Supplementary Materials

A Useful Lemmas for Proving Theorem 1

In this subsection, we prove some useful Lemmas for our finite-sample analysis.

Before we start, we first introduce some nations. In the following proof, $\|a\|$ denotes the ℓ_2 norm if a is a vector; and $\|A\|$ denotes the operator norm if A is a matrix. Let λ be the smallest eigenvalue of the matrix C. Then the operator norm of C^{-1} is $\frac{1}{\lambda}$. We note that the Greedy-GQ algorithm in Algorithm 1 was shown to converge asymptotically, and θ_t and ω_t were shown to be bounded a.s. (see Proposition 4 in [18]). We then define R as the upper bound on both θ_t and ω_t . Specifically, for any t, $\|\theta_t\| \leq R$ and $\|\omega_t\| \leq R$ a.s..

We first prove that if the policy π_{θ} is smooth in θ , then the object function $J(\theta)$ is also smooth.

Lemma 2. The objective function $J(\theta)$ is K-smooth for $\theta \in \{\theta : \|\theta\| \le R\}$, i.e., for any $\|\theta_1\|, \|\theta_2\| \le R$,

$$\|\nabla J(\theta_1) - \nabla J(\theta_2)\| \le K||\theta_1 - \theta_2||,\tag{38}$$

where $K = 2\gamma \frac{1}{\lambda} \left((k_1 |A|R + 1)(1 + \gamma + \gamma R k_1 |A|) + |A|(r_{\max} + R + \gamma R)(2k_1 + k_2 R) \right)$.

Proof. Recall the expression of $J(\theta)$:

$$J(\theta) = \mathbb{E}_{\mu} \left[\delta_{S,A,S'}(\theta) \,\phi_{S,A} \right]^{\top} C^{-1} \mathbb{E}_{\mu} \left[\delta_{S,A,S'}(\theta) \,\phi_{S,A} \right], \tag{39}$$

where $\delta_{S,A,S'} = r_{S,A,S'} + \gamma \sum_{a \in A} \pi_{\theta} (a|S') \theta^{\top} \phi_{S',a} - \theta^{\top} \phi_{S,A}$. Then,

$$\nabla J(\theta) = 2\nabla \left(\mathbb{E}_{\mu} \left[\delta_{S,A,S'}(\theta) \phi_{S,A} \right] \right) C^{-1} \mathbb{E}_{\mu} \left[\delta_{S,A,S'}(\theta) \phi_{S,A} \right], \tag{40}$$

where

$$\nabla \left(\mathbb{E}_{\mu} \left[\delta_{S,A,S'} \left(\theta \right) \phi_{S,A} \right] \right) = \mathbb{E}_{\mu} \left[\left(\nabla \gamma \sum_{a \in \mathcal{A}} \pi_{\theta} \left(a | S' \right) \theta^{\top} \phi_{S',a} \right) \phi_{S,A}^{\top} \right]$$

$$= \gamma \mathbb{E}_{\mu} \left[\left(\sum_{a \in \mathcal{A}} \nabla \left(\pi_{\theta} \left(a | S' \right) \right) \theta^{\top} \phi_{S',a} + \pi_{\theta} \left(a | S' \right) \phi_{S',a} \right) \phi_{S,A}^{\top} \right]. \tag{41}$$

It then follows that

$$\nabla J(\theta_{1}) - \nabla J(\theta_{2})$$

$$= 2\nabla \left(\mathbb{E}_{\mu} \left[\delta_{S,A,S'}(\theta_{1}) \phi_{S,A}\right]\right) C^{-1} \mathbb{E}_{\mu} \left[\delta_{S,A,S'}(\theta_{1}) \phi_{S,A}\right] - 2\nabla \left(\mathbb{E}_{\mu} \left[\delta_{S,A,S'}(\theta_{2}) \phi_{S,A}\right]\right) C^{-1} \mathbb{E}_{\mu} \left[\delta_{S,A,S'}(\theta_{2}) \phi_{S,A}\right]$$

$$= 2\nabla \left(\mathbb{E}_{\mu} \left[\delta_{S,A,S'}(\theta_{1}) \phi_{S,A}\right]\right) C^{-1} \mathbb{E}_{\mu} \left[\delta_{S,A,S'}(\theta_{1}) \phi_{S,A}\right] - 2\nabla \left(\mathbb{E}_{\mu} \left[\delta_{S,A,S'}(\theta_{1}) \phi_{S,A}\right]\right) C^{-1} \mathbb{E}_{\mu} \left[\delta_{S,A,S'}(\theta_{2}) \phi_{S,A}\right]$$

$$+ 2\nabla \left(\mathbb{E}_{\mu} \left[\delta_{S,A,S'}(\theta_{1}) \phi_{S,A}\right]\right) C^{-1} \mathbb{E}_{\mu} \left[\delta_{S,A,S'}(\theta_{2}) \phi_{S,A}\right] - 2\nabla \left(\mathbb{E}_{\mu} \left[\delta_{S,A,S'}(\theta_{2}) \phi_{S,A}\right]\right) C^{-1} \mathbb{E}_{\mu} \left[\delta_{S,A,S'}(\theta_{2}) \phi_{S,A}\right]. \tag{42}$$

Since C^{-1} is positive definite, thus to show $\nabla J(\theta)$ is Lipschitz, it suffices to show both $\nabla \left(\mathbb{E}_{\mu}\left[\delta_{S,A,S'}\left(\theta\right)\phi_{S,A}\right]\right)$ and $\mathbb{E}_{\mu}\left[\delta_{S,A,S'}\left(\theta\right)\phi_{S,A}\right]$ are Lipschitz in θ and bounded.

We first show that

$$\|\mathbb{E}_{\mu}\left[\delta_{S,A,S'}\left(\theta\right)\phi_{S,A}\right]\| \le r_{\max} + (1+\gamma)R,\tag{43}$$

and

$$\|\nabla \mathbb{E}_{\mu} \left[\delta_{S,A,S'}\left(\theta\right)\phi_{S,A}\right]\| = \|\mathbb{E}_{\mu} \left[\nabla \delta_{S,A,S'}\left(\theta\right)\phi_{S,A}\right]\| \le \gamma(k_1|\mathcal{A}|R+1). \tag{44}$$

Following from (41), we then have that

$$\nabla \left(\mathbb{E}_{\mu} \left[\delta_{S,A,S'} \left(\theta_{1} \right) \phi_{S,A} \right] \right) - \nabla \left(\mathbb{E}_{\mu} \left[\delta_{S,A,S'} \left(\theta_{2} \right) \phi_{S,A} \right] \right)$$

$$= \gamma \mathbb{E}_{\mu} \left[\left(\sum_{a \in \mathcal{A}} \nabla \left(\pi_{\theta_{1}} \left(a | S' \right) \right) \theta_{1}^{\top} \phi_{S',a} - \nabla \left(\pi_{\theta_{2}} \left(a | S' \right) \right) \theta_{2}^{\top} \phi_{S',a} + \pi_{\theta_{1}} \left(a | S' \right) \phi_{S',a} - \pi_{\theta_{2}} \left(a | S' \right) \phi_{S',a} \right) \phi_{S,A}^{\top} \right]$$

$$= \gamma \mathbb{E}_{\mu} \left[\left(\sum_{a \in \mathcal{A}} \nabla \left(\pi_{\theta_{1}} \left(a | S' \right) \right) \theta_{1}^{\top} \phi_{S',a} - \nabla \left(\pi_{\theta_{2}} \left(a | S' \right) \right) \theta_{1}^{\top} \phi_{S',a} + \nabla \left(\pi_{\theta_{2}} \left(a | S' \right) \right) \theta_{1}^{\top} \phi_{S',a} \right.$$

$$\left. - \nabla \left(\pi_{\theta_{2}} \left(a | S' \right) \right) \theta_{2}^{\top} \phi_{S',a} \right) \phi_{S,A}^{\top} \right] + \gamma \mathbb{E}_{\mu} \left[\left(\sum_{a \in \mathcal{A}} \left(\pi_{\theta_{1}} \left(a | S' \right) \phi_{S',a} - \pi_{\theta_{2}} \left(a | S' \right) \phi_{S',a} \right) \right) \phi_{S,A}^{\top} \right]. \tag{45}$$

This implies that

$$\|\nabla \left(\mathbb{E}_{\mu}\left[\delta_{S,A,S'}\left(\theta_{1}\right)\phi_{S,A}\right]\right) - \nabla \left(\mathbb{E}_{\mu}\left[\delta_{S,A,S'}\left(\theta_{2}\right)\phi_{S,A}\right]\right)\|$$

$$\leq \gamma|\mathcal{A}|\left(2k_{1} + k_{2}R\right)\|\theta_{1} - \theta_{2}\|,\tag{46}$$

and thus $\nabla \left(\mathbb{E}_{\mu} \left[\delta_{S,A,S'} \left(\theta \right) \phi_{S,A} \right] \right)$ is Lipschitz in θ .

Following similar steps, we can also show that $\mathbb{E}_{\mu} \left[\delta_{S,A,S'} \left(\theta \right) \phi_{S,A} \right]$ is Lipschitz:

$$\|\mathbb{E}_{\mu} \left[\delta_{S,A,S'} \left(\theta_{1}\right) \phi_{S,A}\right] - \mathbb{E}_{\mu} \left[\delta_{S,A,S'} \left(\theta_{2}\right) \phi_{S,A}\right] \| \leq \left(\gamma(|\mathcal{A}|k_{1}R+1)+1\right) \|\theta_{1} - \theta_{2}\|. \tag{47}$$

Now by combining both parts in (46) and (47), we can show that

$$\|\nabla J(\theta_{1}) - \nabla J(\theta_{2})\|$$

$$\leq \|2\nabla (\mathbb{E}_{\mu} [\delta_{S,A,S'}(\theta_{1}) \phi_{S,A}]) C^{-1} (\mathbb{E}_{\mu} [\delta_{S,A,S'}(\theta_{1}) \phi_{S,A}] - \mathbb{E}_{\mu} [\delta_{S,A,S'}(\theta_{2}) \phi_{S,A}]) \|$$

$$+ \|2 (\nabla (\mathbb{E}_{\mu} [\delta_{S,A,S'}(\theta_{1}) \phi_{S,A}]) - \nabla (\mathbb{E}_{\mu} [\delta_{S,A,S'}(\theta_{2}) \phi_{S,A}])) C^{-1} \mathbb{E}_{\mu} [\delta_{S,A,S'}(\theta_{2}) \phi_{S,A}]$$

$$\leq 2\gamma (k_{1}|\mathcal{A}|R+1) \frac{1}{\lambda} (1 + \gamma (1 + Rk_{1}|\mathcal{A}|) \|\theta_{1} - \theta_{2}\|$$

$$+ 2 \frac{1}{\lambda} (r_{\max} + (1 + \gamma)R)\gamma |\mathcal{A}| (2k_{1} + k_{2}R) \|\theta_{1} - \theta_{2}\|$$

$$= 2\gamma \frac{1}{\lambda} ((k_{1}|\mathcal{A}|R+1)(1 + \gamma + \gamma Rk_{1}|\mathcal{A}|) + |\mathcal{A}| (r_{\max} + R + \gamma R)(2k_{1} + k_{2}R)) \|\theta_{1} - \theta_{2}\|, \tag{48}$$

which implies that $\nabla J(\theta)$ is Lipschitz. This completes the proof.

Recall that $G_{t+1}(\theta,\omega) = \delta_{t+1}(\theta)\phi_t - \gamma(\omega^T\phi_t)\hat{\phi}_{t+1}(\theta)$, where $\delta_{t+1}(\theta) = r_{t+1} + \gamma \bar{V}_{t+1}(\theta) - \theta^\top\phi_t$, $\bar{V}_{t+1}(\theta) = \bar{V}_{\theta}(S_{t+1}) = \sum_{a \in \mathcal{A}} \pi_{\theta}(a|S_{t+1})\theta^\top\phi_{S_{t+1},a}$, and $\hat{\phi}_{t+1}(\theta) = \sum_{a \in \mathcal{A}} \theta^\top\phi_{S_{t+1},a}\nabla\pi_{\theta}(a|S_{t+1}) + \pi_{\theta}(a|S_{t+1})\phi_{S_{t+1},a}$. The following Lemma shows that $G_{t+1}(\theta,\omega)$ is Lipschitz in ω , and $G_{t+1}(\theta,\omega^*(\theta))$ is Lipschitz in θ .

Lemma 3. For any $\theta \in \{\theta : \|\theta\| \le R\}$, $G_{t+1}(\theta, \omega)$ is Lipschitz in ω , and $G_{t+1}(\theta, \omega^*(\theta))$ is Lipschitz in θ . Specifically, for any w_1, w_2 ,

$$||G_{t+1}(\theta, \omega_1) - G_{t+1}(\theta, \omega_2)|| \le \gamma(|A|Rk_1 + 1)||\omega_1 - \omega_2||, \tag{49}$$

and for any $\theta_1, \theta_2 \in \{\theta : \|\theta\| \le R\}$,

$$||G_{t+1}(\theta_1, \omega^*(\theta_1)) - G_{t+1}(\theta_2, \omega^*(\theta_2))|| \le k_3 ||\theta_1 - \theta_2||, \tag{50}$$

where
$$k_3 = (1 + \gamma + \gamma R |\mathcal{A}|k_1 + \gamma \frac{1}{\lambda} |\mathcal{A}|(2k_1 + k_2 R)(r_{\max} + \gamma R + R) + \gamma \frac{1}{\lambda} (1 + |\mathcal{A}|Rk_1)(1 + \gamma + \gamma R |\mathcal{A}|k_1)).$$

Proof. Following similar steps as those in (45) and (46), we can show that $\hat{\phi}_{t+1}(\theta)$ is Lipschitz in θ , i.e., for any $\theta_1, \theta_2 \in \{\theta : \|\theta\| \le R\}$,

$$\|\hat{\phi}_{t+1}(\theta_1) - \hat{\phi}_{t+1}(\theta_2)\| \le |\mathcal{A}|(2k_1 + k_2 R)\|\theta_1 - \theta_2\|. \tag{51}$$

Under Assumption 4, it can be easily shown that

$$\|\hat{\phi}_{t+1}(\theta)\| \le |\mathcal{A}|Rk_1 + 1. \tag{52}$$

It then follows that for any ω_1 and ω_2 ,

$$||G_{t+1}(\theta, \omega_1)) - G_{t+1}(\theta, \omega_2))||$$

$$= ||\gamma(\omega_1 - \omega_2)^{\top} \phi_t) \hat{\phi}_{t+1}(\theta)||$$

$$\leq \gamma(|A|Rk_1 + 1)||\omega_1 - \omega_2||.$$
(53)

To show that $G_{t+1}(\theta, \omega^*(\theta))$ is Lipschitz in θ , we have that

$$\begin{aligned} &\|G_{t+1}(\theta_{1},\omega^{*}(\theta_{1})) - G_{t+1}(\theta_{2},\omega^{*}(\theta_{2}))\| \\ &\leq |\delta_{t+1}(\theta_{1}) - \delta_{t+1}(\theta_{2})| + \gamma \|(\omega^{*}(\theta_{2}))^{\top} \phi_{t} \hat{\phi}_{t+1}(\theta_{2}) - (\omega^{*}(\theta_{1}))^{\top} \phi_{t} \hat{\phi}_{t+1}(\theta_{1})\| \\ &\stackrel{(a)}{\leq} \gamma \|(\omega^{*}(\theta_{2}))^{\top} \phi_{t} \hat{\phi}_{t+1}(\theta_{2}) - (\omega^{*}(\theta_{1}))^{\top} \phi_{t} \hat{\phi}_{t+1}(\theta_{1}) - (\omega^{*}(\theta_{1}))^{\top} \phi_{t} \hat{\phi}_{t+1}(\theta_{2}) + (\omega^{*}(\theta_{1}))^{\top} \phi_{t} \hat{\phi}_{t+1}(\theta_{2})\| \\ &+ (1 + \gamma + \gamma R |\mathcal{A}|k_{1}) \|\theta_{1} - \theta_{2}\| \\ &\leq \gamma (1 + |\mathcal{A}|Rk_{1}) \|\omega^{*}(\theta_{2}) - \omega^{*}(\theta_{1})\| + \gamma \|\omega^{*}(\theta_{1})\| \|\hat{\phi}_{t+1}(\theta_{1}) - \hat{\phi}_{t+1}(\theta_{2})\| \\ &+ \gamma (1 + R |\mathcal{A}|k_{1}) \|\theta_{1} - \theta_{2}\| + \|\theta_{1} - \theta_{2}\| \\ &\stackrel{(b)}{\leq} \left(1 + \gamma + \gamma R |\mathcal{A}|k_{1} + \gamma \frac{1}{\lambda} |\mathcal{A}|(2k_{1} + k_{2}R)(r_{\max} + \gamma R + R) + \gamma \frac{1}{\lambda} (1 + |\mathcal{A}|Rk_{1})(1 + \gamma + \gamma R |\mathcal{A}|k_{1})\right) \\ &\times \|\theta_{1} - \theta_{2}\| \\ &\triangleq k_{3} \|\theta_{1} - \theta_{2}\|, \end{aligned} \tag{54}$$

where (a) can be shown following steps similar to those in (47), while (b) can be shown by combining

$$\|\omega^*(\theta)\| = \|C^{-1}\mathbb{E}[\delta_{t+1}(\theta)\phi_t]\| \le \frac{1}{\lambda}(r_{\max} + \gamma R + R),$$
 (55)

and

$$\|\omega^*(\theta_2) - \omega^*(\theta_1)\| \le \frac{1}{\lambda} (1 + \gamma + \gamma R |\mathcal{A}| k_1) \|\theta_1 - \theta_2\|.$$
 (56)

In the following lemma, we provide a decomposition of the stochastic bias, which is essential to our finite-sample analysis.

Lemma 4. Consider the Greedy-GQ algorithm (see Algorithm 1), when the step-size α_t is constant, i.e., $\alpha_t = \alpha, \forall t \geq 0$, then

$$\sum_{t=0}^{T} \frac{\alpha_{t}}{2} \mathbb{E}[\|\nabla J(\theta_{t})\|^{2}] \leq J(\theta_{0}) - J(\theta_{T+1}) + \gamma \alpha_{t} (1 + |A|Rk_{1}) \sqrt{\sum_{t=0}^{T} \mathbb{E}[\|\nabla J(\theta_{t})\|^{2}]} \sqrt{\sum_{t=0}^{T} \mathbb{E}[\|\omega^{*}(\theta_{t}) - \omega_{t}\|^{2}]} + \sum_{t=0}^{T} \alpha_{t} \mathbb{E}[\langle \nabla J(\theta_{t}), \frac{\nabla J(\theta_{t})}{2} + G_{t+1}(\theta_{t}, \omega^{*}(\theta_{t})) \rangle] + \frac{K}{2} \sum_{t=0}^{T} \alpha_{t}^{2} \mathbb{E}[\|G_{t+1}(\theta_{t}, \omega_{t})\|^{2}]. \quad (57)$$

Proof. From Lemma 2, it follows that $J(\theta)$ is K-smooth. Then, by Taylor expansion, for any θ_1 and θ_2 ,

$$|J(\theta_1) - J(\theta_2) - \langle \nabla J(\theta_2), \theta_1 - \theta_2 \rangle| \le \frac{K}{2} ||\theta_1 - \theta_2||^2.$$
 (58)

Then, it can be shown that

$$J(\theta_{t+1}) \leq J(\theta_{t}) + \langle \nabla J(\theta_{t}), \theta_{t+1} - \theta_{t} \rangle + \frac{K}{2} \alpha_{t}^{2} ||G_{t+1}(\theta_{t}, \omega_{t})||^{2}$$

$$= J(\theta_{t}) + \alpha_{t} \langle \nabla J(\theta_{t}), G_{t+1}(\theta_{t}, \omega_{t}) \rangle + \frac{K}{2} \alpha_{t}^{2} ||G_{t+1}(\theta_{t}, \omega_{t})||^{2}$$

$$= J(\theta_{t}) - \alpha_{t} \langle \nabla J(\theta_{t}), -G_{t+1}(\theta_{t}, \omega_{t}) - \frac{\nabla J(\theta_{t})}{2} + G_{t+1}(\theta_{t}, \omega^{*}(\theta_{t})) - G_{t+1}(\theta_{t}, \omega^{*}(\theta_{t})) \rangle$$

$$- \frac{\alpha_{t}}{2} ||\nabla J(\theta_{t})||^{2} + \frac{K}{2} \alpha_{t}^{2} ||G_{t+1}(\theta_{t}, \omega_{t})||^{2}$$

$$= J(\theta_{t}) - \alpha_{t} \langle \nabla J(\theta_{t}), -G_{t+1}(\theta_{t}, \omega_{t}) + G_{t+1}(\theta_{t}, \omega^{*}(\theta_{t})) \rangle$$

$$+ \alpha_{t} \langle \nabla J(\theta_{t}), \frac{\nabla J(\theta_{t})}{2} + G_{t+1}(\theta_{t}, \omega^{*}(\theta_{t})) \rangle - \frac{\alpha_{t}}{2} ||\nabla J(\theta_{t})||^{2} + \frac{K}{2} \alpha_{t}^{2} ||G_{t+1}(\theta_{t}, \omega_{t})||^{2}$$

$$\stackrel{(a)}{\leq} J(\theta_{t}) + \alpha_{t} \gamma ||\nabla J(\theta_{t})|| (1 + |A|Rt_{1}) ||\omega^{*}(\theta_{t}) - \omega_{t}|| + \alpha_{t} \langle \nabla J(\theta_{t}), \frac{\nabla J(\theta_{t})}{2} + G_{t+1}(\theta_{t}, \omega^{*}(\theta_{t})) \rangle$$

$$- \frac{\alpha_{t}}{2} ||\nabla J(\theta_{t})||^{2} + \frac{K}{2} \alpha_{t}^{2} ||G_{t+1}(\theta_{t}, \omega_{t})||^{2}, \tag{59}$$

where (a) follows from the fact that $G_{t+1}(\theta,\omega)$ is Lipschitz in ω (see Lemma 3).

By taking expectation of both sides, summing up the inequality from 0 to T, and rearranging the terms, we have that

$$\sum_{t=0}^{T} \frac{\alpha_{t}}{2} \mathbb{E}[\|\nabla J(\theta_{t})\|^{2}]$$

$$\leq J(\theta_{0}) - J(\theta_{T+1}) + \sum_{t=0}^{T} \gamma \alpha_{t} (1 + |\mathcal{A}|Rk_{1}) \mathbb{E}[\|\nabla J(\theta_{t})\|\|\omega^{*}(\theta_{t}) - \omega_{t}\|]$$

$$+ \sum_{t=0}^{T} \alpha_{t} \mathbb{E}[\langle \nabla J(\theta_{t}), \frac{\nabla J(\theta_{t})}{2} + G_{t+1}(\theta_{t}, \omega^{*}(\theta_{t}))\rangle] + \frac{K}{2} \sum_{t=0}^{T} \alpha_{t}^{2} \mathbb{E}[\|G_{t+1}(\theta_{t}, \omega_{t})\|^{2}]. \tag{60}$$

We then apply Cauchy-Schwarz's inequality, and we have that

$$\sum_{t=0}^{T} \mathbb{E}[\|\nabla J(\theta_t)\|\|\omega^*(\theta_t) - \theta_t\|]$$

$$\leq \sum_{t=0}^{T} \sqrt{\mathbb{E}[\|\nabla J(\theta_t)\|^2]\mathbb{E}[\|\omega^*(\theta_t) - \theta_t\|^2]}.$$
(61)

We further define two vectors a_E and a_z , where

$$a_E \triangleq \left(\sqrt{\mathbb{E}[\|\nabla J(\theta_0)\|^2]}, \sqrt{\mathbb{E}[\|\nabla J(\theta_1)\|^2]}, ..., \sqrt{\mathbb{E}[\|\nabla J(\theta_T)\|^2]}\right)^\top, \tag{62}$$

$$a_z \triangleq \left(\sqrt{\mathbb{E}[\|\omega^*(\theta_0) - \theta_0\|^2]}, \sqrt{\mathbb{E}[\|\omega^*(\theta_1) - \theta_1\|^2]}, ..., \sqrt{\mathbb{E}[\|\omega^*(\theta_T) - \theta_T\|^2]}\right)^\top.$$
(63)

Then, it follows that

$$\sum_{t=0}^{T} \sqrt{\mathbb{E}[\|\nabla J(\theta_t)\|^2]} \mathbb{E}[\|\omega^*(\theta_t) - \theta_t\|^2]$$

$$= \langle a_E, a_z \rangle$$

$$\leq \|a_E\| \|a_z\|$$

$$= \sqrt{\sum_{t=0}^{T} \mathbb{E}[\|\nabla J(\theta_t)\|^2]} \sqrt{\sum_{t=0}^{T} \mathbb{E}[\|\omega^*(\theta_t) - \omega_t\|^2]}.$$
(64)

Thus plugging (64) in (60), and since $\alpha_t = \alpha, \forall t \geq 0$ is constant, we have that

$$\sum_{t=0}^{T} \frac{\alpha_{t}}{2} \mathbb{E}[\|\nabla J(\theta_{t})\|^{2}]$$

$$\leq J(\theta_{0}) - J(\theta_{T+1}) + \gamma \alpha_{t} (1 + |\mathcal{A}|Rk_{1}) \sum_{t=0}^{T} \mathbb{E}[\|\nabla J(\theta_{t})\|\|\omega^{*}(\theta_{t}) - \omega_{t}\|]$$

$$+ \sum_{t=0}^{T} \alpha_{t} \mathbb{E}[\langle \nabla J(\theta_{t}), \frac{\nabla J(\theta_{t})}{2} + G_{t+1}(\theta_{t}, \omega^{*}(\theta_{t}))\rangle] + \frac{K}{2} \sum_{t=0}^{T} \alpha_{t}^{2} \mathbb{E}[\|G_{t+1}(\theta_{t}, \omega_{t})\|^{2}]$$

$$\leq J(\theta_{0}) - J(\theta_{T+1}) + \gamma \alpha_{t} (1 + |\mathcal{A}|Rk_{1}) \sqrt{\sum_{t=0}^{T} \mathbb{E}[\|\nabla J(\theta_{t})\|^{2}]} \sqrt{\sum_{t=0}^{T} \mathbb{E}[\|\omega^{*}(\theta_{t}) - \omega_{t}\|^{2}]}$$

$$+ \sum_{t=0}^{T} \alpha_{t} \mathbb{E}[\langle \nabla J(\theta_{t}), \frac{\nabla J(\theta_{t})}{2} + G_{t+1}(\theta_{t}, \omega^{*}(\theta_{t}))\rangle] + \frac{K}{2} \sum_{t=0}^{T} \alpha_{t}^{2} \mathbb{E}[\|G_{t+1}(\theta_{t}, \omega_{t})\|^{2}]. \tag{65}$$

We next derive the bounds on $\mathbb{E}[\langle \nabla J(\theta_t), \frac{\nabla J(\theta_t)}{2} + G_{t+1}(\theta_t, \omega^*(\theta_t)) \rangle]$ and $\mathbb{E}[\|\omega^*(\theta_t) - \omega_t\|]$, where we refer to the second term as the "tracking error".

We first define $z_t = \omega_t - \omega^*(\theta_t)$, then the algorithm can be written as:

$$\theta_{t+1} = \theta_t + \alpha_t (f_1(\theta_t, O_t) + g_1(\theta_t, z_t, O_t)), \tag{66}$$

$$z_{t+1} = z_t + \beta_t (f_2(\theta_t, O_t) + g_2(\theta_t, O_t)) + \omega^*(\theta_t) - \omega^*(\theta_{t+1}), \tag{67}$$

where

$$\begin{cases}
f_1(\theta_t, O_t) \triangleq \delta_{t+1}(\theta_t)\phi_t - \gamma\phi_t^{\top}\omega^*(\theta_t)\hat{\phi}_{t+1}(\theta_t), \\
g_1(\theta_t, z_t, O_t) \triangleq -\gamma\phi_t^{\top}z_t\hat{\phi}_{t+1}(\theta_t), \\
f_2(\theta_t, O_t) \triangleq (\delta_{t+1}(\theta_t) - \phi_t^{\top}\omega^*(\theta_t))\phi_t, \\
g_2(z_t, O_t) \triangleq -\phi_t^{\top}z_t\phi_t, \\
O_t \triangleq (s_t, g_t, T_t, s_{t+1}),
\end{cases} (68)$$

We then develop some upper bounds of functions f_1, g_1, f_2, g_2 in the algorithm in the following lemma.

Lemma 5. For $\|\theta\| \leq R$, $\|z\| \leq 2R$, there exist constants c_{f_1} , c_{g_1} , c_{g_2} and c_{f_2} such that $\|f_1(\theta,O_t)\| \leq c_{f_1}$, $\|g_1(\theta,z,O_t)\| \leq c_{g_1}$, $|f_2(\theta,O_t)| \leq c_{f_2}$ and $|g_2(\theta,O_t)| \leq c_{g_2}$, where $c_{f_1} = r_{\max} + (1+\gamma)R + \gamma \frac{1}{\lambda}(r_{\max} + (1+\gamma)R) + \gamma \frac{1}{\lambda}(r_{\max} + (1+\gamma)R) + \frac{1}{\lambda}(r_{\max}$

Proof. This Lemma can be shown easily using (43), (52) and (56).

We further define $\zeta(\theta, O_t) \triangleq \langle \nabla J(\theta), \frac{\nabla J(\theta)}{2} + G_{t+1}(\theta, \omega^*(\theta)) \rangle$, then we have that $\mathbb{E}_{\mu}[\zeta(\theta, O_t)] = 0$ for any fixed θ , where (S_t, A_t) in O_t follow the stationary distribution μ . In the following lemma, we provide upper bound on $\mathbb{E}[\zeta(\theta, O_t)]$.

Lemma 6. Let $\tau_{\alpha_T} \triangleq \min \{k : m\rho^k \leq \alpha_T\}$. If $t \leq \tau_{\alpha_T}$, then

$$\mathbb{E}[\zeta(\theta_t, O_t)] \le c_\zeta(c_{f_1} + c_{g_1})\alpha_0 \tau_{\alpha_T},\tag{69}$$

and if $t > \tau_{\alpha_T}$, then

$$\mathbb{E}[\zeta(\theta_t, O_t)] \le k_\zeta \alpha_T + c_\zeta (c_{f_1} + c_{g_1}) \tau_{\alpha_T} \alpha_{t - \tau_{\alpha_T}}. \tag{70}$$

Where $c_{\zeta} = 2\gamma(1+k_1|\mathcal{A}|R)\frac{1}{\lambda}(r_{\max}+R+\gamma R)(\frac{K}{2}+k_3) + K(r_{\max}+R+\gamma R)(\gamma\frac{1}{\lambda}(1+k_1|\mathcal{A}|R)+1+\gamma\frac{1}{\lambda}(1+Rk_1|\mathcal{A}|))$ and $k_{\zeta} = 4\gamma(1+k_1R|\mathcal{A}|)\frac{1}{\lambda}(r_{\max}+R+\gamma R)^2(2\gamma(1+k_1|\mathcal{A}|R)\frac{1}{\lambda}+1).$

Proof. We note that when θ is fixed, $\mathbb{E}[G_{t+1}(\theta,\omega^*(\theta))] = -\frac{1}{2}\nabla J(\theta)$. We will use this fact and the Markov mixing property to show this Lemma. Note that for any θ_1 and θ_2 , it follows that

$$\begin{aligned} &|\zeta(\theta_{1}, O_{t}) - \zeta(\theta_{2}, O_{t})|\\ &= |\langle \nabla J(\theta_{1}), \frac{\nabla J(\theta_{1})}{2} + G_{t+1}(\theta_{1}, \omega^{*}(\theta_{1}))\rangle - \langle \nabla J(\theta_{1}), \frac{\nabla J(\theta_{2})}{2} + G_{t+1}(\theta_{2}, \omega^{*}(\theta_{2}))\rangle \\ &+ \langle \nabla J(\theta_{1}), \frac{\nabla J(\theta_{2})}{2} + G_{t+1}(\theta_{2}, \omega^{*}(\theta_{2}))\rangle - \langle \nabla J(\theta_{2}), \frac{\nabla J(\theta_{2})}{2} + G_{t+1}(\theta_{2}, \omega^{*}(\theta_{2}))\rangle|. \end{aligned}$$
(71)

Since $J(\theta)$ and $\|\nabla J(\theta)\|$ are Lipschitz in θ by Lemma 2, thus $\zeta(\theta, O_t)$ is also Lipschitz in θ . We then denote its Lipschitz constant by c_{ζ} , i.e.,

$$|\zeta(\theta_1, O_t) - \zeta(\theta_2, O_t)| \le c_{\zeta} \|\theta_1 - \theta_2\|,\tag{72}$$

where

$$c_{\zeta} = 2\gamma (1 + k_1 |\mathcal{A}|R) \frac{1}{\lambda} (r_{\text{max}} + R + \gamma R) (\frac{K}{2} + k_3) + K(r_{\text{max}} + R + \gamma R) (\gamma \frac{1}{\lambda} (1 + k_1 |\mathcal{A}|R) + 1 + \gamma \frac{1}{\lambda} (1 + Rk_1 |\mathcal{A}|)).$$
(73)

Thus from (71), it follows that for any $\tau \geq 0$,

$$|\zeta(\theta_t, O_t) - \zeta(\theta_{t-\tau}, O_t)| \le c_\zeta \|\theta_t - \theta_{t-\tau}\| \le c_\zeta (c_{f_1} + c_{g_1}) \sum_{k=t-\tau}^{t-1} \alpha_k.$$
(74)

We define an independent random variable $\hat{O}=(\hat{S},\hat{A},\hat{R},\hat{S}')$, where $(\hat{S},\hat{A})\sim\mu$, \hat{S}' is the subsequent state and \hat{R} is the reward. Then $\mathbb{E}[\zeta(\theta_{t-\tau},\hat{O})]=0$ by the fact that $\mathbb{E}_{\mu}[G_{t+1}(\theta,\omega^*(\theta))]=-\frac{1}{2}\nabla J(\theta)$. Thus,

$$\mathbb{E}[\zeta(\theta_{t-\tau}, O_t)] \le |\mathbb{E}[\zeta(\theta_{t-\tau}, O_t)] - \mathbb{E}[\zeta(\theta_{t-\tau}, O')]| \le k_{\zeta} m \rho^{\tau}, \tag{75}$$

which follows from the Markov Mixing property in Assumption 3, where $k_{\zeta} = 4\gamma(1 + k_1R|\mathcal{A}|)\frac{1}{\lambda}(r_{\text{max}} + R + \gamma R)^2(2\gamma(1 + k_1|\mathcal{A}|R)\frac{1}{\lambda} + 1)$.

If $t \leq \tau_{\alpha_T}$, then we choose $\tau = t$ in (74). Then we have that

$$\mathbb{E}[\zeta(\theta_t, O_t)] \le \mathbb{E}[\zeta(\theta_0, O_t)] + c_{\zeta}(c_{f_1} + c_{g_1}) \sum_{k=0}^{t-1} \alpha_k \le c_{\zeta}(c_{f_1} + c_{g_1}) t \alpha_0 \stackrel{(a)}{\le} c_{\zeta}(c_{f_1} + c_{g_1}) \alpha_0 \tau_{\alpha_T}, \tag{76}$$

where (a) is due to the fact that α_t is non-increasing. If $t > \tau_{\alpha_T}$, we choose $\tau = \tau_{\alpha_T}$, and then

$$\mathbb{E}[\zeta(\theta_t, O_t)] \leq \mathbb{E}[\zeta(\theta_{t-\tau_{\alpha_T}}, O_t)] + c_{\zeta}(c_{f_1} + c_{g_1}) \sum_{k=t-\tau_{\alpha_T}}^{t-1} \alpha_k$$

$$\leq k_{\zeta} m \rho^{\tau_{\alpha_T}} + c_{\zeta}(c_{f_1} + c_{g_1}) \tau_{\alpha_T} \alpha_{t-\tau_{\alpha_T}} \leq k_{\zeta} \alpha_T + c_{\zeta}(c_{f_1} + c_{g_1}) \tau_{\alpha_T} \alpha_{t-\tau_{\alpha_T}}.$$
(77)

We next bound the tracking error $\mathbb{E}[\|z_t\|]$. Define $\zeta_{f_2}(\theta, z, O_t) \triangleq \langle z, f_2(\theta, O_t) \rangle$, and $\zeta_{g_2}(z, O_t) \triangleq \langle z, g_2(z, O_t) - \bar{g}_2(z) \rangle$, where $\bar{g}_2(z) \triangleq \mathbb{E}[g_2(z, O_t)] = \mathbb{E}[-\phi_t^\top z \phi_t]$.

Lemma 7. Consider any $\theta, \theta_1, \theta_2 \in \{\theta : \|\theta\| \le R\}$ and any $z, z_1, z_2 \in \{z : \|z\| \le 2R\}$. Then $1) |\zeta_{f_2}(\theta, z, O_t)| \le 2Rc_{f_2}; 2) |\zeta_{f_2}(\theta_1, z_1, O_t) - \zeta_{f_2}(\theta_2, z_2, O_t)| \le k_{f_2} \|\theta_1 - \theta_2\| + k'_{f_2} \|z_1 - z_2\|$, where $k_{f_2} = 2R(1 + \gamma + \gamma Rk_1 |\mathcal{A}|)(1 + \frac{1}{\lambda})$ and $k'_{f_2} = c_{f_2}; 3) |\zeta_{g_2}(z, O_t)| \le 8R^2;$ and $4) |\zeta_{g_2}(z_1, O_t) - \zeta_{g_2}(z_2, O_t)| \le 8R \|z_1 - z_2\|$.

Proof. To prove 1), it can be shown that $|\zeta_{f_2}(\theta, z, O_t)| = |\langle z, f_2(\theta, O_t) \rangle| \le 2Rc_{f_2}$. For 2), it can be shown that

$$\begin{aligned} &|\zeta_{f_{2}}(\theta_{1}, z_{1}, O_{t}) - \zeta_{f_{2}}(\theta_{2}, z_{2}, O_{t})| \\ &= |\langle z_{1}, f_{2}(\theta_{1}, O_{t})\rangle - \langle z_{2}, f_{2}(\theta_{2}, O_{t})\rangle| \\ &\leq |\langle z_{1}, f_{2}(\theta_{1}, O_{t})\rangle - \langle z_{1}, f_{2}(\theta_{2}, O_{t})| + |\langle z_{1}, f_{2}(\theta_{2}, O_{t}) - \langle z_{2}, f_{2}(\theta_{2}, O_{t})\rangle| \\ &\leq 2R||f_{2}(\theta_{1}, O_{t}) - f_{2}(\theta_{2}, O_{t})|| + ||f_{2}(\theta_{2}, O_{t})|| ||z_{1} - z_{2}|| \\ &\leq 2R(|\delta_{t+1}(\theta_{1}) - \delta_{t+1}(\theta_{2})| + ||\omega^{*}(\theta_{1}) - \omega^{*}(\theta_{2})||) + c_{f_{2}}||z_{1} - z_{2}|| \\ &\leq k_{f_{2}}||\theta_{1} - \theta_{2}|| + k'_{f_{2}}||z_{1} - z_{2}||, \end{aligned}$$

$$(78)$$

where (a) is from both $\delta(\theta)$ and $\omega^*(\theta_t)(\theta)$ are Lipschitz, $k_{f_2} = 2R(1 + \gamma + \gamma Rk_1|\mathcal{A}|)(1 + \frac{1}{\lambda})$, and $k'_{f_2} = c_{f_2}$.

For 3), we have that $\zeta_{g_2}(z, O_t) = \langle z, -\phi_t^\top z \phi_t + \mathbb{E}[\phi_t^\top z \phi_t] \rangle \leq 8R^2$.

To prove 4), we have that

$$\begin{aligned} &|\zeta_{g_2}(z_1, O_t) - \zeta_{g_2}(z_2, O_t)| \\ &= |\langle z_1, -\phi_t^\top z_1 \phi_t + \mathbb{E}[\phi_t^\top z_1 \phi_t] \rangle - \langle z_1, -\phi_t^\top z_2 \phi_t + \mathbb{E}[\phi_t^\top z_2 \phi_t] \rangle + \langle z_1, -\phi_t^\top z_2 \phi_t \\ &+ \mathbb{E}[\phi_t^\top z_2 \phi_t] \rangle - \langle z_2, -\phi_t^\top z_2 \phi_t + \mathbb{E}[\phi_t^\top z_2 \phi_t] \rangle| \\ &\leq 8R||z_1 - z_2||. \end{aligned} \tag{79}$$

In the following lemma, we derive bounds on $\mathbb{E}[\zeta_{f_2}(\theta_1, z_t, O_t)]$ and $\mathbb{E}[\zeta_{g_2}(z_t, O_t)]$.

Lemma 8. Define $\tau_{\beta_T} = \min \{k : m\rho^k \leq \beta_T\}$. If $t \leq \tau_{\beta_T}$, then

$$\mathbb{E}[\zeta_{f_2}(\theta_t, z_t, O_t)] \le 4Rc_{f_2}\beta_T + a_{f_2}\tau_{\beta_T},\tag{80}$$

where $a_{f_2} = (k'_{f_2}(c_{f_2} + c_{g_2})\beta_0 + (k_{f_2}(c_{f_1} + c_{g_1}) + k'_{f_2}\frac{1}{\lambda}(1 + \gamma + \gamma R|\mathcal{A}|k_1)(c_{f_1} + c_{g_1}))\alpha_0)$; and if $t > \tau_{\beta_T}$, then

$$\mathbb{E}[\zeta_{f_2}(\theta_t, z_t, O_t)] \le 4Rc_{f_2}\beta_T + b_{f_2}\tau_{\beta_T}\beta_{t-\tau_{\beta_T}},\tag{81}$$

where $b_{f_2} = (k'_{f_2}(c_{f_2} + c_{g_2}) + (k_{f_2}(c_{f_1} + c_{g_1}) + k'_{f_2} \frac{1}{\lambda}(1 + \gamma + \gamma R |\mathcal{A}|k_1)(c_{f_1} + c_{g_1}))).$

Proof. We first note that

$$||z_{t+1} - z_t||$$

$$= ||\beta_t(f_2(\theta_t, O_t) + g_2(z_t, O_t)) + \omega^*(\theta_t) - \omega^*(\theta_{t+1})||$$

$$\leq (c_{f_2} + c_{g_2})\beta_t + \frac{1}{\lambda}(1 + \gamma + \gamma R|\mathcal{A}|k_1)(c_{f_1} + c_{g_1})\alpha_t,$$
(82)

where the last step is due to (56). Furthermore, due to part 2) in Lemma 7, ζ_{f_2} is Lipschitz in both θ and z, then we have that for any $\tau \geq 0$

$$\begin{aligned} &|\zeta_{f_{2}}(\theta_{t}, z_{t}, O_{t}) - \zeta_{f_{2}}(\theta_{t-\tau}, z_{t-\tau}, O_{t})|\\ &\stackrel{(a)}{\leq} k_{f_{2}}(c_{f_{1}} + c_{g_{1}}) \sum_{i=t-\tau}^{t-1} \alpha_{i} + k'_{f_{2}}(c_{f_{2}} + c_{g_{2}}) \sum_{i=t-\tau}^{t-1} \beta_{i} + \sum_{i=t-\tau}^{t-1} k'_{f_{2}} \frac{1}{\lambda} (1 + \gamma + \gamma R |\mathcal{A}| k_{1}) (c_{f_{1}} + c_{g_{1}}) \alpha_{i} \end{aligned}$$

$$= k'_{f_{2}}(c_{f_{2}} + c_{g_{2}}) \sum_{i=t-\tau}^{t-1} \beta_{i} + (k_{f_{2}}(c_{f_{1}} + c_{g_{1}}) + k'_{f_{2}} \frac{1}{\lambda} (1 + \gamma + \gamma R |\mathcal{A}| k_{1}) (c_{f_{1}} + c_{g_{1}})) \sum_{i=t-\tau}^{t-1} \alpha_{i}, \tag{83}$$

where in (a), we apply (56) and Lemma 5 to obtain the third term.

Define an independent random variable $\hat{O} = (\hat{S}, \hat{A}, \hat{R}, \hat{S}')$, where $(\hat{S}, \hat{A}) \sim \mu$, $\hat{S}' \sim P(\cdot | \hat{S}, \hat{A})$ is the subsequent state, and \hat{R} is the reward. Then it can be shown that

$$\mathbb{E}[\zeta_{f_2}(\theta_{t-\tau}, z_{t-\tau}, O_t)]
\stackrel{(a)}{\leq} |\mathbb{E}[\zeta_{f_2}(\theta_{t-\tau}, z_{t-\tau}, O_t)] - \mathbb{E}[\zeta_{f_2}(\theta_{t-\tau}, z_{t-\tau}, \hat{O})]|
\leq 4Rc_{f_2}m\rho^{\tau},$$
(84)

where (a) is due to the fact that $\mathbb{E}[\zeta_{f_2}(\theta_{t-\tau}, z_{t-\tau}, \hat{O})] = 0$, and the last inequality follows from Assumption 3.

If $t \leq \tau_{\beta_T}$, we choose $\tau = t$ in (83). Then it can be shown that

$$\mathbb{E}[\zeta_{f_{2}}(\theta_{t}, z_{t}, O_{t})] \\
\leq \mathbb{E}[\zeta_{f_{2}}(\theta_{0}, z_{0}, O_{t})] + k'_{f_{2}}(c_{f_{2}} + c_{g_{2}}) \sum_{i=0}^{t-1} \beta_{i} + (k_{f_{2}}(c_{f_{1}} + c_{g_{1}})) \\
+ k'_{f_{2}} \frac{1}{\lambda} (1 + \gamma + \gamma R |\mathcal{A}|k_{1})(c_{f_{1}} + c_{g_{1}})) \sum_{i=0}^{t-1} \alpha_{i} \\
\leq 4Rc_{f_{2}} m \rho^{t} + k'_{f_{2}}(c_{f_{2}} + c_{g_{2}}) t \beta_{0} + (k_{f_{2}}(c_{f_{1}} + c_{g_{1}}) + k'_{f_{2}} \frac{1}{\lambda} (1 + \gamma + \gamma R |\mathcal{A}|k_{1})(c_{f_{1}} + c_{g_{1}})) t \alpha_{0} \\
\leq 4Rc_{f_{2}} \beta_{T} + (k'_{f_{2}}(c_{f_{2}} + c_{g_{2}}) \beta_{0} + (k_{f_{2}}(c_{f_{1}} + c_{g_{1}}) + k'_{f_{2}} \frac{1}{\lambda} (1 + \gamma + \gamma R |\mathcal{A}|k_{1})(c_{f_{1}} + c_{g_{1}})) \alpha_{0}) \tau_{\beta_{T}}. \tag{85}$$

If $t > \tau_{\beta_T}$, we choose $\tau = \tau_{\beta_T}$ in (83). Then, it can be shown that

$$\mathbb{E}[\zeta_{f_{2}}(\theta_{t}, z_{t}, O_{t})] \\
\leq \mathbb{E}[\zeta_{f_{2}}(\theta_{t-\tau_{\beta_{T}}}, z_{t-\tau_{\beta_{T}}}, O_{t})] \\
+ k'_{f_{2}}(c_{f_{2}} + c_{g_{2}}) \sum_{i=t-\tau_{\beta_{T}}}^{t-1} \beta_{i} + (k_{f_{2}}(c_{f_{1}} + c_{g_{1}}) + k'_{f_{2}} \frac{1}{\lambda} (1 + \gamma + \gamma R |\mathcal{A}|k_{1})(c_{f_{1}} + c_{g_{1}})) \sum_{i=t-\tau_{\beta_{T}}}^{t-1} \alpha_{i} \\
\leq 4Rc_{f_{2}} m \rho^{\tau_{\beta_{T}}} + k'_{f_{2}}(c_{f_{2}} + c_{g_{2}}) \tau_{\beta_{T}} \beta_{t-\tau_{\beta_{T}}} + (k_{f_{2}}(c_{f_{1}} + c_{g_{1}}) + k'_{f_{2}} \frac{1}{\lambda} (1 + \gamma + \gamma R |\mathcal{A}|k_{1})(c_{f_{1}} + c_{g_{1}})) \tau_{\beta_{T}} \alpha_{t-\tau_{\beta_{T}}} \\
\leq 4Rc_{f_{2}} \beta_{T} + (k'_{f_{2}}(c_{f_{2}} + c_{g_{2}}) + (k_{f_{2}}(c_{f_{1}} + c_{g_{1}}) + k'_{f_{2}} \frac{1}{\lambda} (1 + \gamma + \gamma R |\mathcal{A}|k_{1})(c_{f_{1}} + c_{g_{1}})) \tau_{\beta_{T}} \beta_{t-\tau_{\beta_{T}}}, \tag{86}$$

where in the last step we upper bound α_t using β_t . Note that this will not change the order of the bound.

Similarly, in the following lemma, we derive a bound on $\mathbb{E}[\zeta_{g_2}(z_t, O_t)]$.

Lemma 9. If $t \leq \tau_{\beta_T}$, then

$$\mathbb{E}[\zeta_{g_2}(z_t, O_t)] \le a_{g_2} \tau_{\beta_T}; \tag{87}$$

and if $t > \tau_{\beta_T}$, then

$$\mathbb{E}[\zeta_{g_2}(z_t, O_t)] \le b_{g_2}\beta_T + b'_{g_2}\tau_{\beta_T}\beta_{t-\tau_{\beta_T}},\tag{88}$$

where $a_{g_2} = 8R(c_{f_2} + c_{g_2})\beta_0 + \frac{1}{\lambda}(1 + \gamma + \gamma R|\mathcal{A}|k_1)(c_{f_1} + c_{g_1})\alpha_0$, $b_{g_2} = 16R^2$, and $b'_{g_2} = 8R(c_{f_2} + c_{g_2})\beta_0 + \frac{1}{\lambda}(1 + \gamma + \gamma R|\mathcal{A}|k_1)(c_{f_1} + c_{g_1})\alpha_0$.

Proof. The proof is similar to the one for Lemma 8.

We then bound the tracking error as follows:

$$||z_{t+1}||^{2}$$

$$= ||z_{t} + \beta_{t}(f_{2}(\theta_{t}, O_{t}) + g_{2}(z_{t}, O_{t})) + \omega^{*}(\theta_{t}) - \omega^{*}(\theta_{t+1})||^{2}$$

$$= ||z_{t}||^{2} + 2\beta_{t}\langle z_{t}, f_{2}(\theta_{t}, O_{t})\rangle + 2\beta_{t}\langle z_{t}, g_{2}(z_{t}, O_{t})\rangle + 2\langle z_{t}, \omega^{*}(\theta_{t}) - \omega^{*}(\theta_{t+1})\rangle$$

$$+ ||\beta_{t}f_{2}(\theta_{t}, O_{t}) + \beta_{t}g_{2}(z_{t}, O_{t}) + \omega^{*}(\theta_{t}) - \omega^{*}(\theta_{t+1})||^{2}$$

$$\leq ||z_{t}||^{2} + 2\beta_{t}\langle z_{t}, f_{2}(\theta_{t}, O_{t})\rangle + 2\beta_{t}\langle z_{t}, g_{2}(z_{t}, O_{t})\rangle + 2\langle z_{t}, \omega^{*}(\theta_{t}) - \omega^{*}(\theta_{t+1})\rangle$$

$$+ 3\beta_{t}^{2}||f_{2}(\theta_{t}, O_{t})||^{2} + 3\beta_{t}^{2}||g_{2}(z_{t}, O_{t})||^{2} + 3||\omega^{*}(\theta_{t}) - \omega^{*}(\theta_{t+1})||^{2}$$

$$\stackrel{(a)}{\leq} ||z_{t}||^{2} + 2\beta_{t}\langle z_{t}, f_{2}(\theta_{t}, O_{t})\rangle + 2\beta_{t}\langle z_{t}, g_{2}(z_{t})\rangle + 2\langle z_{t}, \omega^{*}(\theta_{t}) - \omega^{*}(\theta_{t+1})\rangle + 2\beta_{t}\langle z_{t}, g_{2}(z_{t}, O_{t}) - g_{2}(z_{t})\rangle$$

$$+ 3\beta_{t}^{2}c_{f_{2}}^{2} + 3\beta_{t}^{2}c_{g_{2}}^{2} + 6\frac{1}{\lambda^{2}}(1 + \gamma + \gamma R|A|k_{1})^{2}\alpha_{t}^{2}(c_{f_{1}}^{2} + c_{g_{1}}^{2}), \tag{89}$$

where (a) follows from Lemma 5 and (56).

Note that $\langle z_t, \bar{g_2}(z_t) \rangle = -z_t^\top C z_t$, and C is a positive definite matrix. Recall the minimal eigenvalue of C is denoted by λ , then (89) can be further bounded as follows:

$$||z_{t+1}||^{2} \leq (1 - 2\beta_{t}\lambda)||z_{t}||^{2} + 2\beta_{t}\zeta_{f_{2}} + 2\beta_{t}\zeta_{g_{2}} + 2\langle z_{t}, \omega^{*}(\theta_{t}) - \omega^{*}(\theta_{t+1})\rangle + 3\beta_{t}^{2}c_{f_{2}}^{2} + 3\beta_{t}^{2}c_{g_{2}}^{2} + 6\frac{1}{\sqrt{2}}(1 + \gamma + \gamma R|\mathcal{A}|k_{1})^{2}\alpha_{t}^{2}(c_{f_{1}}^{2} + c_{g_{1}}^{2}).$$

$$(90)$$

Taking expectation on both sides of the (90), and applying it recursively, we obtain that

$$\mathbb{E}[||z_{t+1}||^{2}] \leq \prod_{i=0}^{t} (1 - 2\beta_{i}\lambda)||z_{0}||^{2}
+ 2 \sum_{i=0}^{t} \prod_{k=i+1}^{t} (1 - 2\beta_{k}\lambda)\beta_{i}\mathbb{E}[\zeta_{f_{2}}(z_{i}, \theta_{i}, O_{i})]
+ 2 \sum_{i=0}^{t} \prod_{k=i+1}^{t} (1 - 2\beta_{k}\lambda)\beta_{i}\mathbb{E}[\zeta_{g_{2}}(z_{i}, O_{i})]
+ 2 \sum_{i=0}^{t} \prod_{k=i+1}^{t} (1 - 2\beta_{k}\lambda)\mathbb{E}\langle z_{i}, \omega^{*}(\theta_{i}) - \omega^{*}(\theta_{i+1})\rangle + 3(c_{f_{2}}^{2} + c_{g_{2}}^{2}) \sum_{i=0}^{t} \prod_{k=i+1}^{t} (1 - 2\beta_{k}\lambda)\beta_{i}^{2}
+ 6 \frac{1}{\lambda^{2}} (1 + \gamma + \gamma R|\mathcal{A}|k_{1})^{2} (c_{f_{1}}^{2} + c_{g_{1}}^{2}) \sum_{i=0}^{t} \prod_{k=i+1}^{t} (1 - 2\beta_{k}\lambda)\alpha_{i}^{2}.$$
(91)

Also note that $1 - 2\beta_i \lambda \le e^{-2\beta_i \lambda}$, which further implies that

$$\mathbb{E}[||z_{t+1}||^2 \le A_t ||z_0||^2 + 2\sum_{i=0}^t B_{it} + 2\sum_{i=0}^t C_{it} + 2\sum_{i=0}^t D_{it} + 3(c_{f_2}^2 + c_{g_2}^2 + 2\frac{1}{\lambda^2}(1 + \gamma + \gamma R|\mathcal{A}|k_1)^2(c_{f_1}^2 + c_{g_1}^2))\sum_{i=0}^t E_{it},$$
(92)

where

$$A_{t} = e^{-2\lambda \sum_{i=0}^{t} \beta_{i}},$$

$$B_{it} = e^{-2\lambda \sum_{k=i+1}^{t} \beta_{k}} \beta_{i} \mathbb{E}[\zeta_{f_{2}}(z_{i}, \theta_{i}, O_{i})],$$

$$C_{it} = e^{-2\lambda \sum_{k=i+1}^{t} \beta_{k}} \beta_{i} \mathbb{E}[\zeta_{g_{2}}(z_{i}, O_{i})],$$

$$D_{it} = e^{-2\lambda \sum_{k=i+1}^{t} \beta_{k}} \mathbb{E}[\langle z_{t}, \omega^{*}(\theta_{i}) - \omega^{*}(\theta_{i+1}) \rangle],$$

$$E_{it} = e^{-2\lambda \sum_{k=i+1}^{t} \beta_{k}} \beta_{i}^{2}.$$
(93)

Consider the second term in (92). Using Lemma 8, it can be further bounded as follows:

$$\sum_{i=0}^{t} B_{it} = \sum_{i=0}^{t} e^{-2\lambda \sum_{k=i+1}^{t} \beta_{k}} \beta_{i} \mathbb{E}[\zeta_{f_{2}}(z_{i}, \theta_{i}, O_{i})]$$

$$\leq \sum_{i=0}^{\tau_{\beta_{T}}} (a_{f_{2}} \tau_{\beta_{T}} + 4Rc_{f_{2}} \beta_{T}) e^{-2\lambda \sum_{k=i+1}^{t} \beta_{k}} \beta_{i} + 4Rc_{f_{2}} \beta_{T} \sum_{i=\tau_{\beta_{T}}+1}^{t} e^{-2\lambda \sum_{k=i+1}^{t} \beta_{k}} \beta_{i}$$

$$+ b_{f_{2}} \tau_{\beta_{T}} \sum_{i=\tau_{\beta_{T}}+1}^{t} e^{-2\lambda \sum_{k=i+1}^{t} \beta_{k}} \beta_{i-\tau_{\beta_{T}}} \beta_{i}. \tag{94}$$

Further analysis of the bound will be made when we specify the step-sizes α_t , β_t , which will be provided later. Similarly, using Lemma 9, we can bound the third term in (92) as follows:

$$\sum_{i=0}^{t} C_{it} = \sum_{i=0}^{t} e^{-2\lambda \sum_{k=i+1}^{t} \beta_{k}} \beta_{i} \mathbb{E}[\zeta_{g_{2}}(z_{i}, O_{i})]$$

$$\leq \tau_{\beta_{T}} a_{g_{2}} \sum_{i=0}^{\tau_{\beta_{T}}} e^{-2\lambda \sum_{k=i+1}^{t} \beta_{k}} \beta_{i} + b_{g_{2}} \beta_{T} \sum_{i=\tau_{\beta_{T}}+1}^{t} e^{-2\lambda \sum_{k=i+1}^{t} \beta_{k}} \beta_{i}$$

$$+ b'_{g_{2}} \tau_{\beta_{T}} \sum_{i=\tau_{\beta_{T}}+1}^{t} e^{-2\lambda \sum_{k=i+1}^{t} \beta_{k}} \beta_{i-\tau_{\beta_{T}}} \beta_{i}.$$
(95)

The last step in bounding the tracking error is to bound $\mathbb{E}[\langle z_i, \omega^*(\theta_i) - \omega^*(\theta_{i+1}) \rangle]$, which is shown in the following lemma.

Lemma 10.

$$\sum_{i=0}^{t} e^{-2\lambda \sum_{k=i+1}^{t} \beta_{k}} \mathbb{E}[\langle z_{i}, \omega^{*}(\theta_{i}) - \omega^{*}(\theta_{i+1}) \rangle]
\leq 2 \frac{1}{\lambda} (1 + \gamma + \gamma R |\mathcal{A}| k_{1}) R(c_{f_{1}} + c_{g_{1}}) \sum_{i=0}^{t} e^{-2\lambda \sum_{k=i+1}^{t} \beta_{k}} \alpha_{i}.$$
(96)

Proof. From (56), we first have that

$$||\omega^*(\theta_i) - \omega^*(\theta_{i+1})|| \le \frac{1}{\lambda} (1 + \gamma + \gamma R|\mathcal{A}|k_1)||\theta_i - \theta_{i+1}||.$$
 (97)

Then it follows that

$$\sum_{i=0}^{t} e^{-2\lambda \sum_{k=i+1}^{t} \beta_{k}} \mathbb{E}[\langle z_{i}, \omega^{*}(\theta_{i}) - \omega^{*}(\theta_{i+1}) \rangle]
\leq \sum_{i=0}^{t} e^{-2\lambda \sum_{k=i+1}^{t} \beta_{k}} \mathbb{E}[\frac{1}{\lambda} (1 + \gamma + \gamma R |\mathcal{A}| k_{1}) ||z_{i}|| ||\theta_{i} - \theta_{i+1}||]
\leq 2 \frac{1}{\lambda} (1 + \gamma + \gamma R |\mathcal{A}| k_{1}) R(c_{f_{1}} + c_{g_{1}}) \sum_{i=0}^{t} e^{-2\lambda \sum_{k=i+1}^{t} \beta_{k}} \alpha_{i}.$$
(98)

B Proof of Theorem 1

In this section, we will use the lemmas in Appendix A to prove Theorem 1.

In Appendix A, we have developed bounds on both the tracking error and $\mathbb{E}[\zeta(\theta_t, O_t)]$. We then plug them both into (60),

$$\frac{\sum_{t=0}^{T} \alpha_{t} \mathbb{E}[\|\nabla J(\theta_{t})\|^{2}]}{2 \sum_{t=0}^{T} \alpha_{t}} \leq \frac{1}{\sum_{t=0}^{T} \alpha_{t}} \left(J(\theta_{0}) - J^{*} + \gamma \alpha_{t} (1 + |\mathcal{A}|Rk_{1}) \sqrt{\sum_{t=0}^{T} \mathbb{E}[\|\nabla J(\theta_{t})\|^{2}]} \sqrt{\sum_{t=0}^{T} \mathbb{E}[\|z_{t}\|^{2}]} + \sum_{t=0}^{T} \alpha_{t} \mathbb{E}[\zeta(\theta_{t}, O_{t})] + \sum_{t=0}^{T} \alpha_{t}^{2} (c_{f_{1}} + c_{g_{1}}) \right), \tag{99}$$

where J^* denotes $\min_{\theta} J(\theta)$, and is positive and finite.

By Lemma 6, for large T, we have that

$$\sum_{t=0}^{T} \alpha_t \mathbb{E}[\zeta(\theta_t, O_t)]$$

$$\leq \sum_{t=0}^{\tau_{\alpha_T}} c_{\zeta}(c_{f_1} + c_{g_1}) \alpha_0 \alpha_t \tau_{\alpha_T} + \sum_{t=\tau_{\alpha_T}+1}^{T} k_{\zeta} \alpha_T \alpha_t + c_{\zeta}(c_{f_1} + c_{g_1}) \tau_{\alpha_T} \alpha_{t-\tau_{\alpha_T}} \alpha_t.$$
(100)

Here, $\tau_{\alpha_T} = \mathcal{O}(|\log \alpha_T|)$ by its definition. Therefore, for non-increasing sequence $\{\alpha_t\}_{t=0}^{\infty}$, (100) can be further upper bounded as follows:

$$\sum_{t=0}^{T} \alpha_t \mathbb{E}[\zeta(\theta_t, O_t)] = \mathcal{O}\left(|\log \alpha_T|^2 \alpha_0^2 + \sum_{t=0}^{T} \left(\alpha_t \alpha_T + |\log \alpha_T| \alpha_t^2\right)\right). \tag{101}$$

We note that we can also specify the constants for (101), which, however, will be cumbersome. How those constants affect the finite-sample bound can be easily inferred from (100), and thus is not explicitly analyzed in the following steps. Also, at the beginning we bound $\sqrt{\frac{\sum_{t=0}^{T}\mathbb{E}[\|\nabla J(\theta_t)\|^2]}{T}}$ by some constant that does not scale with T: $\gamma\|C^{-1}\|(k_1+|\mathcal{A}|R+1)(r_{\max}+R+\gamma R)$.

Hence, we have that

$$\frac{\sum_{t=0}^{T} \alpha_{t} \mathbb{E}[\|\nabla J(\theta_{t})\|^{2}]}{\sum_{t=0}^{T} \alpha_{t}}$$

$$= \mathcal{O}\left(\frac{1}{\sum_{t=0}^{T} \alpha_{t}} \left(J(\theta_{0}) - J^{*} + \sum_{t=0}^{T} \alpha_{t}^{2} + \alpha_{t} \sqrt{T} \sqrt{\sum_{t=0}^{T} \mathbb{E}[\|z_{t}\|^{2}]} + \alpha_{0}^{2} |\log(\alpha_{T})|^{2} + \sum_{t=0}^{T} \alpha_{t} \alpha_{T} + \sum_{t=0}^{T} |\log(\alpha_{T})| \alpha_{t}^{2}\right)\right). \tag{102}$$

In the following, we focus on the case with constant step-sizes. For other possible choices of step-sizes, the convergence rate can also be derived using (102). Let $\alpha_t = \frac{1}{T^a} = \alpha$ and $\beta_t = \frac{1}{T^b} = \beta$. In this case, (102) can be written as follows:

$$\frac{\sum_{t=0}^{T} \alpha \mathbb{E}[\|\nabla J(\theta_{t})\|^{2}]}{\sum_{t=0}^{T} \alpha} = \mathcal{O}\left(\frac{1}{T}\left(\sqrt{T}\sqrt{\sum_{t=0}^{T} \mathbb{E}[\|z_{t}\|^{2}]} + \alpha \log(\alpha)^{2} + T\alpha + T\alpha |\log(\alpha)|\right) + \frac{J(\theta_{0}) - J^{*}}{T\alpha}\right)$$

$$= \mathcal{O}\left(\sqrt{\frac{\sum_{t=0}^{T} \mathbb{E}[\|z_{t}\|^{2}]}{T}}\right) + \mathcal{O}\left(\frac{\log T^{2}}{T^{1+a}} + \frac{1}{T^{a}} + \frac{\log T}{T^{a}} + \frac{1}{T^{1-a}}\right). \tag{103}$$

We then consider the tracking error $\mathbb{E}[\|z_t\|^2]$. Applying (92), (94), (95) and (98), we obtain that for $t > \tau_{\beta_T}$,

$$\begin{split} &\mathbb{E}[\|z_{t}\|^{2}] \\ &\leq \|z_{0}\|^{2}e^{-2\lambda t\beta} \\ &\quad + 2(4Rc_{f_{2}}\beta + (a_{f_{2}} + a_{g_{2}})\tau_{\beta_{T}})\beta \sum_{i=0}^{\tau_{\beta_{T}}} e^{-2\lambda(t-i)\beta} + (8Rc_{f_{2}} + 2b_{g_{2}})\beta^{2} \sum_{i=\tau_{\beta_{T}}+1}^{t} e^{-2\lambda(t-i)\beta} \\ &\quad + (2b_{f_{2}} + 2b'_{g_{2}})\tau_{\beta_{T}}\beta^{2} \sum_{i=\tau_{\beta_{T}}+1}^{t} e^{-2\lambda(t-i)\beta} + \frac{4}{\lambda}(1 + \gamma + \gamma R|\mathcal{A}|k_{1})R(c_{f_{1}} + c_{g_{1}})\alpha \sum_{i=0}^{t} e^{-2\lambda(t-i)\beta} \\ &\quad + 3(c_{f_{2}}^{2} + c_{g_{2}}^{2} + 2\frac{1}{\lambda^{2}}(1 + \gamma + \gamma R|\mathcal{A}|k_{1})^{2}(c_{f_{1}}^{2} + c_{g_{1}}^{2})) \sum_{i=0}^{t} e^{-2\lambda(t-i)\beta}\beta^{2} \\ &= \mathcal{O}\left(e^{-2\lambda t\beta} + \tau\beta \sum_{i=0}^{\tau} e^{-2\lambda(t-i)\beta} + \tau\beta^{2} \sum_{i=1+\tau}^{t} e^{-2\lambda(t-i)\beta} + (\alpha + \beta^{2}) \sum_{i=0}^{t} e^{-2\lambda(t-i)\beta}\right) \\ &= \mathcal{O}\left(e^{-2\lambda t\beta} + \tau\beta e^{-2\lambda t\beta} \frac{1 - e^{2\lambda\beta(\tau+1)}}{1 - e^{2\lambda\beta}} + \tau\beta^{2}(e^{-2\lambda t\beta} - e^{-2\lambda\beta\tau}) \frac{e^{2\lambda\beta(\tau+1)}}{1 - e^{2\lambda\beta}} + (\alpha + \beta^{2}) \frac{e^{-2\lambda t\beta} - e^{2\lambda\beta}}{1 - e^{2\lambda\beta}}\right). \tag{104} \end{split}$$

Similarly, for $t \leq \tau_{\beta_T}$, we obtain that

$$\mathbb{E}[\|z_{t}\|^{2}] \leq \|z_{0}\|^{2} e^{-2\lambda t\beta} + 2(4Rc_{f_{2}}\beta + (a_{f_{2}} + a_{g_{2}})\tau_{\beta_{T}})\beta \sum_{i=0}^{t} e^{-2\lambda(t-i)\beta}$$

$$+ \frac{4}{\lambda}(1 + \gamma + \gamma R|\mathcal{A}|k_{1})R(c_{f_{1}} + c_{g_{1}})\alpha \sum_{i=0}^{t} e^{-2\lambda(t-i)\beta}$$

$$+ 3(c_{f_{2}}^{2} + c_{g_{2}}^{2} + 2\frac{1}{\lambda^{2}}(1 + \gamma + \gamma R|\mathcal{A}|k_{1})^{2}(c_{f_{1}}^{2} + c_{g_{1}}^{2})) \sum_{i=0}^{t} e^{-2\lambda(t-i)\beta}\beta^{2}$$

$$= \mathcal{O}\left(e^{-2\lambda\beta t} + \tau\beta \sum_{i=0}^{t} e^{-2\lambda(t-i)\beta}\right) = \mathcal{O}\left(e^{-2\lambda\beta t} + \tau\beta \frac{e^{-2\lambda\beta t} - e^{2\lambda\beta}}{1 - e^{2\lambda\beta}}\right).$$

$$(105)$$

We then bound $\sum_{t=0}^T \mathbb{E}[\|z_t\|^2]$. The sum is divided into two parts: $\sum_{t=0}^\tau \mathbb{E}[\|z_t\|^2]$ and $\sum_{t=\tau+1}^T \mathbb{E}[\|z_t\|^2]$, thus

$$\begin{split} &\sum_{t=0}^{T} \mathbb{E}[\|z_{t}\|^{2}] \\ &= \sum_{t=0}^{\tau} \mathbb{E}[\|z_{t}\|^{2}] + \sum_{t=\tau+1}^{T} \mathbb{E}[\|z_{t}\|^{2}] \\ &= \sum_{t=0}^{\tau} (e^{-2\lambda\beta t} + \tau \beta \frac{e^{-2\lambda\beta t} - e^{2\lambda\beta}}{1 - e^{2\lambda\beta}}) + \sum_{t=\tau+1}^{T} \left(e^{-2\lambda t\beta} + \tau \beta e^{-2\lambda t\beta} \frac{1 - e^{2\lambda\beta(\tau+1)}}{1 - e^{2\lambda\beta}} \right) \\ &+ \tau \beta^{2} (e^{-2\lambda t\beta} - e^{-2\lambda\beta\tau}) \frac{e^{2\lambda\beta(\tau+1)}}{1 - e^{2\lambda\beta}} + (\alpha + \beta^{2}) \frac{e^{-2\lambda t\beta} - e^{2\lambda\beta}}{1 - e^{2\lambda\beta}} \right) \\ &= \frac{1 - e^{-2\lambda\beta(T+1)}}{1 - e^{-2\lambda\beta}} + \tau \beta \left((\tau + 1) \frac{-e^{2\lambda\beta}}{1 - e^{2\lambda\beta}} + \frac{1 - e^{-2\lambda\beta(\tau+1)}}{(1 - e^{2\lambda\beta})(1 - e^{-2\lambda\beta})} \right) \\ &+ \tau \beta \frac{1 - e^{2\lambda\beta(\tau+1)}}{1 - e^{2\lambda\beta}} e^{-2\lambda\beta(\tau+1)} \frac{1 - e^{-2\lambda\beta(T-\tau)}}{1 - e^{-2\lambda\beta}} + \tau \beta^{2} \frac{e^{2\lambda\beta(\tau+1)}}{1 - e^{2\lambda\beta}} \left(e^{-2\lambda\beta(\tau+1)} \frac{1 - e^{-2\lambda\beta(T-\tau)}}{1 - e^{-2\lambda\beta}} \right) \\ &- (T - \tau)e^{-2\lambda\beta\tau} \right) + (\alpha + \beta^{2}) \frac{1}{1 - e^{2\lambda\beta}} \left(e^{-2\lambda\beta(\tau+1)} \frac{1 - e^{-2\lambda\beta(T-\tau)}}{1 - e^{-2\lambda\beta}} - (T - \tau)e^{2\lambda\beta} \right) \\ &= \mathcal{O}\left(\frac{1}{\beta} + \tau^{2} + \tau + \tau \beta T + \frac{\alpha + \beta^{2}}{\beta} T \right). \end{split}$$
(106)

Thus, we have that

$$\frac{\sum_{t=0}^{T} \mathbb{E}[\|z_t\|^2]}{T} = \mathcal{O}\left(\frac{1}{T^{1-b}} + \frac{(\log T)^2}{T} + \frac{\log T}{T^b} + \frac{1}{T^{a-b}} + \frac{1}{T^b}\right) = \mathcal{O}\left(\frac{\log T}{T^{\min\{a-b,b\}}}\right). \tag{107}$$

We then plug the tracking error (107) in (103), and we have that

$$\frac{\sum_{t=0}^{T} \alpha \mathbb{E}[\|\nabla J(\theta_t)\|^2]}{\sum_{t=0}^{T} \alpha} = \mathcal{O}\left(\frac{1}{T^{1-a}}\right) + \mathcal{O}\left(\frac{\log T}{T^{\min\{a-b,b\}}}\right). \tag{108}$$

In the following we will recursively refine our bounds on the tracking error using the bound in (103).

Recall (65), and denote $D = J(\theta_0 - J^*)$, then

$$\frac{\sum_{t=0}^{T} \mathbb{E}[\|\nabla J(\theta_{t})\|^{2}]}{T} = \frac{D}{T\alpha} + \mathcal{O}\left(\frac{\sum_{t=0}^{T} \sqrt{\mathbb{E}[\|\nabla J(\theta_{t})\|^{2}]}\mathbb{E}[\|z_{t}\|^{2}]}{T}\right)$$

$$= \mathcal{O}\left(\frac{1}{T\alpha} + \sqrt{\frac{\sum_{t=0}^{T} \mathbb{E}[\|\nabla J(\theta_{t})\|^{2}]}{T}}\sqrt{\frac{\sum_{t=0}^{T} \mathbb{E}[\|z_{t}\|^{2}]}{T}}\right). \tag{109}$$

In the first round, we upper bound $\frac{\sum_{t=0}^{T} \mathbb{E}[\|\nabla J(\theta_t)\|^2]}{T}$ by a constant. It then follows that

$$\frac{\sum_{t=0}^{T} \mathbb{E}[\|\nabla J(\theta_t)\|^2]}{T} = \mathcal{O}\left(\frac{1}{T^{1-a}}\right) + \sqrt{\mathcal{O}\left(\frac{\log T}{T^b} + \frac{1}{T^{a-b}}\right)} = \mathcal{O}\left(\frac{1}{T^{1-a}}\right) + \mathcal{O}\left(\frac{\sqrt{\log T}}{T^{\min\{b/2, a/2 - b/2\}}}\right), \quad (110)$$

where we denote $\min\{b/2, a/2 - b/2\}$ by c/2. We then plug (110) into (109), and we obtain that

$$\frac{\sum_{t=0}^{T} \mathbb{E}[\|\nabla J(\theta_t)\|^2]}{T} = \mathcal{O}\left(\frac{1}{T^{1-a}}\right) + \mathcal{O}\left(\frac{\sqrt{\log T}}{T^{c/2}}\sqrt{\frac{\sum_{t=0}^{T} \mathbb{E}[\|\nabla J(\theta_t)\|^2]}{T}}\right). \tag{111}$$

Case 1. If 1 - a < c/2, then bound in (110) is $\mathcal{O}\left(\frac{1}{T^{1-a}}\right)$: $\frac{\sum_{t=0}^{T} \mathbb{E}[\|\nabla J(\theta_t)\|^2]}{T} = \mathcal{O}\left(\frac{1}{T^{1-a}}\right)$. Then

$$\frac{\sum_{t=0}^{T} \mathbb{E}[\|\nabla J(\theta_t)\|^2]}{T} = \mathcal{O}\left(\frac{1}{T^{1-a}} + \frac{\sqrt{\log T}}{T^{c/2}} \frac{1}{T^{1/2 - a/2}}\right). \tag{112}$$

Note that c/2 > 1 - a, then c/2 + 1/2 - a/2 > 1 - a, thus the order would be

$$\frac{\sum_{t=0}^{T} \mathbb{E}[\|\nabla J(\theta_t)\|^2]}{T} = \mathcal{O}\left(\frac{1}{T^{1-a}}\right). \tag{113}$$

Therefore, such a recursive refinement will not improve the convergence rate if $1-a<\frac{c}{2}$.

Case 2. If $c > 1 - a \ge c/2$, then

$$\frac{\sum_{t=0}^{T} \mathbb{E}[\|\nabla J(\theta_t)\|^2]}{T} = \mathcal{O}\left(\frac{\sqrt{\log T}}{T^{c/2}}\right). \tag{114}$$

Also plug this order in (109), and we obtain that

$$\frac{\sum_{t=0}^{T} \mathbb{E}[\|\nabla J(\theta_t)\|^2]}{T} = \mathcal{O}\left(\frac{1}{T^{1-a}}\right) + \mathcal{O}\left(\frac{\sqrt{\log T}}{T^{c/2}} \frac{(\log T)^{1/4}}{T^{c/4}}\right) = \mathcal{O}\left(\frac{1}{T^{1-a}} + \frac{(\log T)^{\frac{3}{4}}}{T^{3c/4}}\right). \tag{115}$$

Here, we start the second iteration. If $1 - a \ge \frac{3c}{4}$, we know that the order is improved as follows

$$\frac{\sum_{t=0}^{T} \mathbb{E}[\|\nabla J(\theta_t)\|^2]}{T} = \mathcal{O}\left(\frac{(\log T)^{\frac{3}{4}}}{T^{3c/4}}\right). \tag{116}$$

And if $1 - a < \frac{3c}{4}$, then order of (110) will still be $O\left(\frac{1}{T^{1-a}}\right)$. Thus we will stop the recursion, and we have that

$$\frac{\sum_{t=0}^{T} \mathbb{E}[\|\nabla J(\theta_t)\|^2]}{T} = \mathcal{O}\left(\frac{1}{T^{1-a}}\right). \tag{117}$$

This implies that if the recursion stops after some step until there is no further rate improvement, then the convergence rate will be $\mathcal{O}\left(\frac{1}{T^{1-a}}\right)$. Note in this case, since 1-a < c, then there exists some integral n, such that $1-a < \frac{2^n-1}{2^n}c$, and after round n, the recursion will stop. Thus the final rate is $\mathcal{O}\left(\frac{1}{T^{1-a}}\right)$.

Case 3. If $1-a \ge c$, then after a number of recursions, the order of the bound will be sufficiently close to $O\left(\frac{\log T}{T^c}\right)$. To conclude the three cases, when 1-a < c, the recursion will stop after finite number of iterations, and the rate would be $O\left(\frac{1}{T^{1-a}}\right)$; While when $1-a \ge c$, the recursion will always continue, and the fastest rate we can obtain is $O\left(\frac{\log T}{T^c}\right)$. Thus the overall rate we can obtain can be written as

$$\mathcal{O}\left(\frac{1}{T^{1-a}} + \frac{\log T}{T^c}\right). \tag{118}$$

B.1 Proof of Corollary 1

We next look for suitable a and b, such that the rate obtained is the fastest. It can be seen that the best rate is achieved when 1-a=c, and at the same time $0.5 < a \le 1$ and 0 < b < a. Thus, the best choices are $a=\frac{2}{3}$ and $b=\frac{1}{3}$, and the best rate we can obtain is

$$\mathbb{E}[\|\nabla J(\theta_M)\|^2] = \frac{\sum_{t=0}^T \mathbb{E}[\|\nabla J(\theta_t)\|^2]}{T} = \mathcal{O}\left(\frac{\log T}{T^{1-a}}\right) = \mathcal{O}\left(\frac{\log T}{T^{\frac{1}{3}}}\right). \tag{119}$$

C Softmax Is Lipschitz and Smooth

We first restate Lemma 1 as follows, and then derive its proof.

Lemma 11. The softmax policy is 2σ -Lipschitz and $8\sigma^2$ -smooth, i.e., for any $(s, a) \in \mathcal{S} \times \mathcal{A}$, and for any $\theta_1, \theta_2 \in \mathbb{R}^N$, $|\pi_{\theta_1}(a|s) - \pi_{\theta_2}(a|s)| \le 2\sigma \|\theta_1 - \theta_2\|$ and $\|\nabla \pi_{\theta_1}(a|s) - \nabla \pi_{\theta_2}(a|s)\| \le 8\sigma^2 \|\theta_1 - \theta_2\|$.

Proof. By the definition of the softmax policy, for any $a \in \mathcal{A}$, $s \in \mathcal{S}$ and $\theta \in \mathbb{R}^N$,

$$\pi_{\theta}(a|s) = \frac{e^{\sigma\theta^{\top}\phi_{s,a}}}{\sum_{a' \in A} e^{\sigma\theta^{\top}\phi_{s,a'}}},\tag{120}$$

where $\sigma > 0$ is a constant. Then, it can be shown that

$$\nabla \pi_{\theta}(a|s) = \frac{1}{\left(\sum_{a' \in \mathcal{A}} e^{\sigma \theta^{\top} \phi_{s,a'}}\right)^{2}} \left(\sigma e^{\sigma \theta^{\top} \phi_{s,a}} \phi_{s,a} \left(\sum_{a' \in \mathcal{A}} e^{\sigma \theta^{\top} \phi_{s,a'}}\right) - \left(\sum_{a' \in \mathcal{A}} \sigma e^{\sigma \theta^{\top} \phi_{s,a'}} \phi_{s,a'}\right) e^{\sigma \theta^{\top} \phi_{s,a}}\right)$$

$$= \frac{\sigma}{\left(\sum_{a' \in \mathcal{A}} e^{\sigma \theta^{\top} \phi_{s,a'}}\right)^{2}} \left(\sum_{a' \in \mathcal{A}} \phi_{s,a} e^{\sigma \theta^{\top} (\phi_{s,a} + \phi_{s,a'})} - \phi_{s,a'} e^{\sigma \theta^{\top} (\phi_{s,a} + \phi_{s,a'})}\right)$$

$$= \frac{\sigma \sum_{a' \in \mathcal{A}} (\phi_{s,a} - \phi_{s,a'}) e^{\sigma \theta^{\top} (\phi_{s,a} + \phi_{s,a'})}}{\left(\sum_{a' \in \mathcal{A}} e^{\sigma \theta^{\top} \phi_{s,a'}}\right)^{2}}.$$
(121)

Thus,

$$||\nabla \pi_{\theta}(a|s)|| \le 2\sigma \frac{\sum_{a' \in \mathcal{A}} e^{\sigma \theta^{\top}(\phi_{s,a} + \phi_{s,a'})}}{\left(\sum_{a' \in \mathcal{A}} e^{\sigma \theta^{\top}\phi_{s,a'}}\right)^{2}} = 2\sigma \frac{e^{\sigma \theta^{\top}\phi_{s,a}}}{\sum_{a' \in \mathcal{A}} e^{\sigma \theta^{\top}\phi_{s,a'}}} \le 2\sigma, \tag{122}$$

where the last step is due to the fact that $\frac{e^{\sigma\theta^{\top}\phi_{s,a}}}{\sum_{a'\in a}e^{\sigma\theta^{\top}\phi_{s,a'}}}\leq 1$.

Note that for any θ_1 and θ_2 , there exists some $\alpha \in (0,1)$ and $\bar{\theta} = \alpha \theta_1 + (1-\alpha)\theta_2$, such that

$$\|\nabla \pi_{\theta_1}(a|s) - \nabla \pi_{\theta_2}(a|s)\| \le \|\nabla^2 \pi_{\bar{\theta}}(a|s)\| \times \|\theta_1 - \theta_2\|,\tag{123}$$

which follows from the mean-value theorem. Here, $\nabla^2 \pi_{\theta}(a|s)$ denotes the Hessian matrix of $\pi_{\theta}(a|s)$ at θ . Thus it suffices to find an universal bound of $\|\nabla^2 \pi_{\theta}(a|s)\|$ for any θ and $(a,s) \in \mathcal{A} \times \mathcal{S}$.

Note that $\nabla \pi_{\theta}(a|s) = \frac{\sigma \sum_{a' \in \mathcal{A}} (\phi_{s,a} - \phi_{s,a'}) e^{\sigma \theta^{\top}(\phi_{s,a} + \phi_{s,a'})}}{\left(\sum_{a' \in \mathcal{A}} e^{\sigma \theta^{\top}\phi_{s,a'}}\right)^2}$ is a sum of vectors $(\phi_{s,a} - \phi_{s,a'})$ with each entry multiplied

by $\frac{\sigma e^{\sigma \theta^{\top}(\phi_{s,a}+\phi_{s,a'})}}{\left(\sum_{a'\in\mathcal{A}}e^{\sigma \theta^{\top}\phi_{s,a'}}\right)^2}$. Then it follows that

$$\nabla^{2} \pi_{\theta}(a|s) = \sigma \sum_{a' \in \mathcal{A}} (\phi_{s,a} - \phi_{s,a'}) \left(\nabla \frac{e^{\sigma \theta^{\top}(\phi_{s,a} + \phi_{s,a'})}}{\left(\sum_{a' \in \mathcal{A}} e^{\sigma \theta^{\top}\phi_{s,a'}} \right)^{2}} \right)^{\top}.$$
 (124)

Thus, to bound $\|\nabla^2 \pi_{\theta}(a|s)\|$, we compute the following:

$$\nabla \frac{e^{\sigma\theta^{\top}(\phi_{s,a}+\phi_{s,a'})}}{(\sum_{a'\in\mathcal{A}}e^{\sigma\theta^{\top}\phi_{s,a'}})^{2}}$$

$$= \sigma \frac{e^{\sigma\theta^{\top}(\phi_{s,a}+\phi_{s,a'})}\left((\sum_{a'\in\mathcal{A}}e^{\sigma\theta^{\top}\phi_{s,a'}})(\phi_{s,a}+\phi_{s,a'})-2(\sum_{a'\in\mathcal{A}}e^{\sigma\theta^{\top}\phi_{s,a'}}\phi_{s,a'})\right)}{(\sum_{a'\in\mathcal{A}}e^{\sigma\theta^{\top}\phi_{s,a'}})^{3}}.$$
(125)

Then the norm of (125) can be bounded as follows:

$$\left\|\nabla\left(\frac{e^{\sigma\theta^{\top}(\phi_{s,a}+\phi_{s,a'})}}{(\sum_{a'\in\mathcal{A}}e^{\sigma\theta^{\top}\phi_{s,a'}})^{2}}\right)\right\|$$

$$\leq \sigma \frac{2e^{\sigma\theta^{\top}(\phi_{s,a}+\phi_{s,a'})}\left(\sum_{a'\in\mathcal{A}}e^{\sigma\theta^{\top}\phi_{s,a'}}+(\sum_{a'\in\mathcal{A}}e^{\sigma\theta^{\top}\phi_{s,a'}})\right)}{(\sum_{a'\in\mathcal{A}}e^{\theta^{\top}\phi_{s,a'}})^{3}}$$

$$= 4\sigma \frac{e^{\sigma\theta^{\top}(\phi_{s,a}+\phi_{s,a'})}}{\left(\sum_{a'\in\mathcal{A}}e^{\sigma\theta^{\top}\phi_{s,a'}}\right)^{2}}$$

$$\leq 4\sigma. \tag{126}$$

Plug this in the expression of $\nabla^2 \pi_{\theta}(a|s)$, we obtain that

$$||\nabla^2 \pi_\theta(a|s)|| \le 8\sigma^2. \tag{127}$$

Thus the softmax policy is 2σ -Lipschitz and $8\sigma^2$ -smooth. This completes the proof.