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INTRODUCTION

In this supplementary material, we provide the com-
pleted proof of Theorem 1 as well as the detail of the
unidentifiability result (Section 4 in the main paper). Fur-
thermore, we present more information on the settings of
the synthetic experiment. Lastly, supplemental results
on the additional baseline and synthetic dataset are pro-
vided.

1 PROOF OF THEOREM 1

Theorem 1 (Identifiability of joint interventional ef-
fects under additive noise models). Let MK =
〈{X, Y },U ,f , PU 〉 be an additive noise SCM with K
treatment variables,

Y = fY (XK) + UY

Xk = fk(Xk−1) + Uk, for k = 1, . . . ,K

with PU ∼ N (0,Σ), where Σ is an arbitrary covari-
ance matrix and Xk := {Xi}ki=1. The causal query
Q(MK) = E[Y | do(X1, . . . , XK)] is identifiable from
a combination of the observational distribution PM

K

(X,Y )

and the set of single-variable interventional distributions

{P
MK

do(Xi)

(X,Y ) }Ki=1, for any integer K ≥ 2.

Proof. We prove the theorem by induction. In
the base case, we show that E[Y | do(X1, X2)] is
identifiable. In the inductive step, we show that
given that E[Y | do(X1, . . . , XK)] is identifiable,
E[Y | do(X1, . . . , XK+1] is also identifiable.

Base Step:

The query of interest is

Q(M2) = E[Y | do(X1 = x1, X2 = x2)] = fY (x1, x2)

Due to unobserved confounders, the above query is not
identifiable solely from the observational distribution

PM
2

(X,Y ),

E[Y |X1 = x1, X2 = x2]

= fY (x1, x2)+E[UY |X1 = x1, X2 = x2]

However, if we are able to identify E[UY | X1 =
x1, X2 = x2], we would then be able to identify our
query of interest fY (x1, x2). We then need to show that
the expected noise E[UY | X1 = x1, X2 = x2] can
be uniquely computed from a combination of PM

2

(X,Y ),

P
M2

do(X1)

(X,Y ) and P
M2

do(X2)

(X,Y ) .

From the additive Gaussian noise assumptions, we have

E[UY |X1 = x1, X2 = x2] = Σuy
Σ−1

ux
ux (1)

with ux = [x1 x2 − f2(x1)]
>, Σuy

= [σY 1 σY 2]

and Σux
=

[
σ11 σ12

σ21 σ22

]
, where we define σij =

Cov(Ui, Uj).

From Equation (1), the quantities that we need to show
the identifiability are f2, Σux and Σuy .

Identifying f2 and Σux

f2 can be trivially obtained from P
M2

do(X1)

(X,Y ) ,

E[X2 | do(X1 = x1)] = f2(x1)

Since f2 is identified, we can then identify the joint
distribution p(U1, U2) from the observational regime
PM

2

(X,Y ),

U2 = X2 − f2(X1)

U1 = X1

And thus, the covariance matrix Σux
is identifiable.



Identifying σY 1

From the regime P
M2

do(X1)

(X,Y ) , we have

E[Y | do(X1 = x1)] = E[fy(x1, f2(x1) + U2)] (2)

From the regime P
M2

do(X2)

(X,Y ) , we have

E[Y |X1 = x1, do(X2 = x2)]

= fy(x1, x2)+E[UY |X1 = x1]

We can hypothetically choose x2 = f2(x1) + u2 and
treat the above solely as a mathematical expression that
can take a random variable as an input, in this case U2:

E[Y |X1 = x1, do(X2 = f2(x1) + U2)].

We then take its expectation with respect to the identifi-
able marginal p(U2). The left-hand side of the equation
below is also identifiable since f2 is and we observe all
single-variable interventions.

Ep(U2)[E[Y |X1 = x1, do(X2 = f2(x1) + U2)]]

= E[fy(x1, f2(x1) + U2)] + E[UY |X1 = x1].
(3)

Subtracting (2) from (3), we get

(3)− (2) = E[UY |X1 = x1] = E[UY | U1 = x1].

Lemma 1. Let U1 and U2 be zero-mean random vari-
ables. The covariance Cov(U1, U2) can be identified
from the conditional expectation E[U2 | U1] and the
marginal distribution p(U1).

Proof.

Cov(U1, U2) = E[U1U2]

=

∫
u2,u1

u2u1p(u2, u1)

=

∫
u1

u1

∫
u2

u2p(u2 | u1)p(u1)

=

∫
u1

u1 E[U2 | u1]p(u1)

=EU1∼p(U1)

[
U1 E[U2 | U1]

]
.

By Lemma 1, the covariance σY 1 = Cov(Uy, U1) is
identified from E[Uy | U1] and p(U1).

Identifying σY 2

From the regime P
M2

do(X1)

(X,Y ) , and the one-to-one mapping
between X2 and U2 for a fixed x1, we get

E[Y | do(X1 = x1), U2 = u2]

= E[fy(X1, f2(X1) + U2) + Uy | do(X1 = x1), U2 = u2]

= fy(x1, f2(x1) + u2) + E[Uy | U2 = u2].

Since we can trivially obtain p(X1), we can then take an
expectation over X1 according to that distribution,

Ep(X1)[E[Y | do(X1 = x1), U2 = u2]]

= E[fy(X1, f2(X1) + u2)] + E[Uy | U2 = u2]. (4)

From the regime P
M2

do(X2)

(X,Y ) , we get

E[Y |X1 = x1, do(X2 = x2)]

= E[fy(X1, X2) + Uy |X1 = x1, do(X2 = x2)]

= fy(x1, x2) + E[Uy |X1 = x1]

Since we have identified f2 and p(X1), we can then the-
oretically choose x2 = f2(x1) + u2 and take the expec-
tation over p(X1),

Ep(X1)[E[Y |X1, do(X2 = f2(X1) + u2)]]

= E[fy(X1, f2(X1) + u2)]. (5)

From (4)-(5), we have

(4)− (5) = E[Uy | U2 = u2].

σY 2 = Cov(Uy, U2) is now identifiable using Lemma 1.

Inductive Step:

Claim 1. Given that the causal query Q(MK) =
E[Y | do(X1, . . . , XK)] is identifiable for any model
obeying the Main Assumptions in Section 5 where |X| =
K, we have thatQ(MK+1) = E[Y |do(X1, . . . , XK+1)]
is also identifiable for any model where |X| = K + 1.

Proof of Claim 1.

Similar to the base case, we can write Q(MK+1) as

Q(MK+1) = E[Y | do(X1 = x1, . . . , XK+1 = xK+1)]

= fy(XK+1)

From observational distribution PM
K+1

(X,Y ) , we get

E[Y |X1 = x1, . . . , XK+1 = xK+1]

= fy(XK+1) + E[Uy |X1 = x1, . . . , XK+1 = xK+1]



We then only need to show that E[Uy | X1 =
x1, . . . , XK+1 = xK+1] is identifiable from the obser-
vational and single-variable interventional distributions.

From the additive Gaussian noise assumption, we have

E[Uy |X1 = x1, . . . , XK+1 = xK+1] = Σuy
Σ−1

ux
ux

where ux = [x1 · · · xK+1 − fK+1(xK)]
>,

Σuy
= [σy1 · · · σy(K+1)], Σux

= σ2
1 · · · σ1(K+1)

...
. . .

...
σ(K+1)1 · · · σ2

K+1

. To identify Σux and

σy1, . . . , σyK , we make use of the marginalization of
a SCM defined in Bongers et al. (2016). Since MK+1

is acyclic (as we only consider an acyclic SCM), we
can then marginalize out any subset of the endogenous
variables associated withMK+1.

Identifying Σux

We marginalize Y and obtain the marginalization
MK+1

marg(Y ). Since Y has no child node, marginalizing
out Y has not effect on the rest of structural equations
{f1, . . . , fK+1}. We can then treat XK+1 as a new Y
and MK+1

marg(Y ) will now be equivalent to MK . Since
we assume that Q(MK) is identifiable, the covariance
Σux is then identifiable.

Identifying σy1, . . . , σyK

We marginalize XK+1 and obtain the marginalization
MK+1

marg(XK+1) which preserves causal semantics of
MK+1 and has the following structural equations

Y = fy(XK , fK+1(XK) + UK+1) + Uy

Xk = fk(Xk−1) + Uk, for k = 1, . . . ,K.

We then have that,

E[Y |X1 = x1, . . . , XK = xK ]

= E[fy(xK , fK+1(xK) + UK+1)]

+ E[Uy |X1 = x1, . . . , XK = xK ].

Define gy(xK) := E[fy(xK , fK+1(xK)+UK+1)], then

E[Y |X1 = x1, . . . , XK = xK ]

= gy(xK) + E[Uy |X1 = x1, . . . , XK = xK ].

Since the model

Y = gy(XK) + Uy

Xk = fk(Xk−1) + Uk, for k = 1, . . . ,K,

satisfies the main assumptions where |XK | = K, by the
induction step we have that gy(xK) is identifiable. It fol-
lows that E[Uy |X1 = x1, . . . XK = xK ] is identifiable,
and in turn σy1, . . . σyK are identifiable. Next, we will
show that σy(K+1) is identifiable which will conclude the
proof.

Identifying σy(K+1)

From the regime P
MK+1

do(XK+1)

(X,Y ) , we have

E[Y |X1 = x1, . . . , do(XK+1 = xK+1)]

= E[fy(XK+1) + Uy |X1 = x1, . . . , do(XK+1 = xK+1)]

= fy(XK+1) + E[Uy |X1 = x1, . . . , XK = xK ]

The identifiability of Q(MK) implies that fK+1 is iden-
tifiable. We can then choose xK+1 = fK+1(xK)+uK+1

for some uK+1 in the domain of UK+1 and take expec-
tation over p(XK),

Ep(XK)[E[Y |X1, . . . , XK , do(XK+1 = xK+1)]]

= E[fy(X1, f2(X1) + U2, . . . , fK+1(XK) + uK+1)]
(6)

From the regime P
MK+1

do(XK )

(X,Y ) , we have

E[Y |X1 = x1, . . . , do(XK = xK), UK+1 = uK+1]

= fy(xK , fK+1(xK) + uK+1)

+ E[Uy |X1 = x1, . . . , UK+1 = uK+1]

Taking expectation over p(XK) yields,

Ep(XK)[E[Y |X1, . . . , XK , UK+1 = uK+1)]

= E[fy(X1, f2(X1) + U2, . . . , fK+1(XK) + uK+1)]

+ E[Uy | UK+1 = uK+1]
(7)

From (7)-(6), we can then get,

(7)− (6) = E[Uy | UK+1 = uK+1]

Finally, we can obtain σy(K+1) by Lemma 1.

Conclusion:

Since both the base case K = 2 and the inductive step
are identifiable, by induction, the causal query Q(MK)
is identifiable for any integer K ≥ 2.



2 UNIDENTIFIABILITY UNDER
UNCONSTRAINED SCMs

To illustrate unidentifiability, we consider the case
where there are two treatment variables. We will show
that there exists a pair of SCMs M̈, M̄ such that they
entail identical observational distribution (PM̈ = PM̄)
as well as single-variable interventional distributions
(PM̈do(X1) = PM̄do(X1) and PM̈do(X2) = PM̄do(X2) ),
but induce different joint interventional distributions
(i.e. PM̈do(X1,X2) 6= PM̄do(X1,X2) ).

Let M̈ be an SCM with the following form,

Y = X1 ∧X2 ∧ Uy

X2 = X1 ∧ U2

X1 = U1

where Uy = U2 = U1 ∼ Bernoulli(p).

Let PM̈ be the joint distribution induced by M̈, we have

PM̈(y, x1, x2) =

p, if (y, x1, x2) = (1, 1, 1)
1− p, if (y, x1, x2) = (0, 0, 0)
0, otherwise

Intervening on X1 results in the SCM M̈do(X1=x1) with
the following form,

Y = X1 ∧X2 ∧ Uy

X2 = X1 ∧ U2

X1 = x1

with the interventional joint distribution PM̈do(X1=x1) ,

when x1 = 1,

PM̈do(X1=1)(y, x2) =

p, if (y, x2) = (1, 1)
1− p, if (y, x2) = (0, 0)
0, otherwise

when x1 = 0,

PM̈do(X1=0)(y, x2) =

{
1, if (y, x2) = (0, 0)
0, otherwise

Intervening on X2 results in the SCM M̈do(X2=x2) with
the following form,

Y = X1 ∧X2 ∧ Uy

X2 = x2

X1 = U1

with the interventional joint distribution PM̈do(X2=x2) ,

when x2 = 1,

PM̈do(X2=1)(y, x1) =

p, if (y, x1) = (1, 1)
1− p, if (y, x1) = (0, 0)
0, otherwise

when x2 = 0,

PM̈do(X2=0)(y, x1) =

p, if (y, x1) = (0, 1)
1− p, if (y, x1) = (0, 0)
0, otherwise

Let M̄ be another SCM with the following form,

Y = X2 ∧ Uy

X2 = X1 ∧ U2

X1 = U1

where Uy = U2 = U1 ∼ Bernoulli(p)

Let PM̄ be the joint distribution induced by M̄, we have

PM̄(y, x1, x2) =

p, if (y, x1, x2) = (1, 1, 1)
1− p, if (y, x1, x2) = (0, 0, 0)
0, otherwise

Intervening on X1 results in the SCM M̄do(X1=x1) with
the following form,

Y = X2 ∧ Uy

X2 = X1 ∧ U2

X1 = x1

with the interventional joint distribution PM̄do(X1=x1) ,

when x1 = 1,

PM̄do(X1=1)(y, x2) =

p, if (y, x2) = (1, 1)
1− p, if (y, x2) = (0, 0)
0, otherwise

when x1 = 0,

PM̄do(X1=0)(y, x2) =

{
1, if (y, x2) = (0, 0)
0, otherwise

Intervening on X2 results in the SCM M̄do(X2=x2) with
the following form,

Y = X2 ∧ Uy

X2 = x2

X1 = U1

with the interventional joint distribution PM̄do(X2=x2) ,



when x2 = 1,

PM̄do(X2=1)(y, x1) =

p, if (y, x1) = (1, 1)
1− p, if (y, x1) = (0, 0)
0, otherwise

when x2 = 0,

PM̄do(X2=0)(y, x1) =

p, if (y, x1) = (0, 1)
1− p, if (y, x1) = (0, 0)
0, otherwise

We can see that the given two SCMs yield the same ob-
servational distribution as well as interventional distri-
butions when intervening on each of the treatment vari-
ables (i.e. PM̈ = PM̄, PM̈do(X1) = PM̄do(X1) and
PM̈do(X2) = PM̄do(X2) ). However, they yield different
joint interventional distributions,

PM̈do(X1=0,X2=1)(y) =

{
1, if y = 0
0, otherwise

6= PM̃do(X1=0,X2=1)(y) =

p, if y = 1
1− p, if y = 0
0, otherwise

Hence, the effect of joint interventions is not identifiable
under unconstrained SCMs.

3 ADDITIONAL BASELINE

In addition to the direct regression baseline (REG) de-
scribed in the main paper, we also consider another base-
line where the regime indicators are used in the regres-
sion model. We refer to this baseline as REG IND.
Specifically, REG IND models the conditional expecta-
tion E[Y | PAY ] as follow,

E[Y | PAY = x] = fY (x;θ0) +

K∑
k=1

zkfY (x;θk)

where zk is the regime indicator variable; zk = 1 if the
treatment variable Xk is intervened on, otherwise zk =
0. For example, if the observation (x, y) is sampled from
P
Mdo(X1)

(X,Y ) , then z1 = 1 and zk = 0 for all k 6= 1.

Figure 1 illustrates the results of the experiment de-
scribed in Section 6.2.2 with the additional baseline
(REG IND). It is clear from the plots that REG IND is
consistently worse than the other baseline (REG); hence,
we decided to not include this additional baseline in the
main paper.

4 SYNTHETIC EXPERIMENT

In this section, we provide more details on the data gen-
erating process used in the synthetic experiment. Fur-
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Figure 1: MAE of the predicted joint effect (left) and the
parameter estimates (right) as the sample size increases.
The solid lines represent the mean absolute error aver-
aged over 50 Monte Carlo experiments and the filled re-
gions depict its 95% confidence interval (note that both
vertical and horizontal axes are in logarithmic scale).

thermore, we present additional experiment results on the
synthetic data where we compare the performance of our
approach to the baseline.

4.1 Data Generating Process

We first define a data generating process, from which we
will simulate observational and interventional samples.
In the synthetic experiment, we consider the case where
the number of treatments K = 3. The pre-defined data
generating process is an additive noise SCM,

Y = fY (X1, X2, X3;θy) + UY

X3 = f3(X1, X2;θ3) + U3

X2 = f2(X1;θ2) + U2

X1 = U1

where (U1, U2, U3, UY ) ∼ N (0,Σu). We examine both
linear and non-linear structural equations f in our exper-
iments. Let x ∈ Rd be a d-dimensional input vector, the
linear functions are simply defined as,

fk(x;θ) :=

d∑
i

θki xi

For the nonlinear ones, we add second-order interactions
in addition to the main effects. Let φ : Rd −→ Rd+(d

2) be
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Figure 2: The prediction accuracy of ANM vs REG as
the sample size increases. Each data point represents
one Monte Carlo experiment in which the functions and
covariance matrix of the underlying SCM are randomly
generated.

a feature map defined by,

φ(x) = [x1, . . . , xd, x1x2, . . . , x1xd, x2x3,

. . . , x2xd, . . . , xd−1xd]

Our nonlinear functions are then defined as,

fk(x;θ) :=

d+(d
2)∑

i

θki φ(x)i

For assessing consistency and unbiasedness, we fix an
SCM with the following parameters

Covariance Matrix:

Σu =


1. 0.3 0.8 −0.6
0.3 1. 0.3 −0.5
0.8 0.3 1. −0.5
−0.6 −0.5 −0.5 1.


Linear functions:

θ2 = [1.0] ,θ3 = [0.5 −1.0] ,θy = [1.5 1.0 −0.5]

Nonlinear functions:

θ2 = [1.0] ,θ3 = [0.5 −1.0 1.0] ,

θy = [1.5 1.0 −0.5 0.5 −1 −1.5]

4.2 Assessing the accuracy of the causal predictions

We compare the performance of our model with the base-
line where we measure the accuracy of the predicted joint
interventional effects on multiple different SCMs. In-
stead of fixing the parameters and the covariance matrix
of the underlying SCM, we now re-sample them in ev-
ery iteration. To generate a random SCM in each iter-
ation, we generate a random covariance matrix Σu =
WW> + diag(v) where W is a random matrix of size
D × K with D < K and v is a K-dimensional vector.
Each element of W and v is drawn from the standard
normal distribution. In addition, the parameters of struc-
tural equations are drawn from an independent normal
distribution θi ∼ N (0, 1.5I). We then sample 100 uni-
form random test points and compute the mean absolute
error of each model with respect to those test points. Fig-
ure 2 compares the performance of the ANM and the REG
models across 100 Monte Carlo experiments. In short,
ANM consistently outperforms REG in terms of the mean
absolute error on the test data. Furthermore, the perfor-
mance gap between the two models is larger when we
increase the sample size (the number of simulations in
which REG outperforms ANM are smaller as nsample in-
creases). With the sample size of 6400, ANM outperforms
REG approximately 99% of the time. This is simply be-
cause our model has lower variance when we have more
training data.
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