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Abstract

It is clear that some causal effects cannot be
identified from observational data when the
causal directed acyclic graph is absent. In such
cases, IDA is a useful framework which esti-
mates all possible causal effects by adjusting
for all possible parental sets. In this paper, we
combine the adjustment set selection procedure
with the original IDA framework. Our goal is
to find a common set that can be subtracted
from all possible parental sets without influ-
encing the back-door adjustment. To this end,
we first introduce graphical conditions to de-
cide whether a treatment’s neighbor or parent
in a completed partially directed acyclic graph
(CPDAG) can be subtracted and then provide a
procedure to construct a subtractable set from
those subtractable vertices. We next combine
the procedure with the IDA framework and pro-
vide a fully local modification of IDA. Experi-
mental results show that, with our modification,
both the number of possible parental sets and
the size of each possible parental set enumer-
ated by the modified IDA decrease, making it
possible to estimate all possible causal effects
more efficiently.

1 INTRODUCTION

Causal directed acyclic graphs are often used to give in-
terpretable and compact representations of causal rela-
tions and the generative mechanisms of observational
data (Pearl, 1995; Spirtes et al., 2000; Geng et al., 2019).
If the underlying causal DAG is provided (He & Geng,
2008; Hauser & Bühlmann, 2012), the causal effect of a
treatment on a target can be estimated from observational
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data via the back-door adjustment (Pearl, 2009), or more
generally, via the covariate adjustment (Shpitser et al.,
2010; Perković et al., 2015, 2017; Perković et al., 2018).
However, in some situations, based on observational data
one can only obtain a set of statistically equivalent DAGs,
forming a Markov equivalence class represented by a com-
pleted partially directed acyclic graph (CPDAG) (Meek,
1995; Andersson et al., 1997; Spirtes et al., 2000; Chick-
ering, 2002). Since the causal effects of a treatment on
a target may vary in Markov equivalent DAGs, it is chal-
lenging to estimate causal effects with a CPDAG only.

The recent progress in causal inference shows that some
causal effects can be uniquely identified from observa-
tional data without a fully specified causal DAG (Perković
et al., 2017; Perković et al., 2018; Jaber et al., 2019;
Perković, 2019). Despite these criteria, there are still
many causal effects that cannot be identified. To deal
with this problem, Maathuis et al. (2009) proposed an al-
ternative framework called intervention do-calculus when
the DAG is absent (IDA), which enumerates all possible
causal effects of a treatment on a target. Since knowing
the parental set of a treatment is enough for the back-
door adjustment, IDA and its generalizations only enu-
merate possible parental sets instead of all equivalent
DAGs (Maathuis et al., 2009; Nandy et al., 2017; Perković
et al., 2017), making them suitable for sparse DAGs.

Though enumerating possible parental sets is sufficient
for estimating all possible causal effects, with limited
samples adjusting for possible parental sets may still be
challenging, since the total number of possible parental
sets and the size of each possible parental set could be very
large. There are many papers studying the adjustment set
selection problem (Kuroki & Cai, 2004; VanderWeele &
Shpitser, 2011; Henckel et al., 2019; Andrea & Ezequiel,
2019), but it is difficult to combine them with the IDA
framework directly without breaking the local nature of
IDA, since most of them focus on the case where the
causal effect can be uniquely identified.



In this paper, we consider the problem of finding a com-
mon set that can be subtracted from all possible parental
sets simultaneously without affecting the back-door ad-
justment. This problem is similar to the one considered
in VanderWeele & Shpitser (2011); Henckel et al. (2019);
Andrea & Ezequiel (2019), but the major difference is
that their work focuses on pruning each possible parental
set separately. We first introduce a new concept called
uniform collapsibility, which basically states that a set of
possible parental sets is uniformly collapsible over a set
Z, if after subtracting Z from all of those possible parental
sets, the remaining parts are still back-door adjustment
sets. Next, given a CPDAG, we provide graphical con-
ditions to decide which subset of treatment’s neighbors
and parents in the CPDAG can be subtracted. Based on
these results, we provide a modification of the original
IDA which includes the adjustment set selection proce-
dure while keeps the local nature of IDA. Experimental
results show that, with our modification, both the number
of possible parental sets and the size of each possible
parental set enumerated by the modified IDA decrease,
making it possible to estimate all possible causal effects
more efficiently.

2 PRELIMINARIES

In this section, we review some basic concepts.

2.1 NOTATION AND DEFINITIONS

Let G = (V,E) denote a graph. Two vertices are adjacent
if there is an edge between them. If Xi → Xj , then Xi

is a parent of Xj and Xj is a child of Xi. If Xi − Xj

then they are neighbors of each other. A graph is called
directed (undirected, or partially directed) if the edges
in the graph are directed (undirected, or a mixture of
directed and undirected). We agree that directed and
undirected graphs are also partially directed. The skeleton
of a (partially) directed graph is the undirected graph
obtained by replacing all directed edges with undirected
ones. If U → W ← V and U, V are not adjacent in
G, then (U,W, V ) forms a v-structure collided on W . A
path in a graph is a sequence of distinct vertices such that
any two consecutive vertices are adjacent in the graph.
Let π = (X0, X1, ..., Xn) be a path in G, if Xi−1 → Xi

or Xi−1 −Xi for all i = 1, 2, ..., n, then π is a partially
directed path from X0 to Xn. If all edges on a partially
directed path are directed (undirected), then the path is
directed (undirected). If there is a directed path from
Xi to Xj or Xi = Xj , then Xi is an ancestor of Xj

and Xj is a descendant of Xi. Given a graph G, the
parents, children, neighbors, ancestors and descendants
of a set X are the union of those of each X ∈ X in G, and
are denoted by pa(X,G), ch(X,G), ne(X,G), an(X,G)

and de(X,G), respectively. G will be omitted from these
notations if the context is clear, . A (directed) cycle is a
(directed) path that starts and ends with the same vertex. A
directed graph without directed cycle is called a directed
acyclic graph (DAG).

2.2 CAUSAL GRAPHICAL MODELS

Based on the notion of d-separation (Pearl, 2009, or see,
e.g. Appendix A.1), a DAG encodes a set of conditional in-
dependence relationships. DAGs encoding the same con-
ditional independencies are called Markov equivalent and
form a Markov equivalence class. Two equivalent DAGs
have the same skeleton and the same v-structures (Pearl
et al., 1989). A Markov equivalence class can be uniquely
represented by a completed partially directed acyclic
graph (CPDAG) G∗. As proved by Andersson et al.
(1997), G∗ is a chain graph. We use chcomp(X,G∗)
to denote the chain component containing X in G∗, and
use [G∗] or [G] to denote the Markov equivalence class
represented by G∗ or containing G, respectively. It can be
shown that the skeleton of a CPDAG G∗ is the same as
the skeleton of every DAG in [G∗], and an edge is directed
in a CPDAG if and only if it is directed in every DAG in
[G∗] (Pearl et al., 1989).

Let G = (V,E) be a DAG and f be a distribution over
V. We use {X ⊥⊥ Y | Z}G to denote that X and Y are
d-separated by Z in G, and use {X ⊥⊥ Y | Z}f to denote
that X and Y are independent conditioning on Z w.r.t. f .
We say that f is Markovian to G if {X ⊥⊥ Y | Z}G
implies {X ⊥⊥ Y | Z}f . Any distribution f Markovian
to a DAG G can be factorized as,

f(x1, ..., xn) =

n∏
i=1

f(xi|pa(xi,G)).

A causal graphical model consists of a DAG and a distri-
bution Markovian to that DAG.

2.3 INTERVENTION CALCULUS

In order to obtain the effect of an intervention on a tar-
get variable, Pearl (2009) employed the do-operator to
formulate the post-intervention distribution as follows:

f(x1, ..., xn|do(Xj = x′j))

=


n∏

i=1,i6=j

f(xi|pa(xi))|xj=x′
j
, if xj = x′j ,

0, otherwise.

(1)

Here, f(x1, ..., xn|do(Xj = x′j)) is the post-intervention
distribution over V = {X1, ..., Xn} after intervening on
Xj , by forcing Xj to equal x′j . The post-intervention
distribution f(xi|do(Xj = xj)) is defined by integrating



out all variables other than xi in f(x1, ..., xn|do(Xj =
xj)). Given a treatment X and a target Y , if there exists
an x 6= x′ such that f(y|do(X = x)) 6= f(y|do(X =
x′)), then X has causal effect on Y (Pearl, 2009). It is
common to summarize the distribution generated by an
intervention by its mean (Pearl, 2009; Maathuis et al.,
2009), i.e., the mean of Y w.r.t. f(y|do(X = x)), which
is denoted by E(Y |do(X = x)). E(Y |do(X = x)) is
a function of x. If X is continuous, or more precisely,
E(Y |do(X = x)) is differentiable w.r.t. x, then we can
define the average causal effect (ACE) of do(X = x) on
Y , i.e., ACE(Y |do(X = x)), by

ACE(Y |do(X = x)) =
∂E(Y |do(X = x))

∂x
.

If X is discrete or E(Y |do(X = x)) is not differentiable
w.r.t. x, we can set a reference value x0 and define

ACE(Y |do(X = x))

= E(Y |do(X = x))− E(Y |do(X = x0)).

In general, the post-intervention distribution f(y|do(X =
x)) is not identical to the conditional distribution
f(y|X = x), meaning that we can not estimate
f(y|do(X = x)) by f(y|X = x). Fortunately, Pearl
(2009) showed that, if f is Markovian to G, then for any
Y /∈ pa(X,G), we have f(y|do(X = x), pa(x,G)) =
f(y|X = x, pa(x,G)). Therefore,

f(y|do(X = x))

=

∫
f(y|do(X = x), pa(x))f (pa(x)) d (pa(x))

=

∫
f(y|X = x, pa(x))f (pa(x)) d (pa(x)) .

(2)

Here, pa(x) is an abbreviation for pa(x,G). Equation (2)
shows that, if we known pa(X,G), then we can estimate
f(y|do(X = x)) from observational data. In fact, Equa-
tion (2) is a special case of so-called back-door adjust-
ment(Pearl, 2009), and pa(X,G) is a back-door adjust-
ment set. The general definition of back-door adjustment
set is given as follows (Pearl, 2009, Definition 3.3.1):

Definition 1 (Back-Door Adjustment Set) Let W be a
variable set and X,Y /∈W be two distinct variables in
a DAG G. Then we say that W is a back-door adjustment
set for (X,Y ) w.r.t. G if:

(1) no node in W is a descendant of X; and

(2) W blocks every path betweenX and Y that contains
an arrow into X .

Pearl (2009) showed that, if W is a back-door adjustment
set, then f(y|do(X = x),w) = f(y|X = x,w) and

f(y|do(X = x)) =

∫
f(y|w, x)f(w)dw.

Algorithm 1 The IDA algorithm
Require: A CPDAG G∗, a variable X and a target Y in
G∗,

Ensure: A multi-set Θ which stores all possible causal
effects of X on Y .

1: Initialize Θ = ∅,
2: for each S ⊆ ne(X,G∗) such that S is a clique do
3: estimate the causal effect θ ofX on Y by adjusting

for S ∪ pa(X,G∗), and add θ to Θ,
4: end for
5: return Θ.

Given a DAG G and a variable X in G, we define the
manipulated graph GX̄ as the subgraph of G by deleting
all directed edges pointing at X (Spirtes et al., 2000;
Pearl, 2009). Manipulated graphs are important in causal
inference, as one can see that if f is Markovian to G, then
f(·|do(X = x)) is Markovian to GX̄ .

2.4 THE IDA FRAMEWORK

The back-door adjustment provides an efficient way to
compute post-intervention distributions. However, a
causal DAG must be prespecified. In general, due to
the existence of Markov equivalent DAGs, it is possible
that one can only obtain a CPDAG from observational
data instead of a DAG. Much research has been devoted
to estimating post-intervention distributions and causal
effects when the DAG is absent (Maathuis & Colombo,
2015; Perković et al., 2015, 2017). However, in some
cases, the causal effect of a treatment on a target may not
be identifiable. For example, if the causal effects of a
treatment on a target vary in different equivalent DAGs,
then it is impossible to estimate the true causal effect
without knowing the underlying causal DAG.

To deal with the unidentifiable cases, Maathuis et al.
(2009) proposed an alternative framework called inter-
vention do-calculus when the DAG is absent (IDA) (see
Algorithm1 for the details). For a treatment and a target,
IDA estimates all possible causal effects of the treatment
on the target, by using Equation (2) to compute the causal
effect w.r.t. each of the equivalent DAGs.1 Since Equation
(2) only requires the parental set of X in each DAG, to
avoid enumerating equivalent DAGs, IDA enumerates all
possible parental sets by using the following lemma.

Lemma 1 (Maathuis et al., 2009, Lemma 3.1) Let G∗
be a CPDAG, X be a vertex of G∗, and S ⊂ ne(X,G∗).

1We note that, although Maathuis et al. (2009) assumed a
linear Gaussian model and used ACE to summarize the causal ef-
fects, but IDA can be easily extended beyond those assumptions.
Similarly, the results in our paper do not need such assumptions
either.



Then there is a DAG G ∈ [G∗] such that pa(X,G) =
pa(X,G∗) ∪ S if and only if orienting S → X for every
S ∈ S in G∗ does not introduce any new v-structure.

Meek (1995, Lemma 1) proved that if Y ∈ pa(X,G∗),
then Y ∈ pa(X ′,G∗) for every X ′ ∈ ne(X,G∗). From
this we can prove that the condition in Lemma 1 holds
if and only if S is a clique, i.e., S is either an empty
set, or a singleton set, or for any two distinct vertices
S, S′ ∈ S, S and S′ are adjacent in G∗. Clearly, enumer-
ating possible parental sets is more efficient than enumer-
ating DAGs (He et al., 2015). However, when the size
of ne(X,G∗) is large, it may take a long time to finish
enumeration. Moreover, if the sample size is small, the es-
timation of f(Y |do(X = x)) may have a large variance.
In the following, we will provide a method to reduce both
the number of possible parental sets and the size of each
possible parental set.

3 UNIFORM COLLAPSIBILITY FOR
POSSIBLE PARENTAL SETS

As discussed in Section 2.4, our goal is to reduce both
the number of possible parental sets and the size of each
possible parental set when estimating all possible causal
effects. The start point is Equation (2). For a DAG G, if
we can find a subset Z of pa(x,G), such that

f(y|X = x, pa(x,G)) = f(y|X = x, pa(x,G) \ Z),

then we can estimate f(y|do(X = x)) by adjusting for
pa(x,G) \ Z,

f(y|do(X = x))

=

∫
f(y|do(X = x), pa(x))f (pa(x)) d (pa(x))

=

∫
f(y|X = x, pa(x))f (pa(x)) d (pa(x))

=

∫
f(y|X = x, pa(x) \ Z)f (pa(x) \ Z) d (pa(x) \ Z) .

Since pa(x,G) \ Z contains less variables, adjusting for
pa(x,G) \ Z may lead to a more accurate estimation
(Henckel et al., 2019; Andrea & Ezequiel, 2019).

3.1 COLLAPSIBILITY

To formulate the idea given at the beginning, we introduce
the following concept.

Definition 2 (Collapsibility) Let X,Y be distinct ver-
tices in a DAG G such that Y /∈ pa(X,G), and W is
a back-door adjustment set for (X,Y ) w.r.t. G. We say
that W is collapsible over Z ⊆ W (or onto W \ Z)

(a) G∗ (b) G1

(c) G2 (d) G3

Figure 1: This example shows how to collapsing pa(X,G)
for estimating all possible causal effects under the IDA
framework.

w.r.t. G and (X,Y ), if either W = ∅, or Z 6= ∅ and
W \ Z is a back-door adjustment set for (X,Y ) w.r.t. G.

In Definition 2, if Z = {Z} is a singleton set, we
simply say that W is collapsible over Z w.r.t. G and
(X,Y ). Moreover, if W is collapsible over Z, then Z is
called subtractable from W.2 Back to the IDA frame-
work, if pa(X,G) is collapsible over Z(G), then estimat-
ing f(y|do(X = x)) by adjusting for pa(X,G) \ Z(G)
may improve the efficiency and accuracy of the estima-
tion (Henckel et al., 2019; Andrea & Ezequiel, 2019).

Example 1 Figure 1 shows how to collapse pa(X,G)
for estimating all possible causal effects under the IDA
framework. The CPDAG G∗ is shown in Figure 1(a), and
Figures 1(b)-1(d) enumerate all equivalent DAGs. Since
ne(X,G∗) = {A,B} and pa(X,G∗) = ∅, all possible
parental sets ofX are {A}, {B} and ∅, which correspond
to Figures 1(b)-1(d) respectively. However, in Figure 1(b),
pa(X,G1) is collapsible over A. Therefore, f(y|do(X =
x)) =

∫
f(y|X = x, a)f (a) da = f(y|X = x), mean-

ing that the post-intervention distribution is reduced to
the conditional distribution. On the other hand, since
neither {B} in G2 nor ∅ in G3 is collapsible, the final
possible back-door adjustment sets are {B} and ∅.

Example 1 shows that collapsing pa(X,G) can indeed
reduce both the number of possible parental sets and the
size of each parental set when estimating all possible
causal effects. However, as shown in Example 1, for
different G’s, pa(X,G)’s may be collapsible over different

2The terminology of ‘collapsibility’ is borrowed from statis-
tics (see, e.g. Xie & Geng, 2009). In statistics, collapsibility
means that the same statistical result of interest can be obtained
before and after marginalization over some variables.



Z(G)’s. Thus, we need a simple rule to check whether a
set can be subtracted from pa(X,G).

Proposition 1 Suppose that X and Y /∈ pa(X,G) are
distinct vertices in a DAG G, and Z(G) is a subset
of pa(X,G). Then pa(X,G) is collapsible over Z(G)
w.r.t. G and (X,Y ) if and only if {Z(G) ⊥⊥ Y | X ∪
pa(X,G) \ Z(G)}G .

All detailed proofs of the theoretical results in this paper
are present in Appendix A. The sufficiency of Proposition
1 follows from Henckel et al. (2019, Lemma D.1). In fact,
we can also prove that,

Proposition 2 With the assumptions in Proposition 1,
pa(X,G) is collapsible over Z(G) w.r.t. G and (X,Y )
if and only if {Z(G) ⊥⊥ Y | X ∪ pa(X,G) \ Z(G)}GX̄ .

Henckel et al. (2019, Algorithm 1) also provided an algo-
rithm to construct a subtractable set. However, combining
this algorithm with IDA locally is still challenging. In
fact, it may take much more effort to find Z(G) than sim-
ply adjusting for pa(X,G). Therefore, in this paper, we
focus on another strategy. We would like to find a fixed
variable set Z which can be subtracted from all possible
parental sets.

3.2 UNIFORM COLLAPSIBILITY

In this section, we introduce a new concept called uniform
collapsibility for a set of back-door adjustment sets.

Definition 3 (Uniform Collapsibility) Let Z be a vari-
able set, and X,Y /∈ Z are two distinct vertices in a
CPDAG G∗ and Y /∈ pa(X,G∗). Given a set of back-
door adjustment setsW = {W(G) | G ∈ [G∗] and Y /∈
pa(X,G)}, where W(G) is a back-door adjustment set
for (X,Y ) w.r.t. G, we say thatW is uniformly collapsible
over Z w.r.t. G∗ and (X,Y ), if W(G) is collapsible over
W(G) ∩ Z w.r.t. G and (X,Y ) for every W(G) ∈ W .

If W is uniformly collapsible over Z, then Z is called
uniformly subtractable fromW . Clearly,W is uniformly
collapsible over any Z such that W(G)∩Z = ∅ for every
G ∈ [G∗]. We call such Z trivial. Conversely, if there
exists a non-trivial set which is uniformly subtractable
fromW , then the size of at least one back-door adjustment
set inW can be reduced. Next example shows that non-
trivial sets do exist for some CPDAGs.

Example 2 Consider the CPDAG G∗ shown in Figure
2(a) and two equivalent DAGs in Figures 2(b) and 2(c).
Let W = {∅, {A}}. Clearly, ∅ and {A} are back-door
adjustment sets for (X,Y ) w.r.t. G1 and G2 respectively.
Since {A} is collapsible over {A} in G2 based on Propo-
sition 1, and ∅ is collapsible over ∅ ∩ {A} in G1, W is

(a) G∗ (b) G1

(c) G2 (d) G∗∗

Figure 2: An example to show that non-trivial sets exist
for some CPDAGs.

uniformly collapsible over {A}. After collapsingW , we
only need adjust for ∅ in the IDA framework.

Conversely, for some CPDAGs, such non-trivial sub-
tractable sets may not exist. For example, if we consider
the CPDAG in Figure 2(d), then W = {∅, {A}} is not
uniformly collapsible over A w.r.t. G∗∗ and (X,Y ).

3.3 CHARACTERIZATIONS AND
CONSTRUCTIONS

Based on the IDA framework, our goal is to characterize
and construct a set Z which is uniformly subtractable
from W = {pa(X,G) | G ∈ [G∗] and Y /∈ pa(X,G)}.
The road map is as follows: we first discuss when a single
vertex can be uniformly subtracted fromW (Theorems
1 and 2), then we consider how to construct a larger sub-
tractable set from those singleton sets (Theorems 3).

The first result, which is given in Theorem 1, provides a
sufficient and necessary condition under which a single
vertex in ne(X,G) is uniformly subtractable fromW =
{pa(X,G) | G ∈ [G∗] and Y /∈ pa(X,G)}.

Theorem 1 Suppose that G∗ is a CPDAG, and X , Y , Z
are three distinct vertices in G∗ such that Y /∈ pa(X,G∗)
and Z ∈ ne(X,G∗). Let W = {pa(X,G) | G ∈
[G∗] and Y /∈ pa(X,G)}, then the following statements
are equivalent.

(1) W is uniformly collapsible over Z w.r.t. G∗ and
(X,Y ),

(2) {Z ⊥⊥ Y | X ∪ pa(X,G) \ Z}G holds for every
pa(X,G) ∈ W ,

(3) {Z ⊥⊥ Y | X ∪ pa(X,G) \ Z}GX̄ holds for every
pa(X,G) ∈ W , and



(a) G∗
1 (b) G1,X̄

(c) G∗
2 (d) G2,X̄

Figure 3: This example shows the results in Theorem 1
no longer hold when Z ∈ pa(X,G∗).

(4) (graphical criterion) all partially directed paths
from Z to Y , if any, passes X .

The fourth statement in Theorem 1 gives a necessary and
sufficient graphical criterion to decide whether a singleton
subset of ne(X,G∗) is uniformly subtractable from W .
Note that, if none of the paths from Z to Y is partially
directed, thenW is also uniformly collapsible over Z. We
also note that, the graphical criterion only holds for Z ∈
ne(X,G∗). If Z ∈ pa(X,G∗), the criterion is neither
sufficient nor necessary. Below we give an example.

Example 3 Figure 3(a) shows a CPDAG G∗1 containing
directed edges only. Figure 3(c) shows another CPDAG
G∗2 in which onlyA andB are connected by an undirected
edge. Since G∗1 has no undirected edge, the only DAG in
the Markov equivalence class represented by G∗1 is itself.
Thus, the corresponding manipulated graph is G1,X̄ , as
shown in 3(b). Similarly, the corresponding manipulated
graphs of the DAGs in [G∗2 ] are shown in 3(d), where
A−B in G2,X̄ can be oriented as A→ B or A← B.

We first show that statement (4) is not sufficient. As shown
in Figure 3(a), all partially directed paths from A to Y
pass through X . However, by proposition 1 A is not
subtractable from {A,B,C}, as A→ B ← D → Y is a
d-connected path given B,C and X in both G∗1 and G1,X̄ .
To show that statement (4) is not necessary either, let us
consider Figures 3(c) and 3(d). Although A−B → Y is
a partially directed path from X to Y which bypasses X ,
A is d-separated from Y given B,C,X in both G∗2 and
G2,X̄ . Thus, A is subtractable.

Next, we consider the singleton subsets of pa(X,G∗). It
can be shown that,

Proposition 3 Let G∗ be a CPDAG, X , Y be two dis-
tinct vertices in G∗ such that Y /∈ pa(X,G∗). Suppose
there exists a Z ∈ ne(X,G∗) such that Z 6= Y and
W = {pa(X,G) | G ∈ [G∗] and Y /∈ pa(X,G)} is not
uniformly collapsible over Z, then W is not uniformly
collapsible over any subset of pa(X,G∗).

Proposition 3 is a necessary condition for the collapsibility
of pa(X,G∗). It shows that, if some neighbors of X
are not subtractable, then we do not bother to collapse
pa(X,G∗). Conversely, if the entire set ne(X,G∗) can be
subtracted, then the causal effect ofX on Y is identifiable.
In this case, many criteria are useful for selecting and
constructing an adjustment set (see, e.g. Henckel et al.,
2019). For the sake of completeness, we also provide a
sufficient condition for collapsing pa(X,G∗).

Theorem 2 Suppose that G∗ is a CPDAG, and X , Y , Z
are three distinct vertices in G∗ such that Y /∈ pa(X,G∗)
and Z ∈ pa(X,G∗). Let W = {pa(X,G) | G ∈
[G∗] and Y /∈ pa(X,G)}, thenW is uniformly collapsi-
ble over Z w.r.t. G∗ and (X,Y ) if every path from Z to
Y , if any, passes X .

Clearly, Theorem 2 is still valid if we replace Z by a
subset Z ⊂ pa(X,G). Notice that, unlike Theorem 1,
Theorem 2 only provides a sufficient condition. To see
why Theorem 2 is not necessary, let us consider the fol-
lowing Example 4.

Example 4 In this example, we show that the condition
in Theorem 2 is not necessary. As shown in Figures 3(c)
and 3(d), A is a parent of X in G∗, and A−B → Y is a
path from A to Y bypassing X . However, as discussed in
Example 3, {A,B,C} is uniformly collapsible over A.

Since pa(X,G) ⊂ pa(X,G∗) ∪ ne(X,G∗) for any G ∈
[G∗], we do not have to consider Z ∈ ch(X,G∗). Thus,
the remaining problem is how to construct a subtractable
set containing more than just one vertex. The following
Theorem 3 provides an answer.

Theorem 3 Suppose that G∗ is a CPDAG, X and Y are
two distinct vertices in G∗ and Y /∈ pa(X,G∗), and
Z1,Z2 are two subsets of variables such that at least one
of them is a subset of ne(X,G∗). LetW = {pa(X,G) |
G ∈ [G∗] and Y /∈ pa(X,G)}, ifW is uniformly collapsi-
ble over both Z1 and Z2 w.r.t. G∗ and (X,Y ), thenW is
uniformly collapsible over Z1 ∪ Z2 w.r.t. G∗ and (X,Y ).

Based on the above theorems, we have,

Corollary 1 Suppose that G∗ is a CPDAG, X and Y
are two distinct vertices in G∗ and Y /∈ pa(X,G∗). Let
Zne ⊂ ne(X,G∗) and Zpa ⊂ pa(X,G∗) be the sets



Algorithm 2 The collapsible IDA algorithm
Require: A CPDAG G∗, a variable X and a target Y in
G∗,

Ensure: A multi-set Θ which stores all possible causal
effects of X on Y .

1: Initialize Θ = ∅,
2: find all vertices in ne(X,G∗) from which there is no

partially directed path to Y in G∗ that bypasses X ,
and denote them by Zne,

3: if Zne is not identical to ne(X,G∗), then
4: set Zpa = ∅,
5: else
6: find all vertices in pa(X,G∗) from which every

path to Y passes through X , and denote them by
Zpa,

7: end if
8: for each S ⊆ ne(X,G∗)\Zne such that S is a clique,

do
9: estimate the causal effect θ ofX on Y by adjusting

for S ∪ pa(X,G∗) \ Zpa, and add θ to Θ,
10: end for
11: return Θ.

of vertices satisfying the graphical criteria in Theorems
1 and 2, respectively. Then W = {pa(X,G) | G ∈
[G∗] and Y /∈ pa(X,G)} is uniformly collapsible over
Z1 ∪ Z2 w.r.t. G∗ and (X,Y ).

Hence, with Corollary 1, we can separately find all sin-
gleton sets satisfying the graphical criteria in Theorems 1
and 2, respectively, then the union of these singleton sets
is a non-trivial set whichW is uniformly collapsible over.

4 ALGORITHM

In this section, we apply the theoretical results given in the
last section to modifying IDA. The proposed algorithm,
which is called collapsible IDA, is shown in Algorithm 2.

In Algorithm 2, we first use the graphical criterion pro-
vided in Theorem 1 to find Zne. If Zne is not identical
to ne(X,G∗), then based on Proposition 3, pa(X,G∗)
is not collapsible. Thus, we simply let Zpa = ∅. On
the other hand, if Zne = ne(X,G∗), we construct
Zpa based on Theorem 2. Notice that, other criteria
in Henckel et al. (2019, Section 3.2) can also be ap-
plied to this case. Finally, we enumerate all subsets of
ne(X,G∗) \ Zne in order to find all cliques, and for each
clique S, we estimate one possible causal effect by adjust-
ing for S ∪ pa(X,G∗) \ Zpa.

To avoid enumerating all partially directed paths from
Z to Y when building Zne, we can use the following
proposition to further reduce the complexity.

Proposition 4 Given a CPDAG G∗ and three distinct ver-
tices X , Y and Z ∈ ne(X,G∗). Then, every partially
directed path from Z to Y passes through X in G∗ if and
only if for any U ∈ chcomp(X,G∗) ∩ an(Y,G∗), every
partially directed path from Z to U passes through X in
G∗.

Note that any vertex is an ancestor of itself, thus for
any U ∈ ne(X,G∗) ∩ an(Y,G∗), W is not uniformly
collapsible overU since there is a zero-length path fromU
to itself, which definitely bypasses X . The next example
shows the usefulness of Proposition 4.

Example 5 Figure 4 shows an example of finding Zne

with Proposition 4. The CPDAG G∗ is shown in Figure
4(a). Since ne(X,G∗) = {A,B,E} and pa(X,G∗) = ∅,
all possible parental sets of X are {A}, {B}, {E}
and ∅. The partially directed graphs given in Fig-
ures 4(b) to 4(e) enumerate all the cases. Note that
chcomp(X)∩an(Y ) = {A,B}, thusW is not uniformly
collapsible over A,B. On the other hand, all undirected
paths from E to A,B pass through X , hence,W is uni-
formly collapsible over E. In fact, X ← A → C → Y
is a back-door path in G∗3 , and X ← B → D → Y is
a back-door path in G∗4 . Therefore, both A and B are
needed in some back-door adjustment sets.

The major difference between the collapsible IDA and the
original IDA is that, the collapsible IDA only enumerates
the subsets of ne(X,G∗) \ Zne, while IDA enumerates
the subsets of ne(X,G∗). This modification can reduce
both the number of possible parental sets and the size of
each possible parental set.

When implementing Algorithm 2, one may use a simple
trick to combine the collapsible IDA and the original IDA
together. In fact, after line 7 in Algorithm 2, we can
remove all edges between Zne ∪ Zpa and X , and the
resulting graph is a partially directed graph denoted by
H. Next, we can simply call IDA with the input graphH,
input treatment X , and input target Y . AlthoughH is not
a CPDAG as required by IDA, from the construction given
above, it is straightforward to verify that the resulting
multi-set is identical to the one returned by Algorithm 2.

5 SIMULATIONS

In this section, we use simulated data to compare our
method with IDA (Maathuis et al., 2009). The input
CPDAG is either the true CPDAG (Perković et al., 2017),
or the one learned from data using the PC algorithm
(Maathuis et al., 2009). All experiments were imple-
mented with R and run on a computer with 2.50GHz
CPU and 8 GB of memory. PC and IDA were called
from pcalg R-package (Kalisch et al., 2012). All
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Figure 4: An example of finding Zne with Proposition 4.

statistical independence tests were performed under the
significance level α = 0.001.

The data was generated as follows. We first sampled a
random DAG G with 50 vertices and expected degree
d ∈ {1, 2, 3, 4, 5} based on a Erdös-Rényi random graph
model. Then we generated a joint Gaussian distribution
Markovian to this DAG as follows. For each directed edge
Xi → Xj , we first independently drawn an edge weight
βij from a Uniform([0.5, 2]) or a Uniform([−2,−0.5] ∪
[0.5, 2]). The DAG G together with these edge weights
{βij} gives a distribution over the variable set through
the following equations:

Xj =
∑

Xi∈pa(Xj)

βijXi + εj , j = 1, ..., n,

where ε1, ..., εn i.i.d. ∼ N (0, 1). After obtaining the
distribution, we randomly generated two data sets with
sample size N1 = 1000 and N2 ∈ {20, 50}, respectively.
The first data set was used to learn the CPDAG and the
second was used to estimate all possible causal effects. Fi-
nally, we sampled anX and used the original IDA and the
collapsible IDA (‘CIDA’ for short) to estimate all possible
effects of X on all other variables. The input CPDAG
was set to be the true one representing the Markov equiv-
alence class containing G, or the one learned by the PC
algorithm. All experiments were repeated 100 times.

We use the following metrics to assess the results. After
estimating all possible causal effects of X on other vari-
ables, for each method, we computed the total number
of possible causal effects of X on all other variables (de-
noted by NIDA or NCIDA), the maximum size of possible
parental sets (denoted by MIDA or MCIDA), and the total
estimation bias (denoted by BIDA or BCIDA). The total
estimation bias is defined as,

Bmethod =

√∑
Y

∑
i

(PEX→Y,i − TEX→Y )2,

where PEX→Y,i is the i-th possible effect of X on Y
estimated with the input CPDAG and TEX→Y is the true

effect of X on Y estimated with the underlying DAG. For
ease of comparison, we only storedRN = NCIDA/NIDA,
RM = MCIDA/MIDA and RB = BCIDA/BIDA.

Due to page limits, we only show the results for mixed
edge weights in Figure 5. Additional results are given in
Appendix B. As discussed in Section 4, if the treatment
X does not have any neighbors, the number of possible
parental sets cannot be reduced. Thus, in Figure 5, we not
only report the average quantities over 100 times repeti-
tions (full-samples), but also report the average quantities
over the cases where X has neighbors (sub-samples).

From Figure 5 we can draw the following conclusions. (1)
For an arbitrary treatment, the total number of possible
effects can be reduced by 10%-20% if we use the col-
lapsible IDA, and for a treatment with neighbors, the total
number of possible effects can be approximately reduced
by 40%-50%. (2) Using the collapsible IDA can signif-
icantly reduce the maximum size of parental sets. For
an arbitrary treatment, MCIDA is reduced by 10%-50%,
and for a treatment with neighbors, MCIDA is reduced
by 60%-90% compared with MIDA. (3) The estimation
bias BCIDA is reduced by 5%-20% and 10%-30% for
an arbitrary treatment and a treatment with neighbors,
respectively, compared with BIDA (4) As the graph be-
comes dense, the results of the collapsible IDA become
less significant.

To explain the above results, we recall that collapsing
treatments’ parents in a CPDAG does not reduce the num-
ber of possible effects but only reduce the maximum size
of a possible parental set, while collapsing treatments’
neighbors can reduce both the number of possible ef-
fects and the maximum size of a possible parental set.
Therefore, RM is generally lower than RN in the same
setting. On the other hand, when the underlying DAG is
sparse, the corresponding CPDAG contains many undi-
rected edges. However, when the graph becomes dense,
the number of v-structures increases, and thus less undi-
rected edges are in the CPDAG. Therefore, RN , RM
and RB increase when we increase the expected degree.
Finally, when the input CPDAG is learned from data, we
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Figure 5: Experimental results. The first two rows report the results for using the true CPDAGs as inputs, while the
third row reports the results for using the learned CPDAGs. The first row corresponds to N2 = 20, while the second
and the third row correspond to N2 = 50. The edge weights were sampled from Uniform([−2,−0.5] ∪ [0.5, 2]).

empirically find that there are many falsely discovered
v-structures in the learned graphs. Consequently, the dif-
ference between the collapsible IDA and the original IDA,
as well as the distance between two lines in each figure is
narrowed.

6 CONCLUDING REMARKS

IDA is a general framework for estimating all possible
causal effects of a treatment on a target when the true
effect is not identifiable. In this paper, we combine the ad-
justment set selection procedure with the IDA framework,
by providing a method to subtract a common set from all
possible parental sets without influencing the back-door
adjustment and estimating possible causal effects. With
our modification, both the number of possible parental
sets and the size of each possible parental set enumerated
by IDA decrease, while the local nature of IDA remains

unchanged.

There are many possible future directions. For example,
how to extend our work to more generalized graphs such
as maximal PDAGs is interesting (Perković et al., 2017).
Besides, as discussed in Henckel et al. (2019); Andrea &
Ezequiel (2019), some additional covariates are beneficial
for efficiency, and thus should be included. Therefore,
how to extend our work to identify those variables locally
and apply them to the IDA framework is also useful.
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Supplementary Material

This material is supplementary to ‘Collapsible IDA: Col-
lapsing Parental Sets for Locally Estimating Possible
Causal Effects’.

A PROOFS

In this section, we present the proofs of the results in the
main text.

A.1 PRELIMINARIES

Given a DAG G and a path π, if there are two directed
edges U →W and V →W on π, then W is called a col-
lider on π. A path (X1, X2, ..., Xn) is called unshielded
ifXi is not adjacent toXi+2 for i = 1, 2, ..., n−2. Given
a path π = (X1, ..., Xi, ..., Xj , ..., Xn), the subpath of π
from Xi to Xj is the subsequence (Xi, ..., Xj) and de-
noted by π(Xi, Xj). A path from Xi to Xj in G is called
d-connected or active given S ⊂ V if every non-collider
on the path is not in S and every collider on the path is
in an(S,G) (Pearl, 1988). Otherwise, the path is called
d-separated or blocked by S. If there is no d-connected
path from node set X to node set Y given S, then X and
Y are d-separated given S. As discussed in the main
text, a Markov equivalence class can be uniquely repre-
sented by a CPDAG G∗. As proved by Andersson et al.
(1997), a CPDAG G∗ is a chain graph. A chain graph
consists of both directed and undirected edges but no
partially directed circles containing directed edges (Lau-
ritzen & Richardson, 2002). In the following proofs, we
simply use ‘partially directed circles’ to refer to those
partially directed cycles that contain directed edges. Af-
ter deleting all directed edges from a CPDAG, we ob-
tain several disconnected undirected subgraphs, which
are called chain components. Meek (1995, Lemma 1)
showed that, if Y ∈ pa(X,G∗), then Y ∈ pa(X ′,G∗) for
every X ′ ∈ chcomp(X,G∗).

To prove our main results, the following lemma is useful.

Lemma 2 Given a CPDAG G∗, if there is a partially
directed path from X to Y where the first edge is directed,
then there is a directed path from X to Y in the CPDAG.

Proof. There is no loss of generality in assuming that the
path has the following form: X = X0 → X1,1 −X1,2 −
...−X1,k1

→ ...→ Xn,1−Xn,2−...−Xn,kn
= Y . Since

X1,1, X1,2, ..., X1,k1
are in the same chain component,

X0 → X1,1 implies X0 → X1,k1 . Similarly, we have
Xi,ki → Xi+1,ki+1 for i = 0, 1, 2, ..., n − 1. Hence
X0 → X1,k1 → ... → Xn,kn = Y is a directed path
from X to Y in G∗. �

A.2 PROOF OF PROPOSITION 1

Proof. The sufficiency follows from Henckel et al. (2019,
Lemma D.1), thus we only prove the necessity, i.e.,
pa(X,G) is collapsible over Z(G) w.r.t. G and (X,Y )
implies {Z(G) ⊥⊥ Y | X ∪ pa(X,G) \ Z(G)}G . In the
following paper, we call a path from X to Y that contains
an arrow into X a back-door path.

Suppose that {Z(G) ⊥⊥ Y | X ∪pa(X,G)\Z(G)}G does
not hold, then there exists a d-connected path π from a
vertex Z ∈ Z(G) to Y given X ∪ pa(X,G) \ Z(G). If
all such d-connected paths contain X , then let π be the
shortest one among those paths. Clearly, X is a collider
on π. Since at least one of the nodes adjacent to X on
π is not an endpoint of π, such node, say Z2 must be in
Z(G). Therefore, the subpath π(Z2, Y ) is a d-connected
path given X ∪ pa(X,G) \ Z(G) in G, which is strictly
shorter than π. This leads to a contradiction.

If there is a d-connected path π from some Z ∈ Z(G) to
Y given X ∪ pa(X,G) \ Z(G) which does not contain
X , then we concatenate X ← Z and π and denote this
path by π′. Clearly, π′ is a back-door path. If there is no
collider on π or every collider on π has a descendant in
pa(X,G) \ Z(G), then π′ is a d-connected path from X
to Y given pa(X,G) \ Z(G). On the other hand, if there
is a collider on π which is not an ancestor of pa(X,G) \
Z(G), then this collider must be an ancestor of X since
π is d-connected given X ∪ pa(X,G) \ Z(G). Let W
denote the first collider on π from Y ’s side that is not
an ancestor of pa(X,G) \ Z(G), then W has a directed
path, denoted by ρ, to X which does not contain any node
in pa(X,G) \ Z(G). Concatenating ρ and the subpath
π(W,Y ) from W to Y leads to a d-connected back-door
path from X to Y given pa(X,G) \ Z(G). �

A.3 PROOF OF PROPOSITION 2

Proof. We first prove the sufficiency. Suppose that there
is a d-connected back-door path π from X to Y given
pa(X,G) \ Z(G). Since π is d-separated by pa(X,G),
there exists a non-collider Z ′ on π which is also in
Z(G). Consider the subpath π(Z ′, Y ). Clearly, every non-
collider on π(Z ′, Y ) is not in X ∪ pa(X,G) \ Z(G), and
every collider on π(Z ′, Y ) is in an(pa(X,G) \ Z(G),G).
Note that, X ∪ an(pa(X,G) \ Z(G),G) = an(X ∪
pa(X,G) \ Z(G),GX̄), π(Z ′, Y ) is d-connected given
X ∪ pa(X,G) \ Z(G) in GX̄ .

Next we prove the necessity. Suppose that there is a d-
connected path π from a vertex Z ∈ Z(G) to Y given
X ∪ pa(X,G) \ Z(G) in GX̄ . Clearly, X is not on π
since X cannot be a collider in GX̄ . We combine X ←
Z with π and the resulting path π′ is a back-door path
in G. Clearly, every non-collider on π′ is not in X ∪



pa(X,G) \ Z(G), and every collider on π′ is in an(X ∪
pa(X,G) \ Z(G),GX̄), and thus in X ∪ an(pa(X,G) \
Z(G),G). Therefore, π′ is a d-connected back-door path
from X to Y given pa(X,G) \ Z(G). �

A.4 PROOF OF THEOREM 1

Proof. According to Propositions 1 and 2, statements (1),
(2) and (3) are clearly equivalent. In the following, we
will show that statements (2) and (4) are equivalent.

Statement (2)⇒ statement (4). Suppose that (4) does
not hold, then there is a partially directed path π from
Z to Y which bypasses X in CPDAG G∗. Let U de-
note the last node on π from Z’s side which is also
in chcomp(X,G∗). If U = Z, then π is a partially
directed path from Z to Y where the first edge is di-
rected. According to Lemma 2, there is a directed path
ρ from Z to Y in G∗. However, since Z ∈ ne(X,G)
and G∗ does not contain any partially directed cycles,
none of the vertices in pa(X,G∗) ∪ ne(X,G∗) ∪ X ex-
cept for Z is on ρ. On the other hand, for any DAG
G in the Markov equivalence class represented by G∗,
pa(X,G) ⊂ pa(X,G∗) ∪ ne(X,G∗). Therefore, none of
the vertices in pa(X,G) ∪X except for Z is on ρ. Since
the corresponding path of ρ in G is also directed, ρ is
d-connected in G given pa(X,G) ∪X . If U 6= Z, then
the subpath π(Z,U) is an undirected path from U to Z,
since both U,Z are in chcomp(X,G∗) and G∗ does not
contain any partially directed cycles. Note that π(Z,U)
does not contain X . Let σ denote the shortest undi-
rected path from Z to U which does not contain X , σ
is clearly unshielded. According to Lemma 1, there is a
DAG G1 ∈ [G∗] such that pa(X,G1) = Z ∪ pa(X,G∗)
and ch(X,G1) = ne(X,G∗) ∪ ch(X,G∗) \ Z. Based
on Meek (1995), there is no collider on the correspond-
ing path of σ in G1. If U = Y , then the corresponding
path of σ in G1 is a d-connected path from Z to Y given
X∪pa(X,G1)\Z. IfU 6= Y , by the same argument given
for U = Z, one can prove that U ∈ an(Y,G∗), which
means U ∈ an(Y,G1). Concatenating σ and any directed
path from U to Y in G1 would result a d-connected path
from Z to Y given X ∪ pa(X,G1) \ Z in G1.

Statement (2) ⇐ statement (4). Conversely, suppose
that there is a DAG G2 ∈ [G∗] in which Y /∈ pa(X,G2)
and there is a d-connected path π from Z to Y given X ∪
pa(X,G2)\Z. If X is on π, then X must be a collider on
π. Let P denote the vertex adjacent to X on the subpath
π(X,Y ), P is a parent of X . Since Y /∈ pa(X,G2),
P 6= Y . Therefore, P ∈ pa(X,G2) is a non-collider on
π, meaning that π is blocked byX∪pa(X,G2)\Z, which
leads to a contradiction. Now suppose X is not on π. If
every node on π is also a member of chcomp(X,G∗),
then π in G∗ is a partially directed path from Z to Y

bypassing X . Otherwise, let U1 be the first node on π
from Z’s side which is not in chcomp(X,G∗), and U2

be the node adjacent to U1 on the subpath π(Z,U1). By
assumption, U2 ∈ chcomp(X,G∗), and either U1 → U2

or U2 → U1 in G∗. If U1 → U2 in G∗, then U1 is also a
parent ofX in G∗, which means U1 6= Y and π is blocked
by X ∪ pa(X,G2) \ Z in G2. This is contradicted to the
assumption. Since the definitions of U1 and U2 indicate
that π(Z,U2) in G∗ is undirected, if U2 → U1 in G∗ and
π(U2, Y ) in G2 does not contain a collider, then π2 in
G∗ is a partially directed path bypassing X . If U2 → U1

in G∗ and π(U2, Y ) in G2 contains a collider, then the
first collider on π(U2, Y ) from U2’s side, denoted by W ,
is an ancestor of X ∪ pa(X,G2) \ Z in G2. Therefore,
there is a directed path ρ from U1 to X in G2. However,
concatenating π(Z,U2), U2 → U1, ρ andX−Z will lead
to a partially directed cycle in G∗, which is impossible.
This completes the proof of (2)⇔ (4). �

A.5 PROOF OF PROPOSITION 3

Proof. If W is not uniformly collapsible over Z, then
by Theorem 1, there is a partially directed path from
Z to Y bypassing X . For any W ∈ pa(X,G∗), W ∈
pa(Z,G∗). Therefore, similar to the proof of Lemma 2,
there is a directed path πW from W to Y in G∗ which
does not contain X , and the vertex adjacent to W on
πW is in chcomp(X,G∗). This means every vertex on
πW except for W is a non-collider and not in pa(X,G∗),
since otherwise, there would be a partially directed cycle
in G∗. On the other hand, based on Lemma 1, there is
a DAG G ∈ [G∗] such that pa(X,G) = pa(X,G∗) and
ch(X,G1) = ne(X,G∗) ∪ ch(X,G∗). In G, πW is a d-
connected path from W to Y given X ∪ pa(X,G) \W .
This completes the proof. �

A.6 PROOF OF THEOREM 2

Proof. By proposition 1, we can conversely suppose that
there is a DAG G in the Markov equivalence class rep-
resented by CPDAG G∗ such that Y /∈ pa(X,G) and
there is at least one d-connected path from some node
Z ∈ pa(X,G∗) to Y given X ∪ pa(X,G) \Z in G. Let π
be the shortest one among these d-connected paths. If X
is on π, then X is a collider on π. Since Y /∈ pa(X,G),
the node adjacent to X on the subpath π(X,Y ) must be
Z. Therefore, the subpath π(Z, Y ) is a d-connected path
given X ∪ pa(X,G) \ Z in G, which is strictly shorter
than π. This is contradicted to our assumption. Therefore,
π is a path from Z to Y not containing X . �

A.7 PROOF OF THEOREM 3

Proof. Without loss of generality, we suppose that Z1 is



a subset of ne(X,G∗). Then for any DAG G ∈ [G∗], it
is clear that pa(X,G) ∩ ne(X,G∗) is a clique. Hence,
{pa(X,G)∩ne(X,G∗)}\Z1 is also a clique. According
to Lemma 1 in the main text, there exists a DAG G1 ∈ [G∗]
such that pa(X,G1) = pa(X,G) \ Z1. Now we have,

P (Y |X, pa(X,G)) = P (Y |X, pa(X,G)\Z1)

= P (Y |X, pa(X,G1))

= P (Y |X, pa(X,G1)\Z2)

= P (Y |X, pa(X,G)\{Z1 ∪ Z2}).

Finally, using Theorem 1, W is uniformly collapsible
over Z1 ∪ Z2 w.r.t. G∗ and (X,Y ). �

A.8 PROOF OF PROPOSITION 4

Proof. If there is a partially directed path π from Z to
Y passing through X , according to Lemma 2, the last
node from Z’s side on π which is also in chcomp(X,G∗)
is an ancestor of Y in G∗. Denote this node by U , then
the subpath π(Z,U) is undirected in G∗, which is also a
partially directed path passing through X . Conversely,
if there is a partially directed path from Z to some node
U ∈ chcomp(X,G∗) ∩ an(Y,G∗) passing through X ,
since U ∈ an(Y,G∗), it is clear that Z has a partially
directed path to Y passing X in G∗. �

B ADDITIONAL RESULTS

In this section, we present the additional experimental
results for positive edge weights. The results, which are
shown in Figure 6, are similar to those given in the main
text. We notice that the error bars of the reported metrics
on full-samples shown in Figures 5 and 6 are wide, and
the value of 1 is included many times. One may expect
that the large standard errors can be reduced by increasing
the sample size. However, this might be impossible. In
fact, the reason for large standard errors is because the
distributions of the metrics are multimodal. For example,
the distribution of RN has one peak near 1, representing
the cases where X has no neighbor. Other peaks are
possibly less than 1, representing the cases where X has
neighbors (i.e. sub-samples). Thus, the large standard
errors of the reported metrics may not be reduced by
increasing the sample size.

C FURTHER DISCUSSIONS

In this section, we discuss some worth-noting problems
which are related to the main results in our paper.3

3We greatly appreciate the anonymous reviewers for raising
these interesting problems.

Complexity The complexity of CIDA is an important
concern. Compared with IDA, CIDA needs to identify
which set is subtractable, which may bring additional
costs. However, our simulations showed that the time
for finding Zne and Zpa is negligible compared to the
total time. In fact, let |V| = n, then one can use Depth-
First-Search to find Zne and Zpa, which is O(n2). Al-
though it brings additional costs, it also brings gains since
one may enumerate fewer subsets of ne(X,G∗). Let
|ne(X,G∗)| = m and |Zne| = k, then the computa-
tional gains are aboutO(2m−2m−k), which are generally
greater than the costs.

The Local Nature of CIDA In the main text, we claim
that our proposed CIDA is a ‘local’ algorithm and it keeps
the ‘local nature’ of IDA. The word of local was used
in Maathuis et al. (2009) to address that IDA does not
enumerate all DAGs or run Meeks rules (Meek, 1995),
which depends on an entire CPDAG, to check if a set can
be a possible parental set of a treatment X . Currently,
the methods of listing all DAGs in a Markov equivalence
class are called global, and the methods of running Meeks
rules are called semi-local (e.g., joint-IDA (Nandy et al.,
2017) and semi-local IDA (Perković et al., 2017)). In our
Algorithm 2, Meeks rules are not needed, and the global
structure is needed only once before the for-loop (lines
8-10). Thus, we say that Algorithm 2 is local.

The Maximality of Subtractable Sets Given a setW
of back-door adjustment sets, one may wondering whether
there is a maximal uniformly subtractable set Z fromW in
the sense that for any other uniformly subtractable set Z′

fromW , it holds that Z′ ⊆ Z. The answer to this question
is negative. Consider the CPDAG C → X ← A→ B →
Y and D → B. This CPDAG is also a DAG. Clearly,
{A,B} is a back-door adjustment set for the treatment X
and the response Y . LetW = {{A,B}}, thenW is uni-
formly collapsible overA orB but not both of them. How-
ever, ifW = {pa(X,G) | G ∈ [G∗] and Y /∈ pa(X,G)},
then the answer is yes. Studying the maximality of sub-
tractable sets is an interesting topic, and we will explore
it in future.

Efficiency Gains In the main text, we informally state
that uniformly collapsing adjustment sets could bring
efficiency gains. In fact, according to Andrea & Ezequiel
(2019, Lemma 2), if Z includes a subset of pa(X,G∗),
then uniformly subtracting Z has efficiency gains; if Z
does not include any node in pa(X,G∗), then in the multi-
set of possible causal effects, there is at least one estimate
has efficiency gains and one estimate has no efficiency
gains.
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Figure 6: Experimental results. The edge weights were sampled from Uniform([0.5, 2]).
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