
A Additional Proof Details

This section describes a functional boosting view of se-
lecting features for generalized linear models of one-
dimensional response. We then prove Lemma 3.3 and
Lemma 3.4 for this more general setting. These more gen-
eral results in turn extend Theorem 3.2 to generalized linear
models.

A.1 Functional Boosting View of Feature Selection

We view each feature f as a function hf that maps sam-
ple x to xf . We define fS : RD → R to be the best lin-
ear predictor using features in S, i.e., fS(x) , w(S)TxS .
For each feature dimension d ∈ D, the coefficient of d
is in w(S) is w(S)d = fS(ed), where ed is the dth di-
mensional unit vector. So ‖w(S)‖22 =

∑D
d=1 ‖fS(ed)‖22.

Given a generalized linear model with link function ∇Φ,
the predictor is E[y|x] = ∇Φ(wTx) for some w and the
calibrated loss is r(w) =

∑n
i=1(Φ(wTxi)− yiwTxi). Re-

placing fS(xi) = w(S)Txi, we have

r(w(S)) =

n∑
i=1

(Φ(fS(xi))− yifS(xi)). (13)

Note that the risk function in Equation 1 can be rewritten
as the following to resemble Equation 13:

R(S) = R[fS ] =
1

n

n∑
i=1

(Φ(fS(xi))− yTi fS(xi))

+
λ

2

D∑
d=1

‖fS(ed)‖22 +A, (14)

where φ(x) = 1
2x

2 for linear predictions and constant A =
1

2n

∑n
i=1 y

2
i . Next we define the inner product between two

functions f, h : RD → R over the training set to be:

〈f, h〉 , 1

n

n∑
i=1

f(xi)h(xi) +
λ

2

D∑
d=1

f(ed)h(ed). (15)

With this definition of inner product, we can compute the
derivative ofR:

∇R[f ] =

n∑
i=1

(∇Φ(f(xi))− yi)δxi +

D∑
d=1

f(ed)δed ,

(16)

where ∇φ(x) = x for linear predictions, and δx is an indi-
cator function for x. Then the gradient of objective F (S)
w.r.t coefficient wf of a feature dimension d can be written
as:

bSd = − 1

n

n∑
i=1

(∇Φp(w(S)Txi)− yi)xid − λw(S)d (17)

= −〈∇R[fS ], hd〉. (18)

In addition, the regularized covariance matrix of features C
satisfies,

Cij =
1

n
XT
i Xj + λI(i = j) = 〈hi, hj〉, (19)

for all i, j = 1, 2, ..., D. So in this functional boost-
ing view, Algorithm 1 greedily chooses group g that
maximizes, with a slight abuse of notation of 〈 , 〉,
‖〈hg,∇R[fS ]〉‖22/c(g), i.e., the ratio between similarity of
a feature group and the functional gradient, measured in
sum of square of inner products, and the cost of the group

A.2 Proof of Lemma 3.3 and Lemma 3.4

The more general version of Lemma 3.3 and Lemma 3.4 as-
sumes that the objective functionalR ism-strongly smooth
and M -strongly convex using our proposed inner product
rule. M -strong convexity is a reasonable assumption, be-
cause the regularization term ‖w‖22 =

∑D
d=1 ‖fS(ed)‖22

ensures that all loss functionalR with a convex Φ strongly
convex. In the linear prediction case, bothm andM equals
1.

The following two lemmas are the more general versions
of Lemma 3.3 and Lemma 3.4.

Lemma A.1. Let R be an m-strongly smooth functional
with respect to our definition of inner products. Let S and
G be some fixed sequences. Then

F (S)− F (G) ≤ 1

2m
〈bGG⊕S , C−1

G⊕Sb
G
G⊕S〉

Proof. First we optimize over the weights in S.

F (S)− F (G)

= R[fG]−R[fS ] = R[fG]−R[
∑
s∈S

αTs hs]

≤ R[fG]− min
w:wTi ∈Rdsi ,si∈S

R[
∑
si∈S

wTsihsi ]

Adding dimensions inGwill not increase the risk, we have:

≤ R[fG]− min
w:wi∈Rdsi ,si∈G⊕S

R[
∑

si∈G⊕S
wsihsi ]

Since fG =
∑
gi∈G αihgi , we have:

≤ R[fG]−min
w
R[fG +

∑
si∈G⊕S

wTi hsi ]

Expanding using strong smoothness around fG, we have:

≤ R[fG]−min
w

(R[fG] + 〈∇R[fG],
∑

si∈G⊕S
wTi hsi〉



+
m

2
‖
∑

si∈G⊕S
wTi hsi‖22)

= max
w
−〈∇R[fG],

∑
si∈G⊕S

wTi hsi〉 −
m

2
‖
∑

si∈G⊕S
wTi hsi‖22

= max
w
〈bGG⊕S , w〉 −

m

2
〈w,CG⊕Sw〉

Solving w directly we have:

F (S)− F (G) ≤ 1

2m
〈bGG⊕S , C−1

G⊕Sb
G
G⊕S〉

Lemma A.2. LetR be a M-strongly convex functional with
respect to our definition of inner products. Then

F (Gj)− F (Gj−1) ≥ 1

2M(1 + λ)
〈bGj−1
gj , bGj−1

gj 〉 (20)

Proof. After the greedy algorithm chooses some group gj
at step j, we form fGj =

∑
αi
αTi hgi , such that

R[fG] = min
αi∈Rdgi

R[
∑
gi∈Gj

αTi hgi ] ≤ min
β∈R

dgj

R[fGj−1
+βhgj ]

Setting β = arg min
β∈R

dgj
R[fGj−1 + βhgj ], using the

strongly convex condition at fGj−1
, we have:

F (Gj)− F (Gj−1)

= R[fGj−1 ]−R[fGj ] ≥ R[fGj−1 ]−R[fGj−1 + βhgj ]

≥ R[fGj−1 ]− (R[fGj−1 ] + 〈∇R[fGj−1 ], βhgj 〉

+
M

2
‖βhgj‖22)

= −〈∇R[fGj−1
], βhgj 〉 −

M

2
‖βhgj‖22

= 〈bGj−1
gj , β〉 − M

2
〈β,Cgjβ〉

≥ 1

2M
〈bGj−1
gj , C−1

gj b
Gj−1
gj 〉

=
1

2M(1 + λ)
〈bGj−1
gj , bGj−1

gj 〉

The last equality holds because each group is whitened, so
that Cgj = (1 + λ)I .

Note that the (1 + λ) constant is a result of group
whitening, without which the constant can be as large as
(Dgj + λ) for the worst case where all the Dgj number of
features are the same.

The proofs above for Lemma A.1 and A.2 are for
one-dimensional output responses. They can be easily
generalized to multi-dimensional responses by replacing
2-norms with Frobenius norms and vector inner-products
with “Frobenius products”, i.e., the sum of the products of
all elements.

A.3 Proof of Main Theorem

Given Lemma A.1 and Lemma A.2, the proof of
Lemma 3.1 holds with the same analysis with a more gen-
eral constant γ = mλmin(C)

M(1+λ) . The following prove our main
theorem 3.2.

Proof. (of Theorem 3.2, given Lemma 3.1) Define ∆j =
F (S〈K〉) − F (Gj−1). Then we have ∆j − ∆j+1 =
F (Gj)− F (Gj−1). By Lemma 3.1, we have:

∆j = F (S〈K〉)− F (Gj−1)

≤ K

γ
[
F (Gj)− F (Gj−1)

c(gj)
] =

K

γ
[
∆j −∆j+1

c(gj)
]

Rearranging we get ∆j+1 ≤ ∆j(1 − γc(gj)
K ). Unroll we

get:

∆L+1 ≤ ∆1

L∏
j=1

(1− γc(gj)

K
) ≤ ∆1(

1

L

L∑
j=1

(1− γc(gj)

K
))L

= ∆1(1− Bγ

LK
)L < ∆1e

−γ BK

By definition of ∆1 and ∆L+1, we have:

F (S〈K〉)− F (G〈B〉) < F (S〈K〉)e
−γ BK

The theorem follows and linear prediction is the special
case that m = M .


