex-
periment. The univariate covariate is generated uncondi-
tionally from the uniform [0, 1] distribution for all three
datasets. Then, depending on the dataset, the response
variables are sampled from the Gaussian or Student-t dis-
tributions with means parameterized by a sinusoid func-
tion with an input that is a linear transformation of the
covariate:

X ∼ Uniform(−1.5, 1.5)

Y ∼ N(sin(4X) + 0.5X, 0.2) or
Y ∼ t(3, sin(4X) + 0.5X, 0.2).

We also test the models by swapping the response vari-
able with the covariate variable, so that we can check
whether they can encode the multimodality in Y . Those
inverted datasets have ”Inv” added to their names. We
show scatter plots of these datasets in Figure S5.

The next dataset has a bivariate response variable dis-
tributed according to the Gaussian distribution. The
mean of each dimension is parameterized by a different
nonlinear function with respect to the covariate. This bi-
variate response variable has correlated dimensions, each
of them having a different variance:

X ∼ Uniform(−10, 10)

Σ =

[
4 0
0 3

] [
1 0.7

0.7 1

] [
4 0
0 3

]
Y ∼ N([0.1 ∗

√
X +X − 5, 10sin(3X)],Σ).

We present data generated from this random process in
Figure S6 in a grid, with pairwise scatter plots off the
diagonal and marginal densities on the diagonal cells.

Fitting the data by conditional mean models, such as a
regular neural network with mean squared error, is not
suitable in the case when we deal with multimodal out-
put. In this case, we should be using models that can
encode the probabilistic structure of the data. We show
in Figure S7 that proposed and baseline models can cap-
ture the multimodality correctly.

In Figure S8, we show density heatmaps computed from
different density estimators and data generating pro-
cesses. In these plots, we show density f(y0, y1 =
0 | x) of baseline and proposed models for a grid of
points spanned over y0 and x. We see that RNADE and

Table 2: Synthetic Data - Mean Loglikelihood.

RNADE
Laplace

RNADE
Normal

RNADE
Deep

Normal

RNADE
Deep

Laplace

MONDE
Const
Cov

MONDE
Param
Cov

MONDE
AR PUMONDE MDN True

LL

Sin Normal 0.115 0.118 0.155 0.130 0.136 0.134 0.176
Sin T -0.200 -0.193 -0.194 -0.205 -0.178 -0.317 -0.163
Inv Sin Normal 0.186 0.212 0.253 0.226 0.174 0.227
Inv Sin T -0.083 -0.109 -0.132 -0.063 -0.089 -0.199
MV Nonlinear -6.196 -6.067 -5.695 -5.281 -5.095 -5.074 -5.135 -5.033 -5.247 -4.973

(a) sin normal (b) sin t

(c) inv sin normal (d) inv sin t

Figure S5: Generated Univariate Response Data.

Figure S6: Generated Multivariate Response Data.

MDN models have difficulty in encoding the probabilis-
tic structure, but our models can capture it well, which
is also confirmed by the test log-likelihood evaluations
shown in Table 2.

S4.4 SMALL UCI DATASETS

The results from the experiments using smaller UCI
datasets (Dua and Graff, 2019) are shown in Table 3. The
UCI datasets are preprocessed in the same way as done
by Uria et al. (2013) i.e., we removed categorical vari-
ables and variables which have absolute value of Pear-
son coefficient correlation with other variable larger than
0.98. We use each UCI dataset in two separate experi-

(a) RNADE N (b) RNADE L (c) RNADE
DEEP N

(d) RNADE
DEEP L

(e) MDN (f) MONDE

Figure S7: Density Heatmap - Inv Sin Normal.

ments. Firstly, by assuming the two last columns as re-
sponse variables (ordering as defined by the documenta-
tion of the data), while the remaining columns constitute
the covariates. These are the datasets with suffix “2D”.
Secondly, we perform experiments by using all columns
as response variables, hence assuming the covariate vec-
tor is empty. These datasets are given the suffix “unsu-
pervised”.

MONDE models achieve the best results among all
model trained in these datasets.

We report that when we trained the models on datasets
composed solely of continuous variables where some
columns have a considerably small number of unique
values (but still specified as real type variables by the
dataset documentation), the RNADE models tend to
“overfit” by placing very narrow Gaussians at particular
points (the test likelihood is high, but this is an artefact
of treating essentially discrete data as if it had a density).
This was especially a problem for RNADE model, when
one of such problematic variables was the first variable in
the autoregressive expansion for the joint probability. In
this case, because train, validation and test data contained
a lot of points with the same values, RNADE could create
overfitted first unconditional densities. This is not a real-

Table 3: Mean Loglikelihoods - Small UCI Datasets.

RNADE
Laplace

RNADE
Normal

RNADE
Deep

Normal

RNADE
Deep

Laplace

MONDE
Const
Cov

MONDE
Param
Cov

MONDE
AR PUMONDE MDN

UCI Redwine 2D -2.543 -2.506 -3.310 -2.343 -2.672 -2.462 -1.795 -1.997 -2.250
UCI Redwine
Unsupervised -6.574 -6.496 -8.244 -8.297 -2.992 -1.879 -8.077 -8.676

UCI Whitewine 2D -1.958 -1.956 -1.957 -1.968 -1.910 -1.891 -1.915 -1.901 -1.940
UCI Parkinsons 2D -1.406 -1.323 -1.424 -2.910 -4.032 -4.766 -1.134 -1.254 -1.368
UCI Parkinsons
Unsupervised 0.999 0.304 -3.265 -3.214 1.328 -3.654 3.055 -0.870

istic training procedure, since the data here is discrete for
all practical purposes, resulting on unbounded test “den-
sities” being easily achieved depending on the minimal
scale allowed for a Gaussian mixture component in the
training procedure. In Figure S9, we show an example
of the f(y1) density estimated by the RNADE model
using a mixture of Laplace distributions, and the den-
sity of the same variable estimated by the autoregressive
MONDE model. The data is the UCI whitewine dataset
(used as an unsupervised case i.e. all variables treated as
response variables with covariate set being empty). We
checked that MONDE models were not impacted by this
spurious “continuous” variables and fitted smooth dis-
tributions. In our final experiment runs, we imposed the
rule to remove a column if it has below 5% of unique val-
ues, compared to the number of samples. Only when we
removed such columns we were able to train the RNADE
models to the satisfactory level of generalization.

S4.5 FINANCIAL DATASETS

The results from experiments with financial datasets are
shown in Table 4. We use two different sources of the
financial data.

The first source is the the Yahoo service1 from which
we downloaded exchange traded funds dataset. We ob-
tain two time series of daily close prices between dates:
03.01.2011 and 14.04.2015. The “ETF 1D” are daily re-
turns of the SPY financial instrument. The response and
covariate variables in this dataset are consecutive returns
in the time series accordingly. The “ETF 2D” are daily
returns of the SPY and DIA symbols. The returns are
aggregated into the final dataset using the same transfor-
mation as in the fist univariate case, but this time both in-
strument returns are combined together so response and
covariate vectors have two components.

The second source is the FXCM repository2 from which
we downloaded the foreign exchange tick data. We
downloaded prices for the following currency pairs:
EURUSD, GBPUSD, USDJPY, USDCHF, USDCAD,
NZDUSD, NZDJPY, GBPJPY for the period between

1https://github.com/ranaroussi/yfinance
2https://github.com/fxcm/MarketData

05.01.2015 and 30.01.2015. Each currency pair dataset
contains top of the book tick level bid and offer prices.
We computed the returns of the mid point prices for these
time series. Then we subsumpled each time series us-
ing a 1 minute interval and aligned all of them into one
data frame. This table of aligned currency pairs’ re-
turns was used to create three datasets. “FX EUR pre-
dicted” contains the EURUSD returns as the response
variable and ten previous historical returns from all cur-
rency pairs as covariates i.e. if we have EURUSD return
at time t, we collected for this response covariates as re-
turns for all instruments at times t− 1, t− 2, . . . , t− 10.
The “FX EUR and GBP predicted” dataset was con-
structed as the previous one but with two response vari-
ables i.e. EURUSD and GBPUSD returns and the co-
variates constructed from all four previous historical re-
turns plus hour of day variable. The “FX all assets pre-
dicted” dataset contains all contemporaneous currency
pairs returns as response and two autoregressive returns
of all currency pairs as covariates. We see from the re-
sults in Table 4 that there is an improvement in using our
approach in an autoregressive representation and other
versions of our model are also comparable with recently
proposed solutions.

S4.5.1 Classification

In Section 4.2 we used the following foreign exchange
instruments to construct the experiment dataset: AUD-
CAD, AUDJPY, AUDNZD, EURCHF, NZDCAD, NZD-
JPY, NZDUSD, USDCHF, USDJPY, EURUSD, GB-
PUSD and USDCAD.

S4.5.2 Bivariate likelihood

In Section 4.5 we used the following foreign exchange
instruments to construct the experiment dataset: AU-
DCAD, AUDJPY, AUDNZD, AUDCHF, EURAUD,
EURCHF, NZDCAD, CADCHF, EURJPY, NZDJPY,
GBPNZD, GBPJPY, NZDUSD, USDCHF, GBPCHF,
USDJPY, EURUSD, GBPUSD, EURGBP, USDCAD
and NZDCHF.

Table 4: Mean Loglikelihoods - Financial Datasets.

RNADE
Laplace

RNADE
Normal

RNADE
Deep

Normal

RNADE
Deep

Laplace

MONDE
Const
Cov

MONDE
Param
Cov

MONDE
AR PUMONDE MDN

ETF 1D -1.416 -1.495 -1.422 -1.408 -1.383 -1.398
ETF 2D -1.501 -1.472 -1.857 -1.588 -1.426 -1.466 -1.401 -1.599 -1.441
FX EUR Predicted -1.054 -1.074 -1.093 -1.272 -1.081 -1.185
FX EUR GBP Predicted -2.070 -2.072 -2.268 -2.024 -2.292 -2.162 -2.074 -2.048 -2.130
FX ALL Predicted -2.940 -2.985 -3.479 -3.741 -4.853 -8.107 -2.838 -5.604

S4.6 TAIL DEPENDENCE

To compute tail dependence, we use empirical functions
suggested by (Charpentier, 2012) and (Venter and Instrat,
2001):

λ̂L(u) =

∑n
k=1 1(Yi,k ≤ F̂−1i (u), Yj,k ≤ F̂−1j (u))∑n

k=1 1(Yi,k ≤ F̂−1i (u))
(S1)

λ̂R(u) =

∑n
k=1 1(Yi,k > F̂−1i (u), Yj,k > F̂−1j (u))∑n

k=1 1(Yi,k > F̂−1i (u))
,

(S2)

for the models where it is possible to directly sample
new data (like MAF and MDN), and for datasets used
for training generated from the mixture model. We plug-
in the distribution transformation F̂i(yi,k) computed di-
rectly from sampled data using the rank function.

To compute tail dependence indices for models which
we cannot sample new data easily but we can compute
marginal distribution functions (like PUMONDE,
MONDE Copula) we apply the following process: 1)
Estimate the marginal quantile functions numerically
conditioning it on the mean of one of the mixtures:
F̂−1i (·|mean(xc)); 2) Generate vector u as a grid
of points equidistantly spaced between (0, 1) (we
use the same grid u used for computing tail indices
for models that are easy to sample from); 3) Com-
pute F̂−1k (u|mean(xc)) for k = i, j 4) Compute
F̂ij(F̂

−1
i (u|mean(xc), F̂

−1
j (u|mean(xc))|mean(xc))

directly from the model and substitute it into the λL(u)
and λR(u) equations from Section 4.3.

S5 SOURCE CODE

Source code is provided in https://github.com/
pawelc/NeuralLikelihoods.

(a) Gen Distribu-
tion

(b) RNADE N (c) RNADE L

(d) RNADE DEEP
N

(e) RNADE DEEP
L

(f) MDN Const Cov

(g) MDN Param
Cov

(h) MONDE Const
Cov

(i) MONDE Param
Cov

(j) MONDE AR (k) PUMONDE

Figure S8: Density Heatmap (f(y0, y1 = 0 | x)) - MV
Nonlinear.

https://github.com/pawelc/NeuralLikelihoods
https://github.com/pawelc/NeuralLikelihoods

(a) RNADE

(b) MONDE

Figure S9: Densities estimated by the RNADE and
MONDE AR models for the first variable in AR ordering
when the corresponding variable had a small number of
values. The data points are also shown on the x axis as
black dots.

Table 5: Hyper parameters search space

EXPERIMENT MODEL SEARCH SPACE DATA SET/BEST PARAMETERS

Synthetic Data,
Small UCI Data,
Financial Data

RNADE Normal

hidden units ∈ (20, 200)
number of components in mixture ∈ (1, 100)

learning rate ∈ (10−4, 10−2)
batch size = 200

Sin Normal (30;93;0.0044)
Sin T (90;7;0.0017)
Inv Sin Normal (69;7;0.0022)
Inv Sin T (69;7;0.0022)
MV Nonlinear (194;100;0.0089)
UCI Redwine 2D (170;50;0.001)
UCI Redwine Unsupervised (164;10;0.0011)
UCI Whitewine 2D (100;24;0.0012)
UCI Whitewine Unsupervised (56;30;0.0002)
UCI Parkinsons 2D (104;11;0.0064)
UCI Parkinson Unsupervised (200;24;0.0006)
ETF 1D (69;7;0.0022)
ETF 2D (164;1;0.0041)
FX EUR Predicted (176;83;0.0046)
FX EUR GBP Predicted (189;78;0.0027)
FX All predicted (69;7;0.0022)

Synthetic Data,
Small UCI Data,
Financial Data

RNADE Laplace

hidden units ∈ (20, 200)
number of components in mixture ∈ (1, 100)

learning rate ∈ (10−4, 10−2)
batch size = 200

Sin Normal (100;24;0.0012)
Sin T (56;30;0.0002)
Inv Sin Normal (172;32;0.0011)
Inv Sin T (200;67;0.0046)
MV Nonlinear (90;67;0.0074)
UCI Redwine 2D (20;100;0.0065)
UCI Redwine Unsupervised (69;7;0.0022)
UCI Whitewine 2D (69;7;0.0022)
UCI Whitewine Unsupervised (100;24;0.0012)
UCI Parkinsons 2D (90;67;0.0074)
UCI Parkinson Unsupervised (138;25;0.0021)
ETF 1D (200;1;0.01)
ETF 2D (200;1;0.01)
FX EUR Predicted (47;5;0.0017)
FX EUR GBP Predicted (146;7;0.0011)
FX All predicted (69;7;0.0022)

Synthetic Data,
Small UCI Data,
Financial Data

MONDE Const Cov

number of layers for x transformation ∈ (0, 3)
number of hidden units per layer for x transformation ∈ (10, 200)
number of layers y transformation ∈ (1, 5)
number of hidden units per layer for y transformation ∈ (10, 200)

learning rate ∈ (10−4, 10−2

batch size = 200

Sin Normal (1;131;4;10;0.0016)
Sin T (1;112;2;110;0.0008)
Inv Sin Normal (0;0;2;126;0.0004)
Inv Sin T (1;112;2;110;0.0008)
MV Nonlinear (3;113;1;89;0.0002)
UCI Redwine 2D (0;0;4;10;0.0001)
UCI Redwine Unsupervised (0;0;2;65;0.0002)
UCI Whitewine 2D (0;0;3;28;0.0064)
UCI Whitewine Unsupervised (0;0;3;200;0.0001)
UCI Parkinsons 2D (1;112;2;110;0.0008)
UCI Parkinson Unsupervised (0;0;1;10;0.0005)
ETF 1D (3;200;1;200;0.0001)
ETF 2D (0;0;1;200;0.0003)
FX EUR Predicted (0;0;1;10;0.0001)
FX EUR GBP Predicted (2;10;4;10;0.01)
FX All predicted (0;0;5;200;0.0039)

Synthetic Data,
Small UCI Data,
Financial Data

MONDE Param Cov

number of layers for x transformation ∈ (0, 3)
number of hidden units per layer for x transformation ∈ (10, 200)
number of layers y transformation ∈ (1, 5)
number of hidden units per layer for y transformation ∈ (10, 200)
number of layers for x covariance transformation ∈ (1, 3)
number of hidden units per layer for x covariance transformation ∈ (10, 200)

learning rate ∈ (10−4, 10−2

batch size = 200

MV Nonlinear (3;200;4;116;0;0;0.0003)
UCI Redwine 2D (0;0;2;200;0;0;0.01)
UCI Redwine Unsupervised (0;0;2;65;0;0;0.0002)
UCI Whitewine 2D (2;17;2;35;2;79;0.0068)
UCI Whitewine Unsupervised (0;0;4;69;0;0;0.0001)
UCI Parkinsons 2D (1;121;1;184;0;0;0.0066)
UCI Parkinson Unsupervised (0;0;4;70;0;0;0.0011)
ETF 2D (1;54;3;127;?;?;0.0081)
FX EUR GBP Predicted (0;0;5;10;?;?;0.0001)
FX All predicted (1;68;3;191;?;?;0.01)

Synthetic Data,
Small UCI Data,
Financial Data

MDN

number of hidden layers ∈ (1, 6)
number of hidden units per layer ∈ (20, 200)
number of components in mixture ∈ (1, 100)

learning rate ∈ (10−4, 10−2

batch size = 200

Sin Normal (6;20;1;0.0001)
Sin T (4;74;45;0.0003)
Inv Sin Normal (2;82;95;0.0034)
Inv Sin T (1;141;60;0.0022)
MV Nonlinear (3;61;54;0.0067)
UCI Redwine 2D (6;20;100;0.0002)
UCI Redwine Unsupervised (6;188;14;0.0099)
UCI Whitewine 2D (4;74;45;0.0003)
UCI Whitewine Unsupervised (6;20;100;0.01)
UCI Parkinsons 2D (1;104;11;0.0064)
UCI Parkinson Unsupervised (6;94;98;0.0026)
ETF 1D (2;114;9;0.0068)
ETF 2D (2;114;9;0.0068)
FX EUR Predicted (1;24;99;0.0001)
FX EUR GBP Predicted (6;172;32;0.0011)
FX All predicted (6;181;59;0.0011)

(table continues on the next page)

Table 5: Hyper parameters search space

EXPERIMENT MODEL SEARCH SPACE DATA SET/BEST PARAMETERS

Synthetic Data,
Small UCI Data,
Financial Data

MONDE AR

number of hidden layers for x transformation ∈ (0, 3)
number of hidden units per x transformation layer ∈ (10, 200)
number of hidden layers for y transformation ∈ (1, 5)
number of hidden units per y transformation layer ∈ (10, 200)

learning rate ∈ (10−4, 10−2

batch size = 200

MV Nonlinear (1;22;1;180;0.0001)
UCI Redwine 2D (0;0;3;28;0.0064)
UCI Redwine Unsupervised (0;0;1;37;0.0038)
UCI Whitewine 2D (0;0;2;159;0.0007)
UCI Whitewine Unsupervised (0;0;2;10;0.0036)
UCI Parkinsons 2D (1;121;1;184;0.0066)
UCI Parkinson Unsupervised (1;130;1;199;0.0064)
ETF 1D
ETF 2D (0;0;1;176;0.01)
FX EUR GBP Predicted (0;0;5;10;0.01)
FX All predicted (0;0;3;28;0.0064)

Synthetic Data,
Small UCI Data,
Financial Data

PUMONDE

number of hidden layers for x transformation ∈ (1, 3)
number of hidden units per x transformation layer ∈ (10, 200)
number of hidden layers for y transformation ∈ (1, 3)
number of hidden units per y transformation layer ∈ (10, 200)
number of hidden layers for xy transformation ∈ (1, 3)
number of hidden units per xy transformation layer ∈ (10, 200)

learning rate ∈ (10−4, 10−3

batch size = 200

MV Nonlinear (0;0;3;67;2;118;0.0002)
UCI Redwine 2D (1;37;3;88;1;129;0.0007)
UCI Redwine Unsupervised
UCI Whitewine 2D (2;17;2;35;2;79;0.0068)
UCI Parkinsons 2D (2;117;2;35;2;79;0.0068)
ETF 2D (0;0;3;67;2;118;0.0002)
FX EUR GBP Predicted (0;0;3;67;2;118;0.0002)

Density Estimation MONDE MADE

number of hidden layers ∈ {8, 10}
number of blocks ∈ {40, 60}
start batch size = 128
batch size increments = 3
learning rate = 0.001

Power (10;40)

Density Estimation MONDE MADE

number of hidden layers ∈ {8, 10}
number of blocks ∈ {60, 80}
start batch size = 128
batch size increments = 5
learning rate = 0.001

Gas (10;80)
Hepmass (8;60)

Density Estimation MONDE MADE

number of hidden layers ∈ {3, 5, 7, 8}
number of blocks ∈ {10, 50, 80}
start batch size = 128
batch size increments = 5
batch size increase patience threshold = = 20
learning rate = 0.001

Miniboone (5;10)

Density Estimation MONDE MADE

number of hidden layers ∈ {3, 5, 7}
number of blocks ∈ {10, 30, 40}
start batch size = 128
batch size increments = 3
batch size increase patience threshold = = 20
learning rate = 0.001

Bsds300 (3;10)

Classification MONDE Const Cov

number of layers for x transformation ∈ {2, 4}
number of hidden units per layer for x transformation ∈ {50, 100}
number of layers y transformation ∈ {2, 4}
number of hidden units per layer for y transformation ∈ {50, 100}
number of hidden units per layer in y transformation used for x,y transformation = 30
covariance learning rate = 0.05
start batch size = 128
batch size increments = 3
batch size increase patience threshold = = 20
learning rate = 0.001

Classification (FX) (2;100;4;100)

Classification MONDE Param Cov

number of layers for x transformation ∈ {2, 4}
number of hidden units per layer for x transformation ∈ {50, 100}
number of layers y transformation ∈ {2, 4}
number of hidden units per layer for y transformation ∈ {50, 100}
number of layers used for covariance parametrization ∈ {2, 4}
number of hidden units per layer in covariance parametrization ∈ {50, 100}
number of hidden units per layer in y transformation used for x,y transformation = 30
start batch size = 128
batch size increments = 3
batch size increase patience threshold = = 20
learning rate = 0.001

Classification (FX) (2;100;4;50;2;100)

Classification PUMONDE

number of layers for x transformation ∈ {3, 4}
number of hidden units per layer for x transformation ∈ {50, 100}
number of layers for y transformation ∈ {3, 4}
number of hidden units per layer for y transformation ∈ {50, 100}
number of layers for x,y transformation ∈ {3, 4}
number of hidden units per layer for x,y transformation ∈ {50, 100}
number of hidden units per layer in y transformation used for x,y transformation = 30
start batch size = 128
batch size increments = 3
batch size increase patience threshold = = 20
learning rate = 0.001

Classification (FX) (3;50;4;50;4;50)

(table continues on the next page)

Table 5: Hyper parameters search space

EXPERIMENT MODEL SEARCH SPACE DATA SET/BEST PARAMETERS

Classification NN Classifier

number of layers ∈ {2, 3, 5}
number of hidden units per layer∈ {50, 100}
start batch size = 128
batch size increments = 3
batch size increase patience threshold = = 20
learning rate = 0.001

Classification (FX) (3;100)

Classification Random Forest number of estimators ∈ {10, 50, 100}
maximum tree depth ∈ {5, 10, 20} Classification (FX) (100;20)

Classification Xgb Classifier subsample ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0} Classification (FX) (0.3)

Tail Dependence
Mutual Information MONDE Const Cov

number of layers for x transformation ∈ {3, 4}
number of hidden units per layer for x transformation ∈ {50, 100}
number of layers y transformation ∈ {3, 4}
number of hidden units per layer for y transformation ∈ {50, 100}
number of hidden units per layer in y transformation used for x,y transformation = 30
covariance learning rate = 0.05
start batch size = 128
batch size increments = 3
batch size increase patience threshold = = 20
learning rate = 0.001

Mixture Process (3;100;3;50)

Tail Dependence
Mutual Information MONDE Param Cov

number of layers for x transformation ∈ {3, 4}
number of hidden units per layer for x transformation ∈ {50, 100}
number of layers y transformation ∈ {3, 4}
number of hidden units per layer for y transformation ∈ {50, 100}
number of layers used for covariance parametrization ∈ {3, 4}
number of hidden units per layer in covariance parametrization ∈ {50, 100}
number of hidden units per layer in y transformation used for x,y transformation = 30
start batch size = 128
batch size increments = 3
batch size increase patience threshold = = 20
learning rate = 0.001

Mixture Process (3;50;3;50;4;50)

Tail Dependence
Mutual Information PUMONDE

number of layers for x transformation ∈ {3, 4}
number of hidden units per layer for x transformation ∈ {50, 100}
number of layers for y transformation ∈ {3, 4}
number of hidden units per layer for y transformation ∈ {50, 100}
number of layers for x,y transformation ∈ {3, 4}
number of hidden units per layer for x,y transformation ∈ {50, 100}
number of hidden units per layer in y transformation used for x,y transformation = 30
start batch size = 128
batch size increments = 3
batch size increase patience threshold = = 20
learning rate = 0.001

Mixture Process (3;100;3;100;4;100)

Tail Dependence
Mutual Information MAF

number of bijectors ∈ {2, 4, 5, 8}
number of layers in each bijector ∈ {1, 2, 4}
number of hidden units per layer in bijector ∈ {64, 128, 512}
number of hidden units for covariate transformation ∈ {16, 32, 64}
batch normalization ∈ {True, False}
learning rate ∈ {1e−3, 1e−4}
batch size = 128

Mixture Process (5;1;512;16;True;0.001)

Tail Dependence
Mutual Information MDN

number of hidden layers ∈ (2, 3, 5)
number of hidden units per layer ∈ (128, 512)
number of components in mixture ∈ (2, 10, 50, 100)

learning rate ∈ {1e−3, 1e−4}
batch size = 128

Mixture Process (5;128;100;0.001)

Bivariate Likelihood MONDE Const Cov

number of layers for x transformation ∈ {2, 4}
number of hidden units per layer for x transformation ∈ {50, 100}
number of layers y transformation ∈ {2, 4}
number of hidden units per layer for y transformation ∈ {50, 100}
number of hidden units per layer in y transformation used for x,y transformation = 30
covariance learning rate = 0.05
start batch size = 128
batch size increments = 3
batch size increase patience threshold = = 20
learning rate = 0.001

FX (2;50;2;50)

Bivariate Likelihood MONDE Param Cov

number of layers for x transformation ∈ {2, 4}
number of hidden units per layer for x transformation ∈ {50, 100}
number of layers y transformation ∈ {2, 4}
number of hidden units per layer for y transformation ∈ {50, 100}
number of layers used for covariance parametrization ∈ {2, 4}
number of hidden units per layer in covariance parametrization ∈ {50, 100}
number of hidden units per layer in y transformation used for x,y transformation = 30
start batch size = 128
batch size increments = 3
batch size increase patience threshold = = 20
learning rate = 0.001

FX (2;50;4;100;2;100)

(table continues on the next page)

Table 5: Hyper parameters search space

EXPERIMENT MODEL SEARCH SPACE DATA SET/BEST PARAMETERS

Bivariate Likelihood PUMONDE

number of layers for x transformation ∈ {2, 3}
number of hidden units per layer for x transformation ∈ {128, 256}
number of layers for y transformation ∈ {2, 3}
number of hidden units per layer for y transformation ∈ {64, 128}
number of layers for x,y transformation ∈ {2, 3}
number of hidden units per layer for x,y transformation ∈ {64, 128}
number of hidden units per layer in y transformation used for x,y transformation = 16
batch size = 128
learning rate = 0.001

FX (2;128;3;128;3;64)

Bivariate Likelihood MDN

number of hidden layers ∈ (2, 3, 5)
number of hidden units per layer ∈ (128, 512)
number of components in mixture ∈ (2, 10, 50, 100)

learning rate ∈ {1e−3, 1e−4}
batch size = 128

FX (2;512;2;0.0001)

References
C. Bishop. Mixture density networks. Technical report, NCRG

4288, Aston University, Birmingham, 1994.

A. Charpentier. Copulas and tail dependence, part
1. https://freakonometrics.hypotheses.
org/2435, 2012. Accessed: 2019-12-28.

N. De Cao and I. Titov. Block neural autoregressive flow. In
UAI, 2019.

K. Diederik and B. Jimmy. Adam: A method for stochastic
optimization. In ICLR, 2015.

L. Dinh, D. Krueger, and Y. Bengio. NICE: Non-linear inde-
pendent components estimation. In ICLR, 2015.

L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation
using Real NVP. In ICLR, 2017.

D. Dua and C. Graff. UCI machine learning repository, 2019.
URL http://archive.ics.uci.edu/ml.

M. Germain, K. Gregor, I. Murray, and H. Larochelle. MADE:
Masked autoencoder for distribution estimation. In ICML,
2015.

C-W. Huang, D. Krueger, A. Lacoste, and A. Courville. Neural
autoregressive flows. In ICML, 2018.

J. Huang and B. Frey. Cumulative distribution networks and
the derivative-sum-product algorithm. In UAI, 2008.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In ICML, 2015.

B. Lang. Monotonic multi-layer perceptron networks as uni-
versal approximators. In ICANN, 2005.

H. Larochelle and I. Murray. The neural autoregressive distri-
bution estimator. In AISTATS, 2011.

S. Liew, M. Khalil-Hani, and R. Bakhteri. Bounded activation
functions for enhanced training stability of deep neural net-
works on visual pattern recognition problems. Neurocom-
puting, 216, 2016.

A. Likas. Probability density estimation using artificial neu-
ral networks. Computer Physics Communications, 135(2),
2001.

M. Magdon-Ismail, , and A. Atiya. Density estimation and
random variate generation using multilayer networks. IEEE
Trans. Neural Networks, 13(3), 2002.

A. Minin, M. Velikova, B. Lang, and H. Daniels. Comparison
of universal approximators incorporating partial monotonic-
ity by structure. Neural Networks, 23(4), 2010.

T. Minka. From automatic differentiation to message pass-
ing. Invited talk at the Advances and challenges in
Machine Learning Languages workshop (ACMLL 2019),
2019. URL https://tminka.github.io/papers/
acmll2019/.

G. Papamakarios, T. Pavlakou, and I. Murray. Masked autore-
gressive flow for density estimation. In NIPS, 2017.

F. Rapisarda, D. Brigo, and F. Mercurio. Parameterizing corre-
lations: a geometric interpretation. IMA Journal of Manage-
ment Mathematics, 18(1), 2007.

J. Sill. Monotonic networks. In NIPS, 1997.

J. Sill and Y. Abu-Mostafa. Monotonicity hints. In NIPS, 1996.

S. Smith, P-J. Kindermans, C. Ying, and V. Le Quoc. Don’t
decay the learning rate, increase the batch size. In ICLR,
2018.

E. Trentin. Soft-constrained nonparametric density estimation
with artificial neural networks. In ANNPR, 2016.

B. Uria, I. Murray, and H. Larochelle. RNADE: the real-valued
neural autoregressive density-estimator. In NIPS, 2013.

B. Uria, I. Murray, and H. Larochelle. A deep and tractable
density estimator. In ICML, 2014.

G. Venter and G. Instrat. Tails of copula. In ASTIN, 2001.

S. Wang. A neural network method of density estimation for
univariate unimodal data. NCAA, 2(3), 1994.

S. Zhang. From CDF to PDF — A density estimation method
for high dimensional data. arXiv:1804.05316, 2018.

https://freakonometrics.hypotheses.org/2435
https://freakonometrics.hypotheses.org/2435
http://archive.ics.uci.edu/ml
https://tminka.github.io/papers/acmll2019/
https://tminka.github.io/papers/acmll2019/

	RELATED WORK
	MONOTONIC NEURAL NETWORKS FOR FUNCTION APPROXIMATION
	NEURAL DENSITY ESTIMATION

	THE MONOTONIC NEURAL DENSITY ESTIMATOR
	AUTOREGRESSIVE MONDE
	MADE Implementation Details
	Finer Remarks

	MULTIVARIATE COPULA MODELS
	MONDE Parameterized Covariance
	Details

	PUMONDE
	Architecture Justification
	Implementation Remarks

	COMPUTATIONAL COMPLEXITY

	BASELINE MODELS IMPLEMENTATION
	EXPERIMENTS
	EXPERIMENTS SETUP
	EXPERIMENTS
	SYNTHETIC DATA
	SMALL UCI DATASETS
	FINANCIAL DATASETS
	Classification
	Bivariate likelihood

	TAIL DEPENDENCE

	SOURCE CODE

