
Appendix

A Proof for Theorem 1

A.1 Notations

We start by defining some notations. For each time t, we define a random permutation (a⇤,t
1

, . . . ,a⇤,tK ) of A⇤ based on
At as follows: for any k = 1, . . . ,K, if atk 2 A⇤, then we set a⇤,tk = atk. The remaining optimal items are positioned
arbitrarily. Notice that under this random permutation, we have:

w̄(a⇤,tk ) ≥ w̄(atk) and Ut(a
t
k) ≥ Ut(a

⇤,t
k ) 8k = 1, 2, . . . ,K

Moreover, we use Ht to denote the “history” (rigorously speaking, σ-algebra) by the end of time t. Then both
At = (at

1

, . . . ,atK) and the permutation (a⇤,t
1

, . . . ,a⇤,tK ) of A⇤ are Ht−1

-adaptive. In other words, they are condition-
ally deterministic at the beginning of time t. To simplify the notation, in this paper, we use Et[·] to denote E[·|Ht−1

] when
appropriate.

When appropriate, we also use h·, ·i to denote the inner product of two vectors. Specifically, for two vectors u and v with
the same dimension, we use hu, vi to denote uTv.

A.2 Regret Decomposition

We first prove the following technical lemma:

Lemma 1. For any B = (b
1

, . . . , bK) 2 <K and C = (c
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Thus we have
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where equality (a) is based on Lemma 1 and inequality (b) is based on the fact that
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For any t  n and any e 2 E, we define event
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and ¯E as the complement of E . Then we have
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where inequality (a) is based on the law of total probability, and the inequality (b) is based on the naive bounds (1) P (E)  1
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Define Kt = min{Ct,K}, notice that
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Finally, from Cauchy-Schwarz inequality, we have that
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A.4 Bound on P (

¯E)
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Proof. We start by defining some useful notations. For any t = 1, 2, . . . , any k = 1, 2, . . . ,Kt, we define

⌘t,k = wt(a
t
k)− w̄(atk).

One key observation is that ⌘t,k’s form a Martingale difference sequence (MDS).6 Moreover, since ⌘t,k’s are bounded in
[−1, 1] and hence they are conditionally sub-Gaussian with constant R = 1. We further define that
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As we will see later, we define Vt and St to use the “self normalized bound” developed in [1] (see Algorithm 1 of [1]).
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Notice that the above inequality always holds. We now provide a high-probability bound on kStkV1
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Notice that det(V
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A.5 Conclude the Proof
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