Supplementary Materials

A Useful Lemmas for Proving Theorem ]|

In this subsection, we prove some useful Lemmas for our finite-sample analysis.

Before we start, we first introduce some nations. In the following proof, ||a|| denotes the ¢5 norm if a is a vector; and
||A]| denotes the operator norm if A is a matrix. Let A be the smallest eigenvalue of the matrix C'. Then the operator
norm of C~! is % We note that the Greedy-GQ algorithm in Algorithm was shown to converge asymptotically, and
0; and w; were shown to be bounded a.s. (see Proposition 4 in [18]]). We then define R as the upper bound on both 6;
and w;. Specifically, for any ¢, ||0¢|| < R and ||w|| < R ass..

We first prove that if the policy 7y is smooth in 6, then the object function J(8) is also smooth.
Lemma 2. The objective function J(0) is K-smooth for 6 € {6 : ||0|| < R}, i.e., for any ||61]|, ||02]| < R,

[V J(01) = VJI(602)]| < K61 — 0-], (38)
where K = 2y% ((k1|A|R + 1)(1 + v + YRk |A]) + [A|(rmax + R+ YR)(2k1 + k2R)) .
Proof. Recall the expression of J (6):
J(0) =K, [0s,4,5 (0) ¢S,A]T C™'E, [0s,4,5 (0) ps.4], (39)
where 854,50 = 75,45 + 7D uen 0 (alS") 0T dsr o — 0T ¢s 4. Then,

VJ (0) =2V (E, [6s,4,5' (0) ¢s,4])) C'E, [0s,4,5 (0) ¢s,4], (40)

where

V(E, [6s,4,5" (0) ¢5.4]) =E,

(w > mo(als) 9T¢3/,a> ¢§,A]

a€A

= ’YE,LL

(Z \Y% (71-0 (a|S/)) 0T¢S’,a + e (a|S/) (bs’,a) ¢g7A‘| . (41)

a€A

It then follows that

VJ (61) = VJ (02)

=2V (E, [65.4.5 (01) ¢5.4]) C'E, [65.4.5 (01) ds5.4] — 2V (B, [65.4.5 (02) ¢5.4]) C B, [05.4.5 (62) ¢s.a]
=2V (E, [0s,4,5 (61) ¢5,4]) CT'E, [65,4,50 (01) ds,4] — 2V (E,, [05,4,5 (61) ¢5,4]) C'E [65,4,5 (02) ¢, 4]
V (E, 05,45 (61)bs,4]) C 'E,, [0s,4,50 (02) bs,.a] — 2V (E,, [0s,4,5" (02) s,4]) C'E,, [05,4.5 (02) bs,4] -

(42)

Since C'~! is positive definite, thus to show V.J(6) is Lipschitz, it suffices to show both V (E,, [§s 4,5/ (7) ¢s,4]) and
E, [0s,4,5 (6) ¢s,4] are Lipschitz in 6 and bounded.

‘We first show that

”Eu [6S,A,S’ (0) ¢S,A] [ < 7max + (1+7)R, (43)

and

IVE, [0s,4,5 (8) 5,4l || = [|IE,. [Vds,a,5 (0) ds,a] || < v(k1|A|R+1). (44)



Following from (@T)), we then have that

V(E,[0s,4,5 (61) ¢s,4]) =V (E, [05,4,5" (02) b5,4])

= ’YE/J (Z Vv (7T91 (a’|S/)) eil—(bs’,a -V (77—02 (a|5l)) 9;—(;55’,11 + 7o, (a|S/) ¢S',a — T, (als/) (bS’,a) ¢;A]
acA

=1E, ( >V (7o, (alS") 0] bsr.a — V (ma, (alS)) 07 ¢5.a + V (e, (alS")) 0] b5 a
acA

— V (7, (alS")) 92T¢s’,a> DS.a

+ ’V]EM [(Z (7T91 (a|S,) ¢S’,a — To, (CL|S/) ¢S’,a)> QS:S’F,A‘| . (45)

acA

This implies that

IV (E,[0s,.4,5 (01) ¢s.a]) = V(EL [05,.4,5 (02) ¢s,4]) ||
< y|A[ (21 + k2 R) [|61 — 02, (46)

and thus V (E,, [05, 4,57 (0) ¢s,4]) is Lipschitz in 6.

Following similar steps, we can also show that E,, [05 4,5 (0) ¢s, 4] is Lipschitz:

IEu [65.4,57 (01) ¢5.4] = Bp 654,50 (62) Ps.al [| < (v([ARL R+ 1) + 1) [|01 — 02| 47

Now by combining both parts in (#6) and 7)), we can show that
IV (61) = V.J (62) |

<12V (B [05,4,57 (1) ¢5,4]) O~ (Bpu [65,4,5° (01) ds,.4] — By [05,4.50 (02) ¢s5.4]) |
+112(V (B 054,57 (01) d5,4]) = V (B [65,4,57 (62) ¢5,4])) C'Ey [05,a,50 (62) ¢5,4]

1
< 2y(k1|AIR + 1)~ (1 + y(1 + Rky | A])[|61 — 62|

A
1
+ 2+ (Fmax + (1 +7) R)7|Al(2k1 + k2 R)[|61 — 02]]
1
= 27y (kAR + 1)1 + 7 + v R A + Al (rmax + B+ 7R)(2k1 + k2 R)) (|01 — Oz, (48)
which implies that VJ (0) is Lipschitz. This completes the proof. O

Recall that Gt+1(0,W) = 6t+1(9>¢t — ’Y(OJT(ZsE)dA)t+1(9>, where §t+1(9) = Tt41 + ’Y‘_/;f+1(9) — 9T¢t, ‘7t+1(9) =

Vo(Si41) = X qen m0(alSe41)0 " ¢s, 1 ar and p1(0) = D 0 0 b5, 1,0 VTo(alSes1) + mo(alSis1)ds, - The
following Lemma shows that Gy (6, w) is Lipschitz in w, and G41(6,w*(9)) is Lipschitz in 6.

Lemma 3. Forany 0 € {0 : ||0|| < R}, Gi41(0,w) is Lipschitz in w, and Gy41(0, w*(0)) is Lipschitz in 0. Specifically,
Sfor any w1, wo,

[Gir1(0,w1) — Geya (0, w2)|| < Y(|A|RE1 + 1) [|wr — wall, (49)
and for any 61,02 € {6 : ||0] < R},
[Gi11(01,w"(01)) — Gey1(02,w" (02))| < k3|61 — 02, (50)

where ky = (1+ v + yR|A[k1 + 75 |A|(2k1 + ko R) (Fmax + YR+ R) + v5 (1 + |A[Rk1) (1 + v + yR|A[k1)).

Proof. Following similar steps as those in (@3)) and {#6)), we can show that QAStH () is Lipschitz in 0, i.e., for any 01, 5
€{0: 0| < R},

[fe+1(01) — desr ()] < [A|(2k1 + kaR)||01 — 2] (S



Under Assumption[d] it can be easily shown that
¢e1(0)]| < |A|REy + 1. (52)

It then follows that for any w; and wo,

1Ge11(0,w1)) = Grga (6, w2))|

= |lv(w1 — w2)T¢t)q§t+1(9)H
< Y(A|Rk1 + 1)[lwr — w2 (53)

To show that G (0, w*()) is Lipschitz in 6, we have that

|Ge41(01,07(01)) — Gri1 (02, 0" (02)) |l

< [8p41(01) — Se1(02)] + Y]l (w* (02) T deder1(02) — (W™ (61)) T deches1(61)]

(2 Y(w*(02)) T dees1(62) — (W (01)) T deder1(61) — (W (1)) T Pehes1(02) + (w™(61)) T res1(62)]]
+ (1 +~ + YR|Ak1)[|61 — 62,

V(1 + |A[RE) |w* (B2) — w* (01)]| + Y/l (02)]|[| @e+1(01) — er1(62) |
+ (14 R|Ak1)[|01 — 02| + [|61 — 02|

() 1 1
< (1 YR + 75 2K+ F2R) (s + R+ R) + 75 (1+ 4] Rk (1 +v+7RIA|k1))

x [|6h — Oa|
£ k3|01 — 0o, (54)

where (a) can be shown following steps similar to those in (@7), while (b) can be shown by combining

1
[ ()| = [C™ E[0:11 ()]l < 3 rmax + YR+ R), (55)
and
1
e (82) = w? (Bl < T (1 + 5 +yRIALk)]61 = 02| (56)
O

In the following lemma, we provide a decomposition of the stochastic bias, which is essential to our finite-sample
analysis.

Lemma 4. Consider the Greedy-GQ algorithm (see Algorithm[I), when the step-size v is constant, i.e., cy = o, Vt > 0,
then

T
ay
—E[|VJ(O)]"] < J(O J(6 + you (1 + |A|RE E[|VJ( E[||w*(6:) — w
;2 IV I(0)IP] < J(80) — T (O7+1) + yeu (1 + | A] 142 [V 7(6:)[1?] \IZ [llw*(0:) — well?]
<0> K\
Z@tE VJ ¢ +Gt+1(0t; EZOZE |Gt+1 Ht,wt)H] (57)
t=0

Proof. From Lemma it follows that J(6) is K-smooth. Then, by Taylor expansion, for any #; and 6-,

K
|J(01) — J(02) = (VJ(02),01 — 02)| < §\|91 — 05]|?. (58)



Then, it can be shown that
K
J(Or41) < J(0r) +(VI(0r), 011 — 0:) + 5045||Gt+1(9t7<ﬂt)||2

K
= J(0:) + ar(VJI(0), Gr1(0r,wi)) + 50¢?|\Gt+1(9t,wt)\|2
VJ(0;)
2

= J(0;) — e (VJI(0r), —Grs1(0r,w0p) — + G101, w0 (01)) — Gry1 (01, w™(01)))

o K
- §|WJ(9:&)||2 + EQ%HGtH(@taM)HQ

= J(0r) — (VI (), —Gis1 (01, wi) + Geqr (01, w™ (01)))

VJ(6:)
2

K
+ (VI (0:), + G160, w0 (04))) — %HVJ(@)HQ + ?at2||Gt+1(9t,wt)H2

VJ2(9t)+GH1(9t,W*(9t))>

Q K
= S IVIOIP + S ofl|Gra (01 ) 12, (59)

(a)
< J(00) + ay[[VIO) (1 + [A|RE) [|w™ (6) — will + e (VI (1),

where (a) follows from the fact that Gy (6, w) is Lipschitz in w (see Lemma 3).

By taking expectation of both sides, summing up the inequality from O to 7', and rearranging the terms, we have that

> SENVI@)]]
t=0
J(0o) — J(Or+1) + Z’Yat(l + [A[REDE[[V I (00)][[|w™ (0¢) — wel]]
t=0
T T
+ 3 Bl(VI0). Y2 1 G (00 00)] 4 S B Gr (B . (60)
t=0 t=0

We then apply Cauchy-Schwarz’s inequality, and we have that

T
D E[IVI (@) l|lw* (8:) — 6:l]
t=0

< Z VEIIVT @) [PTE][w* (8:) — 6:]17. ©1)
t=0
‘We further define two vectors ag and a,, where
aEf(\/Enwao P, VEIV I @), - E[||VJ<9T>||2])T, (6
. 2 (VE[ @) — 6ol VETw (82) — 07 .... VEI" @) — 6217 - (63)

Then, it follows that

T
> VEIVIO)PIE]w* (6:) — 6:]]
=0

= <aE7 a'Z>

lag|la-|l

T
= JZE [V J(6:)]%] \IZE [[lw* (0¢) — wel?]. (64)
=0

IN




Thus plugging (64) in (60), and since oy, = o, Vt > 0 is constant, we have that

3 SENVI©)]

t=0

T
J(80) = J(O7+1) + e (1 + |A|Rk1) Y [V (6:)|[lw" (6:) — corl]
t=0

+3 " aE[(VI(0,),

t=0 t=

vJ(6, -
O 4 Guaa(O @] + 5 3 FEIIGusa (0,0

t=0

0
T
< J(0) — J(Or41) + you (1 + |A|Rky) ZEHVJ 011214 D Elllw*(6:) — wil?]

T

+ ) E[(VI(0y), + G (0, w" (01)))] + 5

t=0 t=0

GE[[|G g1 (Br, wi) 7] (65)

VJ(6:)
2

O

We next derive the bounds on E[(V.J(6;), v‘](et + Gi1(0r,w*(6:)))] and E[||w*(0;) — wy||], where we refer to the
second term as the “tracking error”.

We first define 2, = w; — w*(6;), then the algorithm can be written as:
Orr1 = 0 + e (f1(0:, Or) + g1(04, 2¢, O1)), (66)
zi41 = 2t + Bi(f2(0, O) + g2(01, Or)) + w™(01) — w* (O141), (67)

where

F1(00,01) 2 511 (00) 1 — v W™ (01)de41 (01),
91(01, 20, 0p) & =y 216141 (61),

(61,04) £ (6:41(0:) — &) ™ (6:)) b, (68)
92(Zta0t) = —¢tTZt¢t,

O £ (staatartastJrl)

o

We then develop some upper bounds of functions f1, g1, f2, g2 in the algorithm in the following lemma.

Lemma 5. For z|| < 2R, there exist constants cy,, cq,, Cg, and cy, such that || f1(8,0,)| < ¢y,
91062, 00| < ¢4, 1£2(0.00] < ey, (0,00)] < cg,, where ¢, = Tmax + (1 + )R+ 75 (rmax + (1 +
Y)R)(1 4 R|Alk1), cg, = 27R(1 + R|Ak1), ¢f, = Tmax + (1 + V)R + 3 (rmax + (1 +7)R), and ¢y, = 2R.

Proof. This Lemma can be shown easily using @3)), (52) and (56). O

We further define ((60,0;) = (V.J(0), V‘]z(e) + Gi41(0,w*(0))), then we have that E,,[¢(6, O;)] = 0 for any fixed
6, where (S;, A;) in O follow the stationary distribution y. In the following lemma, we provide upper bound on

Lemma 6. Let 7, £ min {k: smpk < aT}. Ift <71q,, then
E[C(0:, On)] < ec(ep, + gy )0Tar, (69)
and if t > To.p, then
E[¢(6¢, Op)] < kcar + cclcq, + Cg))TarO—r,,. - (70)

Where c; = 2’y(1—|-]<;1|A|R)§(Tmax+R+7R)(%+k3)+K(Tmax—|—R+’yR)(’y/\ (14+k1|A|R)+ 1475 (1+ Rk1|Al))
and k¢ = 4y(1+ k1 RIA]) % (Fmax + R+ YR)2(2y(1 + k1 [A|R) § + 1).



Proof. We note that when 6 is fixed, E[Gy41(6,w*(6))] = —3V.J(6). We will use this fact and the Markov mixing
property to show this Lemma. Note that for any 6; and 6, it follows that

[C(61,0¢) — ¢(02,04)]

— vy, Y 2(91)

+ G (01, w"(01))) — (VI (6h),
VJ(62)
2

+ Gri1(02,w"(02)))
VJ(62)
2

VJ(62)
2

+(VJ(6h), + Gry1(02, 0" (02))) — (VJ(02), + Gri1(02, 0" (62)))]- (71)

Since J(0) and ||VJ(0)]| are Lipschitz in § by Lemma[2] thus {(6, O;) is also Lipschitz in 6. We then denote its
Lipschitz constant by c¢, i.e.,

[€(01,01) = C(62, Or)| < e[|y = 2]l (72)

where
K
cc =2v(1+ k1|A[R) < (rmax +R+AR)(5 +ks)

1 1
+ K (rmax + R+YR)(y~ (1 + k1|A|R) + 1 + v~ (1 + Rk1|A|)). (73)
A A

Thus from (71)), it follows that for any 7 > 0,

t—1

1C(01,01) = (1, Op)| < ccllr = Or—r || < ccleg, +eg) Y an (74)

k=t—r

s the subsequent state and Ris

We define an independent random variable O = (S, A, R, §’), where (S, A) ~ p, S i
= (0). Thus,

the reward. Then E[C(0;_,, O)] = 0 by the fact that E,[Gi1(0,w*(0)] = -3V

E[¢(0—7,00)] < [E[C(0:—7, On)] — E[C(0r—r, O")]| < kempT, (75)
which follows from the Markov Mixing property in Assumption l 3l where k¢ = 4y(1 + k1 R|A]) § (rmax + R +
YR (2v(1+ k1|A|R) 5 + 1).

If t < 74,, then we choose 7 = t in (74). Then we have that

t—1
(a)
[C(ah Ot)] < E[C(QOa Ot)] + CC(cfl + cg1 Zak < CC(Cfl + C!]l)tao < CC(Cfl + cgl)QOTaTa (76)
k=0

where (a) is due to the fact that a4 is non-increasing. If ¢t > 7,,., we choose T = 7,,., and then

E[C(0;,00)] < E[C(0¢—r.,, Or)] + cclcp, +cq,) Z ay,

ktTuT

< kemp™r +cc(ef, + eg ) TarQ—r,, < kear +cc(cp + gy )Tar Qtr, - (77

We next bound the tracking error E[||z;]|]. Define (f,(0, 2,0;) = (2, f2(0,04)), and (g, (2,0;) = (2, 92(2,0¢) —
G2(2)), where ga(2) = E[ga(z, O1)] = E[—¢, 264].

Lemma 7. Consider any 0,6,,0; € {6 : ||0|| < R} and any z, 21,22 € {z : ||z|| < 2R}. Then 1) |(5,(0,2,0;)| <
2Rcy,; 2) |, (01, 21, Or) — (5, (02, 22, Or)| < Ky, |61 —92||+k}2 |21 — 22|, where kg, = 2R(1+~v+~vRk; |A\)(1—|—§)
and kY, = cf,; 3) |(g, (2, Or)| < 8R?; and 4) |y, (21, 0r) — Cgy (22, 01)| < 8R||21 — 22].



Proof. To prove 1), it can be shown that |(r, (0, z, O;)| = |(z, f2(0, O))| < 2Rcy, .

For 2), it can be shown that

|t (61,21, Or) — C, (02, 22, Oy )|

= [(z1, f2(61, Or)) — (22, f2(02, Or))]

< (21, f2(01, Or)) — (21, f2(62, Or)| + [(21, f2(02, Or) — (22, f2(62, O))|
< 2R f2(01,0¢) = f2(02, O)|| + || f2(02, O)||[|21 — 22|

< 2R(|6¢41(01) — Ge41(602)| + [[w™ (01) — w™(62)]]) + ¢y |21 — 22|

(a)
< kpll01 — 02l + K, [[21 — 22l (78)

where (a) is from both 6(6) and w*(6;)(0) are Lipschitz, kg, = 2R(1 + v + yRk1|A|)(1 + 1), and Ky, = cp,.
For 3), we have that (,, (z, 0;) = (z, —¢/ z¢y + E[¢, 2¢¢]) < 8R2.

To prove 4), we have that

|Cgo (21, 08) = (g (22, 04)|
= (21, @/ z16¢ + E[@] 2104]) — (21, =] 220¢ + E[@] 2204]) + (21, — ] 2201

+ E[¢] z001]) — (22, —b; 220 + E[¢] z00:])|

In the following lemma, we derive bounds on E[(y, (01, 2, O¢)] and E[(y, (2¢, O¢)].
Lemma 8. Define 75,, = min {k : mpk < BT}. Ift < 13,, then
E[Ct, (04, 2, Or)] < ARcy, Br + af,Tay, (80)
where af, = (k}2 (cf, +¢gp)Bo + (kg (cq +cq0) + k’}Q%(l + v+ R|Alk1)(cy, + cq,))0); and if t > T3, then
E[Cf, (01, 2, Or)] < 4Rep, Br + b, Tar Bt—rg,. » 1)
where by, = (K, (cp, + cgy) + (kg (cp, + cq) + K, 1 (147 + Y RIAR) (cp, + cg))).
Proof. We first note that

lzt41 — 2]
= [1B:(f2(0r, O1) + g2(2t, O1)) + w* (0;) — w* (0r41)]|

1
< (ep + ) B + L (L v+ yRM[K) (s, + eq ), (82)

where the last step is due to (36). Furthermore, due to part 2) in Lemmam, (f, is Lipschitz in both 6 and z, then we
have that for any 7 > 0

|<f2(9tvzt;0t) _sz(at Ty Rt— T?Ot)|
(a) t—1
< kg, (s, + cq1) Z ai + Ky (cp, + cg,) Z Bit Y k’2 (14~ +YRJAE) (cf, + ¢4,

1=t—T1 i=t—T 1=t—T
t—1

= k}z»(CfZ + 092) Z BZ + (ka(Cfl + Cgl) + k}Q

i=t—T

(14~ +R|AE1) (cs, + ¢4,)) Z o, (83)

1=t—T

A

where in (a), we apply (56) and Lemmato obtain the third term.



Define an independent random variable O =(5,A,R,5), where (S, A) ~ 11, &' ~ P(-|9, A) is the subsequent state,
and R is the reward. Then it can be shown that

E[Cf’z (et—‘ﬁ Zt—7) Ot)}

(a) R
S |]E[Cf2 (et—’rv Zt—19 Of)] - E[CfQ (et—7'7 Zt—1, O)H
<4Rct,mp", (84)

where (a) is due to the fact that E[Cy, (0, 2;_-, O)] = 0, and the last inequality follows from Assumption

If t < 73,., we choose 7 = ¢ in (§3). Then it can be shown that

E[sz (9t72t70t)]
t—1
< E[sz (907 20 Ot)] + k}g (cfQ + 092) Zﬁl + (kfz (Cfl + 091)
1=0
t—1
(1475 +yRIAR) (e, +¢0,)) D i
1=0

+kf2A

1
< 4RCf2mpt + k}Q (sz + 092)t50 + (kf2 (Cfl + Cgl) + k‘/fzx(

1
< 4Rcf26T + (k;‘z (cf2 + 092)50 + (kf2 (Cfl + 091) + klfQX(l +v+ '7R|‘A|k1)(cf1 + 091))a0)T[3T' (85)

L+ +yR[A|k1)(cp, + cg,))tag

If t > 73,., we choose T = 73, in (83). Then, it can be shown that

E[Ct, (01, 2, Oy)]
SE[sz(at*TﬁT Zt*’rﬁ 7Ot)]

+ ka Cf t ng Z Bi + kfz Chr +cgl) + kf2>\(1 + v+ YRIAk1)( cfl +cy1 Z @

zt‘rBT thgT

. 1
< 4Rcp,mp™r + klfz (cf2 + CQZ)TBTﬁt*TﬂT + (kf2 (Cfl + cgl) + k}g X(l +v+ 'VR"Alkl)(cfl + cgl))TﬁTat*TﬁT
1
< 4Rcf26T + (k;‘z (cf2 + ng) + (kfz (cfl + 091) + k}Q X(l +v+ ’YR“AUQ)(Cfl + cgl)))TBT/BthﬂT ) (86)
where in the last step we upper bound «; using ;. Note that this will not change the order of the bound. O
Similarly, in the following lemma, we derive a bound on E[(,, (z¢, Oy)].
Lemma 9. Ift < 73, then
E[ng (Zt, Ot)] < Qg TBr5 (87)
and ift > 7g,., then
E[ng (Zt7 Ot)] < bgz BT + bngBTﬂt*TﬁTﬂ (88)

where Ag, = 8R(cf2 + 092)60 + %(1 ++ 7R|A|I€1)(Cf1 + Cgl)ao)’ bg2 = 16R2’ and bgyz = 8R<Cf2 + ng)ﬁo +
3 (147 + 9 RIAlk) (e, + cgy)ao.

Proof. The proof is similar to the one for Lemma ] O



We then bound the tracking error as follows:

||Zt+1||2
= ||zt + Be(f2(0t, Op) + g2 (21, Op)) 4+ w* (0;) — w* (Be41) ]
= |[2e][* + 2B (2t, f2(02, Or)) + 2B (21, ga (21, Or)) + 2(z¢, w™ (6;) — w* (0¢41))
+[18ef2(6, O¢) + Brga(zt, Or) + w* (6;) — w* (Beq1) ]
< [2e|? 4 2Be(zt, f2(0r, Or)) + 2B (21, g2 (21, Or)) + 2(z¢, w* (0;) — w* (Op41))
+ 35711 f2(0e, O + 357|192 (2, O)|I* + 3lw™(6:) — w* (Bp41)|?
(a)
< ||ze||* + 2Be (21, f2(64, Ot)> +2B¢ (21, g2(21)) + 2(26, W™ (0r) — W (Or41)) + 2B:(2¢, 92 (21, Or) — G2(2t))
+ 342 cf2 +362¢2 5 T GF(I + v 4+ YR|Alk)2 0 (cf1 + c s (89)
where (a) follows from Lemma [5]and (56).

Note that (z;, ga(2;)) = —2, Cz, and C'is a positive definite matrix. Recall the minimal eigenvalue of C is denoted
by A, then (89) can be further bounded as follows:

ll2e41]1* < (1 =28, )IIZtII2 +28:Cs, + 281, + 2(z0, 0" (0:) — w*(0e11)) + 367 ¢,
+3p7c, +6>\2(1+7+7R|A|k1) ai(ch, +c3)). (90)

Taking expectation on both sides of the (90), and applying it recursively, we obtain that
¢

Ell|zi41])] < H(l —2B;\)||0]]?
(1 = 2Bk N)BiE[Cy, (2i, 0i, Oi)]

11
—it+
+2 H (1 = 2Bk A) BiE[(y, (21, Os)]
—it
11

=0k 1
t t t
+2 (1= 28N E(zi, 0" (0:) — w* (0i1)) +3(c, + ) Y [ (1—28:M)8]
=0 k=i+1 1=0 k=i+1
1 t t
+ 65 (L+ 7+ Rk (e}, + g, ;kﬂl 1—2B\)a 1)

Also note that 1 — 23, A < e~2%* which further implies that

¢ t t
E[l|ze1]]* < A¢ll20]]* + QZBu + 2ZCit + 2ZDit
i=0 i=0 i=0
t
+3(c?c2 —|—c ,+ 2>\ (14~ +YRJAlk;)? (cf1 —i—cg1 ZE”’ (92)
=0
where

Ay =e 2 Yoo Bi.
By = e Rheitt B[, (24,605, 01)),
Cir = e Timinr B BR[Cy, (24, 0y),
Dy = e Theivt E[(2, 0" (6) — w” (6:11))],
By = e Xiein B2, (93)



Consider the second term in (92). Using Lemma(g] it can be further bounded as follows

t
Z B
=0

t

> e D=1 P BE[C, (2,01, 01))

i=0
T t
< (as,7p, +4Rcy,Br)e Cheiri Prg; 4 4Rcy, Br Z o™ Ehmipr Br g,
i=0 i=Tpp+1
L t
SR D D e (94)
i:TBT+1

Further analysis of the bound will be made when we specify the step-sizes o, 8¢, which will be provided later.
Similarly, using Lemma 9} we can bound the third term in (92)) as follows

ZCn Ze‘”zk 1 P (G, (21, 01)]

Tar .
t t

< Thy g, Z e—2>\ D hmit1 Bkﬁi + b925T Z e—2>\ Sh—it1 ﬁkﬁi

1=0 =7, +1
t
_ t
+ b;2T5T Z e 2 > hmit1 B BifTBT Bi. 95)
=78 +1

The last step in bounding the tracking error is to bound E[(z;, w*(0;) — w*(0;+1))], which is shown in the following
lemma.

Lemma 10.

t

3 e Theit1 PR E[ (25, w* (6;) — w* (Bi41))]

=0
¢
1 t
<25 (1+ 7+ YRUAIRDR(cs, +cy) Y e Fhei Pray, (96)
i=0
Proof. From (56)), we first have that

* * 1
[|w™(0:) = w™(Bir1)]| < X(l + v+ yR|Ak1)|0; — Oiyall. o7)
Then it follows that
¢
e P B [z, (6:) — " (Biga)]
i=0
t . 1
<Y e P iimin ﬂ"’E[X(l + 7+ yRIA[k) [[24][[]0; — Oiqall]
=0
1 : :
<25 (L +yRIARD)R(ey, +q) Y e Zhoin Py, (98)
i=0
O

B Proof of Theorem /1]

In this section, we will use the lemmas in Appendix [A]to prove Theorem [I]



In Appendix [A] we have developed bounds on both the tracking error and E[{(6;, O;)]. We then plug them both into
(60D,

S aE[[VI(8:)]1%)

QZtT:o Qt
1 T T
< m(wo) ~ el AIRR) | STEIVIO)I Sl
T T
JrZOétE[C(Qt,Ot” +Zaf(cfl +cgl)>, (99)
t=0 t=0

where J* denotes ming .JJ (), and is positive and finite.

By Lemmal(6] for large 7', we have that

> B0, 0)]
t=0

Tap T
< ch(cf1 + Cgy )OO Tay + Z kcaray +ccep, + ¢g )TagQt—r,, Q. (100)
t=0 t=Tap+1

Here, 7., = O(|log ar|) by its definition. Therefore, for non-increasing sequence {a };2, (I00) can be further upper
bounded as follows:

T T
> aE[((6:,00)] = O <| logar[ad + Y (aar + [log am?)) : (101)
t=0

t=0
We note that we can also specify the constants for @, which, however, will be cumbersome. How those constants

affect the finite-sample bound can be easily inferred from (T00), and thus is not explicitly analyzed in the following

steps. Al inni SIGEUVIO)12] S .
ps. Also, at the beginning we bound T by some constant that does not scale with T": v||C~"|| (k1 +
|‘A|R + 1)(Tmax + R+ ')/R)

Hence, we have that

S0 aE[[VI(6:)]%)
Zfzo Qy

T T T
1
Y (z (‘“90) — 7+ a2+ aVTy | SEa) + ol loglar) P + 3 avar
t=0 t=0 t=0

t=0 At

T
+) | 1Og(OZT)Oét2>>. (102)

t=0

In the following, we focus on the case with constant step-sizes. For other possible choices of step-sizes, the convergence
rate can also be derived using (T02). Let oy = 7z = aand B = 7 = 3. In this case, (T02) can be written as follows:

> o OE[[|VI(6,)]|) 1 ) T(80) — J*
= =0\ = T El||z:]|?] + alog(a)® + Ta + Tallog(c 4+ -
T 7 | VI Sl + atosto) fog(a)] | + 7%

T
E 2 2
o (| TBIET) o (T L T 1) 103

T Tita ' Ta ' Ta ' Tl-a



We then consider the tracking error E[||z;||?]. Applying (02), @4), @3) and (98), we obtain that for ¢ > 75,

B[] 2|*)

< HZO||2€—2)\tB

T8 t
2(4Rcy, B+ (ag, + ag,)76,)5 Z e~ =08 4 (8Rey, + 2b,,)5? Z e~ (t-9)B
i=0 i=Tpp+1

t
4 )
2T Y NI A RAR R + el Y
’LTBT-‘,-l i=0
t
£ 3(c3, + 2, + 2 (14 + Y RMAA(E, +2,)) S e M5 g2

>\2
=0
T t t
—0 <€2>\w T Tﬂz e~ 2Mt=i)B 752 Z e 2Mt=i)B | (a+ 52) ZeQA(ti)ﬁ>
=0 =147 1=0
_ _ 1 — D) -~ _ e2AB(T+1) —2Xt8 _
:O<€ 2)\t6_’_7_66 2XtB 1_62 _’_7_52( 258 2/\67) 1_62>\ﬁ (a—l—ﬁ )

Similarly, for ¢ < 73,., we obtain that

t
Elllz]%] < lz0ll*e ™ + 2(4Rep, B+ (ag, + ag)ms,)8 Y e 0P
=0

ym

t
(147 + RAk)R(cs, + cg)ay e 20708
1=0

F3(, + &+ 255 (L7 AR, + ) )3 - g2
=0
22pt t 2X(t—i)8 2Bt e 2Bt _ 228
:O(e —|—Tﬁ;e ):O +Tﬁw )

We then bound " E[||z|]. The sum is divided into two parts: Y 7_, E[||z]|?] and Z?:TH E[||2¢]|?], thus

— o278

). (104)

(105)



M=

E[l|2¢1%]
t=0
T T
=D Ell=lP1+ > Elll=l?)
t=0 t=74+1
T —2X\Bt _ 28 T 1 — 2X8(1+1)
_ —2)ft € € —2)t8 —2)\t8 €
= t:()(e +73 1 — 278 )+ t:;-I (e + 10e 1 _ e2M8
228(r+1) —2Xt8 _ 208
2/ ,—2xt8 _ —2287\€ 2, € €
+Tﬂ (6 —-c )1—62)‘B +(O‘+B) 1 — e2\8 >
B 1— 8_2)\[3(7"4.1) . — 28 1 — ¢=2M8(r+1)
 1—e28 o+ )1762)‘6 + (1 —e228)(1 — e—228)
N 7_61 _ eQ}xB(T-{-l) 8—2)\5(T+1) 1— e—QAﬁ(T—T) N 7_62 eQ}xB(T—i-l) 6—2)\ﬂ(7-+1) 1— e—QAﬂ(T—T)
1—e2M 1—e2M 1—e2M 1—e 2\
1 1— 672)\B(T77‘)
(T, —2ABT 2 Y (G ) el R B OV
(T —7)e >+(a+ﬁ )1—62/\3 <6 =Y. (T —7)e
1 2
:o<ﬁ+72+r+rﬂT+O“;B T>. (106)
Thus, we have that
SroBlllzl? o f 1 (ogT)® logT 1 1Y _ log T
T =0 T1-b + T T Tb + Ta—b + T | — 0 Tmin{a—b,b} |- (107)
We then plug the tracking error in (T03)), and we have that
T 2
_ooE[||VJ(8 1 log T
Zt_Oa L” ( t)” } — O<T1a> +O<Tmi:{ga_b b}) (108)
Dm0 @ ’

In the following we will recursively refine our bounds on the tracking error using the bound in (T03).

Recall (63)), and denote D = J(6p — J*), then
SLLEIVI@IA _ D, (zf_o ¢E[||w<at>||21E[||zt||2})
T Ta T
ol 1 BV [ Elllz?)
_O<Ta+\/ . \/ . ) (109)

T 2
In the first round, we upper bound w by a constant. It then follows that

Zf:()E[||VJ(9t>||2} _ 1 logT 1 B 1 ViogT
T =0 Tl—a + 0 Tb + Ta—b =0 Tl—a +0 Tmin{b/Q,a/Q—b/Q} ! (110)

where we denote min {b/2, a/2 — b/2} by ¢/2. We then plug (T10) into (I09), and we obtain that

S EIVI@)I) O( i ) ‘o (FogT\/ zf_oE[nTwwtnP])

- - o am



Case 1. If 1 — a < ¢/2, then bound in (T10) is O <T11a> : i ]E[”Tv‘](et)”Q] =0 <T11a> . Then

o BUVIO)IP) _ o 1 VT 1 112
T - Tl-a Te/2 T1/2—a/2 |°
Note that ¢/2 > 1 — a, then ¢/2 + 1/2 — a/2 > 1 — a, thus the order would be
Yo BUIVJI(6,)]? 1
= =0 . 113
T Ti-a (113)
Therefore, such a recursive refinement will not improve the convergence rate if 1 — a < 5.
Case2.If ¢ > 1 —a > ¢/2, then
T
o E[IVI@)I?] _ o ViesT
=0 . (114)
T Tec/2

Also plug this order in (T09), and we obtain that

ZZ_OE[nwwt)nﬂ:O( 1 >+O<wogT<logT>”4>:o< 1 <1°gT>i>. (115)

T Tl-a Tec/2 Te/4 Tl-a T3c/4

Here, we start the second iteration. If 1 — a¢ > %, we know that the order is improved as follows

SSTGENVIO)?] [ (logT)F

Andifl —a < %c, then order of (110)) will still be O <T11a> . Thus we will stop the recursion, and we have that

SO ElIVI6)? 1
— —O<T1a>. (117)

This implies that if the recursion stops after some step until there is no further rate improvement, then the convergence

2"—1
on

rate will be O <Tll_a> . Note in this case, since 1 — a < c, then there exists some integral n, such that 1 — a < c,

and after round n, the recursion will stop. Thus the final rate is O <T11a> .

Case 3. If 1 — a > c, then after a number of recursions, the order of the bound will be sufficiently close to O (10%) .

To conclude the three cases, when 1 — a < ¢, the recursion will stop after finite number of iterations, and the rate

would be O (Tfa) ; While when 1 — a > ¢, the recursion will always continue, and the fastest rate we can obtain is

O (log T). Thus the overall rate we can obtain can be written as

TC
1 logT
O(Tl—a + T ) (118)




B.1 Proof of Corollary/[l]

We next look for suitable a and b, such that the rate obtained is the fastest. It can be seen that the best rate is achieved
when 1 — a = ¢, and at the same time 0.5 < ¢ < 1 and 0 < b < a. Thus, the best choices are a = % and b = %, and
the best rate we can obtain is

T 2
E[HVJ(0]VI)H2] _ Zt:OE[||VJ(0t)” ] _ O<10gT> _ O<10gT> (119)

T Ti-a T3
C Softmax Is Lipschitz and Smooth

‘We first restate Lemmaﬂ] as follows, and then derive its proof.

Lemma 11. The softmax policy is 20-Lipschitz and 8c%-smooth, i.e., for any (s,a) € 8§ x A, and for any 61,05 € RY,
7o, (als) — 7o, (als)| < 20|01 — 02| and || V7o, (als) — Vo, (als)]| < 80|61 — 2.

Proof. By the definition of the softmax policy, for any a € A, s € S and § € RV,

eo0 bea
mo(als) = W (120)
a’€A

where o > 0 is a constant. Then, it can be shown that

1
Vﬂ'9 (a|5) = 0609T¢s,a ¢s o § 600T¢s,a’ _ E O,GO'OT(;BSY&/ ¢s o eo'er’S-,a
00T & 2 ) )
(Za’e/{ (& S~‘1'> a’eA a’eA

. T (bs,atdgar) _ 007 (¢s,a+¢s,ar)
= 0T Z Ps, ae”’ Ps,a€ ’
(Za ren 70 bs.ar <

a GA
0 wea(Boa = Goar)e”? (Pretien) (121)
(Za’eﬂ 600 d)b, ) .
Thus,
UGT(¢S atPs o) G’HT(,‘b
, e s s,a s,a
[7mo(als)| < 20 22EA <o (122
(Za/6A ea’GT(z)s‘a/) ZG/GA e s,a
o T s,a
where the last step is due to the fact that % <1
alen € s
Note that for any 6 and 2, there exists some o € (0,1) and § = af; + (1 — a)fa, such that
IVme, (als) — Vo, (als)|| < [[Vmg(als) x (161 — 6], (123)

which follows from the mean-value theorem. Here, V27 (a|s) denotes the Hessian matrix of my(a|s) at 6. Thus it
suffices to find an universal bound of ||V?7y(a|s)|| for any 6 and (a, s) € A x 8.

”QT(¢5,Q+¢S,G/)
Note that Vﬂ'e(a| ) UZ{,IEA(¢S a—Ps a0l /e

0T 2
(Za/EA € ¢S‘a/)
o0 (95,0t o)

by -2 . Then it follows that

<Z lea e® Poa )
a

is a sum of vectors (¢s,, — ¢s,q/) With each entry multiplied

9 e”gT (¢4s,a,+¢s,a’)
Vrg(als) =0 Y (¢sa — dsa) | V - . (124)
a’eA (Za’eﬂ 600 (vbs,a/)




Thus, to bound || V27, (als)]||, we compute the following:

000" (bs.atdsar)

T ’
Swen o
T T T
070 (bsatby.ar) ((Za/eﬂ 70 Pea V(a0 + Dsar) = 2D gren € P ¢s,a/))

=0 (125)
(Curen e ey
Then the norm of (T23)) can be bounded as follows:
000" ($satdsar)
v -
(Coene™ o)
T T T
< 9600 ($e.a+ée.0r) (Za’eA e boat 4 (3 €70 P ))
<o e
(Curen e o)
70" (¢s.atdsar)
=4o ¢ 5
0T o, .1
(Za’GA € o )
< 4o. (126)
Plug this in the expression of V27 (a|s), we obtain that
V279 (als)|] < 8a°. (127)

Thus the softmax policy is 20-Lipschitz and 8o2-smooth. This completes the proof. O
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