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1 KERNELS

The kernel functions we use in this paper are the squared
exponential (SE) kernel, Matérn 5/2 kernel, and Matérn
3/2 kernel, respectively:
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where r = ‖x−x′ ‖2.

2 ACQUISITION FUNCTIONS

PI, EI, and UCB-κ have the closed forms:

ΛPI(x) = Φ(
y(x)− y∗

σ(x)
).

ΛEI(x) = (y(x)− y∗)Φ(
y(x)− y∗

σ(x)
)

+ σ(x)φ(
y(x)− y∗

σ(x)
).

ΛUCBκ(x) = µ(x) + κσ(x).

KG does not have a closed form. It is defined as the
expected value of the posterior minimum:

ΛKG(x) = Ey[µ∗(y|x)].

Where µ∗(y|x) is the value of the the posterior mean hav-
ing sampled y at x. The distribution of y is the posterior
distribution of the GP.

3 CONTROL VARIATES

The general idea behind control variates is to find a covari-
ate g(y) with known mean and negative correlation with
f(y). The quantity c(y) = f(y) + βg(y), known as a re-
gression control variate (RCV), is estimated, and then de-
biased afterwards. If Var[f(y)] = σf and Var[g(y)] = σg ,
then:

Var[c(y)] = σ2
f + β2σ2

g − 2βCov[f(y), g(y)].

The optimal value minimizing the variance of c(y) is thus:

β = Cov[f(y), g(y)]/σ2
h.

In practice, both Cov[f(y), g(y)] and σ2
h must be either

estimated from samples of f and g or computed a-priori.

In the case of k > 1 control variates, we consider a vector
of control variates g(y) = [g1(y), g2, . . . , gk(y)]T . Our
estimator will have the form c(y) = f(y) − βT g(y),
where β is an length k vector of constants. The optimal β
minimizing the variance of c(y) is:

β = Σ−1g ∗ σg,f ,

where Σg is the covariance matrix of g(y) and σg,f is the
vector of covariances between each variate and f(y).

4 NAS BENCHMARK

The NAS benchmark is a tabular benchmark containing
all possible hyperparameter configurations evaluated for
a two-layer multi-layer perceptron on different datasets.
The search space we consider is:

• Batch size in {8, 16, 32, 64}.

• Epochs in {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

• Layer 1 width in {16, 32, 64, 128, 256, 512}.



Figure 1: The classification error achieved by PS2 and PS4 is largely on par with, if not better than, the performance of
EI, KG, and UCB variants. The only exception is the Tele dataset.

Figure 2: The estimation errors of MC (red), QMC (green), and QMC combined with control variates (blue).

• Layer 2 width in {16, 32, 64, 128, 256, 512}.

The resulting search space is four-dimensional. We opti-
mize over the unit hypercube [0, 1]4 and scale and round
evaluation points to the corresponding NAS search space
entry. Note that the NAS benchmark contains other hyper-
parameters as well, which we set to the default. These in-
clude the activation functions (default: tanh), the dropout
(default: 0), the learning rate (default: 0.005), and the
learning rate schedule (default: cosine).

The datasets in the NAS benchmark are all classification
tasks taken from the UC Irvine repository for machine
learning datasets. We run our method on all four in the
NAS benchmark: Naval, Tele, Protein, and Splice. The
achievable classification error for each dataset is different,
so we compare methods by regret, which is defined as:

yinit − ybest
yinit

,

where yinit is the starting value during optimization and
ybest is the best observed value during iteration so far. For
each dataset, we run BO using EI, KG, UCB0, UCB2, and
our policy search methods for horizons 2 and 4, labeled
PS2 and PS4 respectively. We replicate BO runs 50 times.

In our main paper, we plotted the average regret among
the four datasets, and PS2 and PS4 beat the competing
methods. In this supplement, we plot the the individual
classification errors for further clarity in Figure 1. We
find the performance of both PS2 and PS4 performance
are largely on par with, if not better than, the performance
of EI, KG, and UCB variants.

5 ABLATION STUDY

Recall that we combine QMC and control variates to
achieve high levels of variance reduction in the resulting
Monte carlo estimator.

In Figure 2, we empirically measure the individual impact
of QMC and control variates. We roll out EI for horizons
2, 4, 6, and 8, and calculate the variance of estimators
for MC sample sizes in [100, 200, 300, . . . , 2000], using
50 trials each. We compare the Vanilla MC estimator,
a QMC estimator, and a QMC estimator that also uses
control variates. The underlying function is the Rastrigin
function. As we mentioned before, the effectiveness of
our control variates, which consist of myopic acquisition
functions, are less effective as h increases. As a whole,
QMC contributes to a greater drop in variance.
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