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Abstract

We formalize decision-making problems in
robotics and automated control using continuous
MDPs and actions that take place over contin-
uous time intervals. We then approximate the
continuous MDP using finer and finer discretiza-
tions. Doing this results in a family of sys-
tems, each of which has an extremely large ac-
tion space, although only a few actions are “in-
teresting”. We can view the decision maker as
being unaware of which actions are “interesting”.
We an model this using MDPUs, MDPs with
unawareness, where the action space is much
smaller. As we show, MDPUs can be used as
a general framework for learning tasks in robotic
problems. We prove results on the difficulty of
learning a near-optimal policy in an an MDPU
for a continuous task. We apply these ideas to
the problem of having a humanoid robot learn on
its own how to walk.

1 INTRODUCTION

Markov decision processes (MDPs) are widely used for
modeling decision making problems in robotics and au-
tomated control. Traditional MDPs assume that the deci-
sion maker (DM) knows all states and actions. However,
in many robotics applications, the space of states and ac-
tions is continuous. To find appropriate policies, we typ-
ically discretize both states and actions. However, we do
not know in advance what level of discretization is good
enough for getting a good policy. Moreover, in the dis-
cretized space, the set of actions is huge. However, rela-
tively few of the actions are “interesting”. For example,
when flying a robotic helicopter, only a small set of actions
lead to useful flying techniques; an autonomous helicopter
must learn these techniques. Similarly, a humanoid robot
needs to learn various maneuvers (e.g., walking or running)
that enable it to move around, but the space of potential ac-
tions that it must search to find a successful gait is huge,

while most actions result in the robot losing control and
falling down.

Halpern, Rong, and Saxena [2010] (HRS from now
on) defined MDPs with unawareness (MDPUs), where a
decision-maker (DM) can be unaware of the actions in an
MDP. In the robotics applications in which we are inter-
ested, we can think of the DM (e.g., a humanoid robot) as
being unaware of which actions are the useful actions, and
thus can model what is going on using an MDPU.

In this paper, we apply MDPUs to continuous problems.
We model such problems using continuous MDPs, where
actions are performed over a continuous duration of time.
Although many problems fit naturally in our continuous
MDP framework, and there has been a great deal of work
on continuous-time MDPs, our approach seems new, and of
independent interest. (See the discussion in Section 5.) It
is hard to find near-optimal policies in continuous MDPs.
A standard approach is to use discretization. We use dis-
cretization as well, but our discrete models are MDPUs,
rather than MDPs, which allows us both to use relatively
few actions (the “interesting actions”), while taking into ac-
count the possibility of there being interesting actions that
the DM has not yet discovered. We would like to find a dis-
cretization level for which the optimal policy in the MDP
underlying the approximating MDPU provides a good ap-
proximation to the optimal policy in the continuous MDP
that accurately describes the problem, and then find a near-
optimal policy in that discretized MDPU.

HRS gave a complete characterization of when it is possi-
ble to learn to play near-optimally in an MDPU, extending
earlier work [Brafman and Tennenholtz 2002; Kearns and
Singh 2002] showing that it is always possible to learn to
play near-optimally in an MDP. We extend and generalize
these results so as to apply them to the continuous prob-
lems of interest to us. We characterize when brute-force
exploration can be used to find a near-optimal policy in
our setting, and show that a variant of the URMAX algo-
rithm presented by HRS can find a near-optimal policy. We
also characterize the complexity of learning to play near-
optimally in continuous problems, when more “guided” ex-
ploration is used. Finally, we discuss how MDPUs can be



used to solve a real robotic problem: to enable a humanoid
robot to learn walking on its own. In our experiment, the
robot learned various gaits at multiple discretization levels,
including both forward and backward gaits; both efficient
and inefficient gaits; and both gaits that resemble human
walking, and those that do not.

2 MDPU: A REVIEW

In this section, we review the definition of MDPU and the
results of HRS show that is possible for a DM to learn to
play near-optimally.

In the standard MDP model, we have a set of actions, and
states representing the complete set of actions and states
that are available to the Decision Maker (DM). Describing
a situation by a standard MDP misses out on some impor-
tant features. In general, an agent may not be aware of all
the actions that can be performed. For example, an agent
playing a video game may not be aware of all actions that
can be performed in a given state. Our model is compat-
ible with a number of interpretations of unawareness. In
the robotics setting, we take a particular concrete interpre-
tation. Here, the number of actions is typically extremely
large, but only a few of these actions are actually useful.
For example, although an autonomous helicopter can have
a huge number of actions, only a few are useful for flying
the helicopter, whereas the rest simply result in a crash. We
can abstract what is going on by defining a set of “useful
actions”. The DM may initial be unaware of many or even
most of the useful actions. A DM may become aware of a
useful action (and thus, can safely perform it) by perform-
ing a special action called the explore action, denoted a0.
Playing the explore action results in the DM learning about
new actions with some probability.

We thus take an MDPU to be a tuple M =
(S,A,A0, g, a0, g0, P,D,R),1 where the tuple
(S,A, g, P,R) is a standard MDP—that is, S is a set
of states, A is a set of actions, g(s) is the set of actions
available at state s, for each tuple (s, s′, a) ∈ S × S × A,
P (s, s′, a) gives the probability of making a transition
from s to s′ if action a is performed, and R(s, s′, a) gives
the reward earned by the DM if this transition is taken;
A0 ⊆ A is the set of actions that the DM initially knows
to be useful; a0 is the special explore action; g(s) ⊆ A
is the set of actions that can be performed at state s;
g0(s) ⊆ A0 ∩ g(s) is the set of actions that the DM is
aware of at state s; finally, D is the discovery probability
function. D(j, t, s) is the probability of discovering a
useful action given that there are j useful actions to be
discovered at state s, and a0 has already been played t− 1
times without discovering a useful action. Intuitively,

1The MDPU model in HRS also includes R+
i and R−i , which

are the reward (resp., penalty) functions for playing a0 and dis-
covering (resp., not discovering) a useful action. We omit them
here; they play no role in the theorems that we are citing, and
would only clutter our later presentation.

D describes how quickly the DM can discover a useful
action. We assume that D(j, t, s) is non-decreasing as
a function of j: the more useful actions there are to be
found, the easier we can find one. How D(j, t, s) varies
with t depends on the problem. In the sequel, we assume
for ease of exposition that D(j, t, s) is independent of s, so
we write D(j, t) rather than D(j, t, s). M ′ = (S,A, P,R)
is called the MDP underlying M .

Kearns and Singh [2002] and Brafman and Tennenholtz
[2002] have studied the problem of learning how to play
near-optimally in an MDP. Roughly speaking, to play near-
optimally means that, for all ε > 0 and δ > 0, we can
find a policy that obtains expected reward ε-close to that
of the optimal policy with probability at least 1 − δ. HRS
completely characterize the difficulty of learning to play
near-optimally in an MDPU. We briefly review the relevant
results here. Despite initially being unaware of some use-
ful actions, we want the DM to learn a policy that is near-
optimal in the underlying MDP. HRS showed that whether
a DM can learn to play optimally and how long it takes de-
pend on the value of D(1, t)—the probability of discover-
ing a new action given that there is a new action to discover
and the DM has tried t − 1 times in the past to discover a
new action.

The first result characterizes when it is impossible to learn
to play near-optimally. It turns out that the result holds
even if the DM has quite a bit of information, as made pre-
cise by the following definition.

Definition 2.1 Define a DM to be quite knowledgeable if
(in addition to S, D) she knows |A|, the transition function
P0, the reward function R0 for states in S and actions in
A0, and Rmax.

Another relevant concept that we need to define is the mix-
ing time. A policy π may take a long time to reach its
expected payoff. For example, if getting a high reward in-
volves reaching a particular state s∗, and the probability of
reaching s∗ from some state s is low, then the time to get
the high reward will be high. To deal with this, Kearns and
Singh [2002] argue that the running time of a learning al-
gorithm should be compared to the time that an algorithm
with full information takes to get a comparable reward.

Definition 2.2 Define the ε-return mixing time of policy π
to be the smallest value of T such that π guarantees an ex-
pected payoff of at least U(π) − ε; that is, it is the least T
such that U(s, π, t) ≥ U(π) − ε for all states s and times
t ≥ T .

The following theorem shows that if the discovery proba-
bility is sufficiently low, where “sufficiently low” means
D(1, t) < 1 for all t and

∑∞
t=1D(1, t) < ∞, then

the DM cannot learn to play near-optimally. We define
Ψ(T ) =

∑T
t=1D(1, t).

Theorem 2.3 If D(1, t) < 1 for all t and Ψ(∞) < ∞,



then there exists a constant c such that no algorithm can
obtain a reward that is guaranteed to be within c of optimal
for an MDPU M = (S,A,A0, G, aog0, P,D,R), even if
S, |A|, and a bound on the optimal reward are known.

Theorem 2.3 says that when Ψ(∞) < ∞, it is impossible
for the DM to learn an optimal policy. On the other hand,
if Ψ(∞) = ∞, then it is possible to learn to play near-
optimally. HRS present an algorithm called URMAX, a
variant of the RMAX algorithm [Brafman and Tennenholtz
2002], that learns near-optimal play.

Theorem 2.4 If Ψ(∞) = ∞, then the URMAX algorithm
computes a near-optimal policy.

In fact, we can say even more. If Ψ(∞) = ∞, then the ef-
ficiency of the best algorithm for determining near-optimal
play depends on how quickly Ψ(∞) diverges. HRS char-
acterize the running time of URMAX in terms of the func-
tion Ψ, and give lower bounds on the time required to learn
near-optimally in terms of Ψ. These results show that UR-
MAX learns to play near-optimally almost as quickly as
possible. Specifically, it learns a policy with an expected
reward ε-close to the optimal reward with probability 1− δ
in time polynomial in |S|, |A|, 1/ε, 1/δ, a bound Rmax on
the optimal reward, the ε-return mixing time, and the small-
est T such that Ψ(T ) ≥ ln(4N/δ), whenever it is possible
to do so. The polynomial-time results are summarized in
the next result.

Theorem 2.5 It is possible to learn to play near-optimally
in polynomial time iff there exist constantsm1 andm2 such
that Ψ(T ) ≥ m1 ln(T ) + m2 for all T > 0. Moreover, if
it is possible to learn to play near-optimally in polynomial
time, URMAX does so.

3 ANALYZING ROBOTIC PROBLEMS
AS MDPUS

As we said in the introduction, we apply the MDPU frame-
work to robotic problems such as having a humanoid robot
learn to walk. For such problems, we typically have a
continuous space of states and actions, where actions take
place in continuous time, and actions have a nontrivial du-
ration.

Suppose that the original continuous problem can be char-
acterized by a continuous MDP M∞ (defined formally be-
low). We would like to find a “good” discretization M of
M∞. “Good” in this setting means that an optimal pol-
icy for M is ε-optimal for M∞, for some appropriate ε.2

Clearly the level of discretization matters. Too coarse a dis-
cretization results in an MDP whose optimal policy is not ε-
optimal forM∞; on the other hand, too fine a discretization

2A policy π is ε-optimal for an MDP M if the expected aver-
age reward for a policy for M is no more than ε greater than the
expected average reward of π.

results in the problem size becoming unmanageably large.
For example, in order to turn a car on a smooth curve (with-
out drifting), the optimal policy is to slowly turn the steer-
ing wheel to the left and back, in which the action varies
smoothly over time. This can be simulated using a rela-
tively coarse discretization of time. However, in order to
make a sharp turn using advanced driving techniques like
drifting, the steering wheel needs to be turned at precise
points in time, or else the car will go into an uncontrollable
spin. In this case, a fine discretization in time is needed.

Unfortunately, it is often not clear what discretization level
to use in a specific problem. Part of the DM’s problem is to
find the “right” level of discretization. Thus, we describe
the problem in terms of a continuous MDP M∞ and a se-
quence ((M1,M

′
1), (M2,M

′
2), . . .), whereMi is an MDPU

with underlying MDP M ′i , for i = 1, 2, . . .. Intuitively,
(M ′1,M

′
2,M

′
3, . . .) represents a sequence of finer and finer

approximations to M∞.

Continuous Time MDP with Continuous Actions over
Time: To make this precise, we start by defin-
ing our model of continuous MDPs. Let M∞ =
(S∞, A∞, g∞, P∞, R∞). S∞ is a continuous state space,
which we identify with a compact subset of IRn for some
integer n > 0; that is, each state can be represented by a
vector (s1, · · · , sn) of real numbers. For example, for a hu-
manoid robot, the state space can be described by a vector
which includes the robot’s (x, y, z) position, and the cur-
rent positions of its movable joints.

Actions: Describing A∞ requires a little care. We assume
that there is an underlying set of basic actions AB , which
can be identified with a compact subset of IRm for some
m > 0; that is, each basic action can be represented by a
vector (a1, · · · , am) of real numbers. For example, for a
humanoid robot, the basic actions can be characterized by
a tuple that contains the targeted positions for its movable
joints. However, we do not take A∞ to consist of basic
actions. Rather, an action is a path of basic actions over
time. Formally, an action in A∞ is a piecewise continuous
function from a domain of the form (0, t] for some t > 0
to basic actions. Thus, there exist time points t0 < t1 <
. . . < tk with t0 = 0 and tk = t such that a is continuous
in the interval (tj , tj+1] for all j < k. The number t is the
length of the action a, denoted |a|. We use left-open right-
closed intervals here; we think of the action in the interval
(tj , tj+1] as describing what the DM does right after time
tj until time tj+1. By analogy with the finite case, g∞(s)
is the set of actions in A∞ available at s.

Reward and Transition Functions: We now define R∞
and P∞, the reward and transition functions. In a discrete
MDP, the transition function P and reward function R take
as arguments a pair of states and an action. Thus, for ex-
ample, P (s1, s2, a) is the probability of transitioning from
s1 to s2 using action a, and R(s1, s2, a) is the reward the
agent gets if a transition from s1 to s2 is taken using ac-
tion a. In our setting, what matters is the path taken by



a transition according to a. Thus, we take the arguments
to P∞ and R∞ to be tuples of the form (s1, sc, a), where
s1 is a state, a is an action in A∞ of length t, and sc is
a piecewise continuous function from (0, t] to S∞. Intu-
itively, sc describes a possible path of states that the DM
goes through when performing action a, such that before a
starts, the DM was at s1.3 Note that we do not require that
limt→0+ sc(t) = s1. Intuitively, this means that there can
be a discrete change in state at the beginning of an inter-
val. This allows us to capture the types of discrete changes
considered in semi-MDPs [Puterman 1994].

We think of R∞(s1, sc, a) as the reward for transitioning
from s1 according to state path sc via action a. We assume
that R∞ is bounded: specifically, there exists a constant c
such that R∞(s1, sc, a) < c · |a|. For state s1 ∈ S∞ and
action a ∈ A∞, we take P∞(s1, ·, a) to be a probability
density function over state paths of length |a| starting at s1.
P∞ is not defined for transitions starting at terminal states.

We require R∞ and P∞ to be continuous functions,
so that if (si, s

i
c, ai) approaches (s, sc, a) (where all the

state sequences and actions have the same length t), then
R∞(si, s

i
c, ai) approachesR∞(s, sc, a) and P∞(si, s

i
c, ai)

approaches P∞(s, sc, a). To make the notion of “ap-
proaches” precise, we need to consider the distance
between state paths and the distance between actions.
Since we have identified both states (resp., basic ac-
tions) with subsets of IRn (resp., IRm), this is straight-
forward. For definiteness, we define the distance be-
tween two vectors in IRn using the L1 norm, so that
d(~p, ~q) =

∑n
1 |pi − qi|. For actions a and a′ in A∞ of

the same length, define d(a, a′) =
∫ |a|
t=0

d(a(t), a′(t))dt.
For state paths sc and s′c of the same length, de-
fine d(sc, s

′
c) =

∫ |sc|
t=0

d(sc(t), s
′
c(t))dt. Finally, define

d((sc, a), (s′c, a
′)) = d(sc, s

′
c)+d(a, a′). This definition of

distance allows us to formalize the notion of continuity for
R∞ and P∞. The key point of the continuity assumption is
that it allows us to work with discretizations, knowing that
they really do approximate the continuous MDP.

Constraints on Actions: We typically do not want to take
A∞ to consist of all possible piecewise continuous func-
tions. For one thing, some hardware and software restric-
tions will make certain functions infeasible. For example,
turning a steering wheel back and forth 1020 times in one
second can certainly be described by a continuous function,
but is obviously infeasible in practice. But we may want to
impose further constraints on A∞ and g∞(s).

In the discussion above, we did not place any constraints
on the length of actions. When we analyze problems of
interest, there is typically an upper bound on the length of
actions of interest. For example, when playing table ten-
nis using a robotic arm, the basic actions can be viewed as

3We are thus implicitly assuming that the result of perform-
ing a piecewise continuous action must be a piecewise continuous
state path.

tuples, describing the direction of movement of the racket,
the rotation of the racket, and the force being applied to
the racket; actions are intuitively all possible control se-
quences of racket movements that are feasible according to
the robot’s hardware and software constraints; this includes
slight movements of the racket, strokes, and prefixes of
strokes. An example of a piecewise continuous action here
would be to move the racket forward with a fixed force for
some amount of time, and then to suddenly stop applying
the force when the racket is close to the ball. We can bound
the length of actions of interest to the time that a ball can
be in the air between consecutive turns.

Awareness: Even with the constraints discussed above,
A∞ is typically extremely large. Of course, not all actions
in A∞ are “useful”. For instance, in the helicopter exam-
ple, most actions would crash the helicopter. We thus con-
sider potentially useful actions. (We sometimes call them
just useful actions.) Informally, an action is potentially use-
ful if it is not useless. A useless action is one that either
destroys the robot, or leaves it in an uncontrollable state,
or does not change the state. For example, when flying a
helicopter, actions that lead to a crash are useless, as are ac-
tions that make the helicopter lose control. More formally,
given a state s, the set of useful actions at state s are the
actions that transit to a different state in which the robot
is neither destroyed nor uncontrollable. Note that an ac-
tion that crashes the helicopter in one state may not cause
a crash in a different state. For robotics applications, we
say that a robot is aware of an action if it identifies that
action as a potentially useful action, either because it has
been preprogrammed with the action (we are implicitly as-
suming that the robot understands all actions with which it
has been programmed) or it has simulated the action. For
example, a humanoid robot that has been pre-programmed
with only simple walking actions, and has never tried run-
ning or simulated running before, would be unaware of run-
ning actions. Let Ā∞ denote the useful actions in A∞, and
let Ā∞0 denote the useful actions that the robot is initially
aware of. (These are usually the actions that the robot has
been pre-programmed with.)

Discretization: We now consider the discretization of
M∞. We assume that, for each discretization level i, S∞ is
discretized into a finite state space Si andAB is discretized
into a finite basic action space ABi, where |S1| ≤ |S2| ≤
. . . and |AB1| ≤ |AB2| ≤ . . .. We further assume that,
for all i, there exists di > 0, with di → 0, such that for
all states s ∈ S∞ and basic actions aB ∈ AB , there ex-
ists a state s′ ∈ Si and a basic action aB′ ∈ ABi such
that d(s, s′) ≤ di, and d(aB , a

′
B) ≤ di. Thus, we are as-

suming that the discretizations can give closer and closer
approximations to all states and basic actions. At level i,
we also discretize time into time slices of length ti, where
T ≥ t1 > t2 > . . ..Thus, actions at discretization level
i are sequences of constant actions of length ti, where a
constant action is a constant function from (0, ti] to a sin-



gle basic action.4 In other words, the action lengths at dis-
cretization level i are multiples of ti. Thus, at discretization
level i, there are

∑bT/tic
l=1 |ABi|l possible actions. To see

why, there are |ABi| discrete actions at level i, and action
lengths must be multiples of ti. Thus, action lengths must
have the form lti for some l ≤ bT/tic. There are |ABi|l

actions of length l × ti at level i, and thus
∑bT/tic
l=1 |ABi|l

actions at level i. LetA′i consist of this set of actions. (Note
that some actions in A′i may not be in A∞, since certain
action sequences might be infeasible due to hardware and
software constraints.) Let Ai ⊆ A′i be the set of useful
actions at level i.

Let Mi be the MDPU where Si and Ai are defined above;
A∞0 is the set of useful actions that the DM is initially
aware of; g(s) is the set of useful actions at state s; g0(s)
is the set of useful actions that the DM is aware of at
state s; and the reward function Ri is just the restric-
tion of R∞ to Ai and Si. For s1 ∈ Si and a ∈ Ai,
we take Pi(s1, ·, a) to be a probability distribution over
Q
|a|
i , the set of state paths of length |a| that are piece-

wise constant and each constant section has a length that
is a multiple of ti. For a state path sc ∈ Q

|a|
i , let

Pi(s1, sc, a) be the normalized probability of traversing a
state sequence that is within distance di of state sequence
sc when playing action a starting from state s1. Formally,
Pi(s1, sc, a) = (

∫
{s′c:d(sc,s′c)≤di}

dP∞(s1, ·, a))/c, where
c =

∑
sc∈Q|a|i

∫
{s′c:d(sc,s′c)≤di}

dP∞(s1, ·, a) is a normal-
ization constant. Since the robot is not assumed to know all
useful actions at any specific discretization level, it needs
to explore for the useful actions it wasn’t aware of. Finally,
given a specific exploration strategy, Di(j, t) describes the
probability of discovering a new useful action at discretiza-
tion level i, given that there are j undiscovered useful ac-
tions at level i, and the robot has explored t times without
finding a useful action. We model exploration using a0;
every time the robot explores, it is playing a0.

It remains to define the discretization of an action in A0. In
order to do this, for a ∈ A∞, define ai ∈ Ai to be a best ap-
proximation to a in level i if |ai| is the largest multiple of ti
that is less than or equal to |a|, and

∫ (|ai|)
0

d(a(t), ai(t))dt
is minimal among actions a′ ∈ A of length |ai|. Intuitively,
ai is an action in Ai whose length is as close as possible to
that of a and, among actions of that length, is closest in dis-
tance to a. The action ai is not unique. For a ∈ A0, define
its discretization at level i to be a best approximation to a
at that level. When there are several best approximations,
we choose any one of them.

Policies: As usual, a policy π inMi is a function from Si to
Ai. We want to computeUMi

(s, π, t), the expected average
reward over time t of π started in state s ∈ Si. Let aj ∈ Ai
and scj be a state sequence in Q

|aj |
i , for j = 0, . . . , l.

4Note that we are not assuming that the action space Ai+1

is a refinement of Ai (which would further require ti+1 to be a
multiple of ti).

Say that a sequence ((a0, sc0), (a1, sc1), · · · , (al, scl)) is a
path compatible with policy π starting at s if π(s) = a0
and π(scj(|aj |)) = aj+1 for all 0 ≤ j ≤ l − 1. Let
Iπs,t consist of all paths ((a0, sc0), (a1, sc1), · · · , (al, scl))
starting at s compatible with π such that

∑l
j=0 |aj | ≤

t <
∑l+1
j=0 |aj |, where al+1 = π(scl(|al|)). Essentially,

when computing UMi(s, π, t), we consider the expected re-
ward over all maximally long paths that have total length
at most t. Thus, UMi

(s, π, t) =
∑
p∈Iπs,t

P ∗i (p)
R∗i (p)
t ,

where, given a path p = ((a0, sc0), (a1, sc1), · · · , (al, scl)),
P ∗i (p) = Πl

j=0Pi(scj(0), scj , aj), and R∗i (p) =∑l
j=0Ri(scj(0), scj , aj).

Now that we have defined the average reward of a policy
at discretization level i, we can define the average reward
of a policy in M∞. Given a discretization level i, let πi
be a projection of π∞ at level i, defined as follows: for
each si ∈ Si, define πi(si) to be an action ai ∈ Ai such
that ai is a best approximation to π(si) at level i, as de-
fined above. As mentioned, there might be several best
approximations; ai is not unique. Thus, the projection is
not unique. Nevertheless, we define UM∞(s, π∞, t) to be
limi→∞ UMi(s, πi, t), where πi is a projection of π to dis-
cretization level i. The continuity of the transition and re-
ward functions guarantees that the limit exists and is inde-
pendent of the choice of projections.

We now consider how the URMAX algorithm of Section 2
can be applied to learn near-optimal policies. We use
URMAX at each discretization level. Note that URMAX
never terminates; however, it eventually learns to play near-
optimally (although we may not know exactly when). The
time it takes to learn to play near-optimally depends on
the exploration strategy. The next theorem consider brute-
force searching, where, at discretization level i, at each dis-
cretization level i, all actions in A′i are exhaustively exam-
ined to find useful actions. (The proof of this and all other
theorems can be found in the supplementary material.)

Theorem 3.1 Using brute-force exploration, given α > 0
and 0 < δ < 1, we can find an α-optimal policy in M∞
with probability at least 1− δ in time polynomial in l, |A′l|,
|Sl|, 1/α, 1/δ,Rlmax, and T l, where l is the least i such that
the optimal policy for M ′i is (α/2)-optimal for M∞, Rlmax

is the maximum reward that can be obtained by a transition
in M ′l , and T l is the ε-return mixing time for M ′l .

Although brute-force exploration always learns a near-
optimal policy, the method can be very inefficient, since
it exhaustively checks all possible actions to find the use-
ful ones. Thus, at discretization level i, it needs to check∑bT/tic
l=1 |ABi|l actions, and as i grows, the method soon

becomes impractical. On the other hand, the result is of
some interest, since it shows that even when there are in-
finitely many possible levels of discretizations, a method as
simple as brute-force exploration suffices.

When the number of possible actions is huge, the probabil-



ity of finding a potentially useful action can be very low.
In this case, making use of an expert’s knowledge or imi-
tating a teacher’s demonstration can often greatly increase
the probability of finding a useful action. We abstract the
presence of an expert or a teacher by assuming that there is
some constant β > 0 such that D(1, t) ≥ β for all t. In-
tuitively, the presence of a teacher or an expert guarantees
that there is a minimal probability β such that, if there is a
new action to be found at all, then the probability of finding
it is at least β, no matter how many earlier failed attempts
there have been at finding a useful action. For example,
Abbeel and Ng (2005) study the problem of robotic heli-
copter flying. They assume that they have a teacher that
will help demonstrate how to fly. Their assumptions imply
that there is a constant β > 0 such that D(1, t) ≥ β.5

Using apprentice learning lets us improve Theorem 3.1 by
replacing the |A′l| component of the running time by |Al|;
thus, with apprentice learning, the running time depends
only on the number of useful actions, not the total number
of potential actions. The savings can be huge.

Theorem 3.2 Using an exploration method where
Di(1, t) ≥ β for all i, t > 0 (where β ∈ (0, 1) is a
constant), for all α > 0 and 0 < δ < 1, we can find an
α-optimal policy in M∞ with probability at least 1 − δ in
time polynomial in l, |Al|, |Sl|, 1/β, 1/α, 1/δ, Rmax, and
T l, where l is the smallest i such that the optimal policy
for M ′i is (α/2)-optimal to M∞, Rlmax is the maximum
reward that can be obtained by a transition in M ′l , and T l

is the ε-return mixing time for M ′l .

4 HUMANOID ROBOT WALKING

We consider the problem of a humanoid robot with 20 joint
motors (which we sometimes call just “joints”) learning to
walk on its own. More precisely, we require the robot to
move from the center of an arena to its boundary; we take
any reasonable motion to be “walking”. (Figure 1 shows
the robot and the arena in which it must walk.)

4.1 The continuous MDP

We start by defining a continuous M∞ for the robot prob-
lem. A state s ∈ S∞ is of the form s = (w1, · · · , w23) ∈
IR23, where (w1, w2, w3) give the position of the robot’s
center of mass and (w4, · · · , w23) are the current positions
of the robot’s 20 joint motors. We define the domain of

5Specifically, if we take a flight with reward ε-close to
the flight demonstrated by the teacher to be a useful action,
and take a0 be the process of performing h iterations of the
main loop in their algorithm, where h = 64HRmax

ε
(2 +

c log 64H2Rmax|S|3|A|
ε

), then the probability of finding a use-

ful action is at least 1 − e
ε

(1+c)32HRmax , where c =
162H2R2

max|S|
3|A|

4ε2
; H is the horizon, so that the procedure must

terminate after H steps; Rmax is the maximum reward; |S| is the
number of states; and |A| is the number of actions.

Figure 1: The arena with the robot at the center; and the
robot.

each dimension as follows: since the radius of the arena
is 5 meters, w1, w2 ∈ [−5, 5]; since the robot’s height is
0.454 meters, w3 ∈ [0, 0.4] (we do not expect the robot’s
center of mass to be higher than 0.4). Each joint mo-
tor has its specific range of mobility, which determines
the domain of the corresponding dimension. For example,
w5 ∈ [−3.14, 2.85] represents the current position of the
robot’s left shoulder. The mobility range for all joint mo-
tors are intervals in [−π, π].

The basic actions a ∈ AB are of the form a =
(v1, · · · , v20) ∈ IR20, where vi is the target position for
the robot’s ith joint motor. The domain of each dimension
is the mobility range for the corresponding joint motor. For
example, v2, which corresponds to the left shoulder, has
mobility range [−3.14, 2.85]; v2 = 2.85 means to move
the robot’s left shoulder forward as far as possible. Since
walking is composed of repeated short movements that are
typically no longer than half a second, we set T = 0.512
seconds. Thus, A∞, the set of useful actions, consists of
piecewise continuous functions that map from time to basic
actions and comply with the robot’s hardware and software
limitations, of length t < 0.512 seconds.

We now define R∞ and P∞. Intuitively, the robot
obtains a reward for gaining distance from the cen-
ter of the arena. If the coordinates of the center
of the arena are given by s0 = (s0[1], s0[2]), then
R∞(s1, sc, a) = dis(s0, sc(|a|)) − dis(s0, s1), where
dis(s0, s1) =

√
(s0[1]− s1[1])2 + (s0[2]− s1[2])2 is the

L2-norm distance between s0 and s1 on the (x, y)-plane.
The reward could be negative, for example, if the robot
moves back towards the center of the arena.

By definition, P∞(s1, ·, a) is a probability distribution over
state sequences of length |a| starting at s1. For example, if
the robot slowly moves its right leg forward while staying
balanced, the state path taken by the robot is a determin-
istic path. On the other hand, if a is the action of turn-
ing around quickly, P∞(s, ·, a) is distribution over various
ways of falling down.

4.2 Discretizations

We now define Mi and M ′i . In our experiments we con-
sidered only levels 2 and 3 (level 1 is uninteresting since



it has just one state and one action), so these are the only
levels that we describe in detail here. (These turn out to
suffice to get interesting walking behaviors.) At these lev-
els, we discretized more finely the joints corresponding to
the left and right upper and lower leg joints and the left and
right ankle joints, since these turn out to be more critical
for walking. (These are components (w14, · · · , w19) in the
state tuples and (v11, · · · , v16) in basic-actions tuples.) We
call these the relevant dimensions. We assume that the six
relevant state and actions components have i possible val-
ues at level i, for i = 2, 3, as does w3, since this describes
how high off the ground the robot is (and thus, whether or
not it has fallen). All other dimensions take just one value.
We took t2 = t3 to be 128ms. Since T = 0.512s, an action
contains at most bT/tic = 4 basic actions.

A∞0 is the set of preprogrammed actions. We preprogram
the robot with a simple sitting action that lets the robot
slowly return to its initial sitting gesture. When we con-
sider apprenticeship learning, we also assume that the robot
is preprogrammed with a “stand-up” action, that enables it
to stand up from its initial sitting position. (Intuitively, we
are assuming that the expert taught the robot how to stand
up, since this is useful after it has fallen.)

A′i is the set of potential actions at level i. Given our
assumptions, for i = 2, 3, at level i, there are (i6)4

potential actions (there are i possible values for each
of the six relevant dimensions, and each action is a se-
quence of four basic actions). Thus, at level 3, there are
(36)4 =282,429,536,481 potential actions. As we men-
tioned, a useful action is an action that moves the robot
without making it lose control. Here, an action is useful
if it moves the robot without resulting in the robot falling
down. At both levels 2 and 3, more than 80 useful actions
were found in our experiments. The most efficient action
found at level 3 was one where the right leg moves back-
wards, immediately followed by the left leg, in such a way
that the robot maintains its balance at all times. By way
of contrast, turning the body quickly makes the robot lose
control and fall down, so is useless.

For s1 ∈ Si, a ∈ Ai, and sc ∈ Q
|a|
i , Pi(s1, sc, a) is the

normalized probability of traversing a state sequence that
is di close to sc, a sequence of states in Si, where we de-
fine di = 12π

i + 28π + 20.4. So di decreases in i, and dis-
cretizations at a higher level better approximate the contin-
uous problem. All basic actions in AB are within distance
di of a basic action in ABi and all states in S are within di
of a state in Si. Let s ∈ S, and let si be the closest state to
s in Si. It is easy to check that d(s, si) ≤ di for i = 2, 3.

The Di function depends on the exploration method used
to discover new actions. In our experiment, we used
two exploration methods: brute-force exploration and
apprenticeship-learning exploration.

At discretization level i, using brute-force exploration, we
have Di(|Ai|, t) = |Ai|

|A′
i
| , since there are |Ai| useful actions

and |A′i| potential actions, and we test an action at random.
With apprenticeship learning, we used following hints from
a human expert to increase the probability of discovering
new actions: (a) a sequence of moving directions that, ac-
cording to the human expert, resembles human walking;6

(b) a preprogrammed stand-up action; (c) the information
that an action that is symmetric to a useful action is also
likely to be useful (two actions are symmetric if they are ex-
actly the same except that the target values for the left joints
and those for the right joints are switched). We also use a
different discretization: the ankle joint was discretized into
10 values. The human expert suggests more values in the
ankle joints because whether or not the robot falls depends
critically on the exact ankle joint position. These hints were
provided before the policy starts running; the discretization
levels are set then too. There were no further human-robot
interactions.

4.3 Experiments

For our experiments, we simulated DARwIn OP, a com-
mercially available humanoid robot. The simulations were
conducted on Webots PRO platform 8.2.1 using a Mac-
Book Pro with 2.8GHz Intel Core i7 Processor, 16GB 1600
MHz DDR3 memory, 0.5TB Flash Storage Mac HD, on OS
X Yosemite 10.10.5. We modeled the robot walking prob-
lem as an MDPU, and implemented the URMAX algorithm
to solve the problem using programming language Python
2.7.7.

As we said, given the number of actions involved, we con-
ducted experiments only for discretization level 2 and 3.
Both sufficed to enable the robot to learn to walk, using a
generous notion of “walk”—more precisely, they sufficed
to enable the robot to learn to locomote to the boundary of
the arena. As mentioned, two exploration methods were
used: brute-force exploration and apprenticeship-learning
exploration. One trial was run for brute-force exploration at
each of levels 2 and 3, and one trial was run for apprentice-
ship learning at level 2. Each trial took 24 hours. More than
15 stable gaits were found in total, where a gait is stable if
it enables the robot to move from the center of the arena to
the boundary without falling. In addition, more than 400
useful actions were found. The best gait among all stable
gaits achieved a velocity of 0.084m/s, which seems reason-
able, given that the best known walking speed of DARwIn-
OP is 0.341m/s [Budden et al. 2013]. Given more time to
experiment, we would expect the performance to improve
further.

The robot successfully learned gaits of various styles, in-
cluding both forward and backward gaits (see Figures 2 and
3), both efficient and inefficient gaits, gaits that resemble
human walking and the ones that do not. Somewhat sur-
prisingly, the best gait actually walks backwards. (Videos

6The sequence gives directions only for certain joints, with-
out specific target values, leaving the movement remaining joints
open for experimentation.



Brute-force
(level 2)

Brute-force
(level 3)

Apprenticeship
learning (level 2)

|Si| 130 1460 3200
|ABi| 64 729 1600
|Ai| 16777216 282429536481 6553600000000
ti (ms) 124 124 124
Length of
action (ms) 496 496 496

Execution
time (hours) 24 24 24

Best avg rwd
(m/action) 0.043486 0.067599 0.083711

Num of useful
actions found 131 89 180

Table 1: Performance comparisons.

Figure 2: A backward gait (from left to right).

of some of the gaits and a demo of the learning process
can be found at https://youtu.be/qW51iInpdV0.) As shown
in Table 1, as the discretization level increases, both the
velocity of the best gait and the number of useful actions
found increase. This agrees with the expectation that finer
discretization better approximates the continuous problem,
and thus gets an expected reward closer to the optimal re-
ward of the continuous problem. Apprenticeship learning
resulted in more useful actions than the brute-force explo-
ration and in gaits with a higher average reward. Again,
this is hardly surprising; the hints provided by the human
expert increases the probability of finding useful actions.
On the other hand, when the expert gives “bad” hints, the
robot performs worse than with brute-force exploration.

With regard to comparisons under the same setting, we
implemented two baseline comparisons for bipedal walk-
ing. The first tries random sequences of actions; the sec-
ond searches for useful actions and then repeats each use-
ful action in an attempt to find stable gaits. (The motiva-
tion for repeating actions is that human-like walking is in
fact a rhythmic/cyclic movement of a repeated action.) Us-
ing the same setting as our experiments with URMAX, the
first baseline found no stable gait in 24 hours, and the max-
imum distance the robot traveled before falling down was
0.342 meters; the second baseline found one stable gait in
24 hours, and the maximum distance traveled was 5 me-
ters (the maximum distance possible from the center of the

Figure 3: A forward gait (from left to right).

arena to the boundary) with a speed of 0.0058 m/s. Our ap-
proach found several stable gaits at each discretization level
and the distance traveled using each stable gait is 5 meters
with a maximum speed of 0.083m/s (10 times better than
the second baseline).

Our approach, using MDPUs, requires no knowledge on
the kinematics of the robot other than the number of joints
and the moving range of each joint. Moreover, it makes no
assumptions about the moving pattern of the resulting gait;
for example, we do not assume that a gait must be cyclic,
or symmetric between left and right joints, nor do we spec-
ify the length of a gait. Although we do specify the length
of a useful action, a gait could be composed of a single or
multiple useful actions. Given the few assumptions and lit-
tle prior knowledge assumed, the performance of the robot
seems quite reasonable. More importantly, the experiment
proves that the use of MDPUs enables the robot to learn
useful new maneuvers (walking, in this case) by itself, with
minimum human input.

5 RELATED WORK

There has been work on optimal policy learning in MDPs
using computational resources. Kearns and Singh’s [2002]
E3 algorithm guarantees polynomial bounds on the re-
sources required to achieve near-optimal return in gen-
eral MDPs; variants and extensions of this work can be
found in [Brafman and Tennenholtz 2002; Kakade et al.
2003; Kearns and Koller 1999]. However, algorithms such
as E3 usually require the exploration of the entire MDP
state/action space. This becomes impractical in our setting,
where the number of actions is extremely large. In such
cases, several exploration methods have been employed
to help find useful actions. For example, Abbeel and Ng
[2005] utilize a teacher demonstration of the desired task
to guide the exploration; Dearden et al. [1999] utilize the
value of information to determine the sequence of explo-
ration. Guestrin et al. [2002] make use of approximate
linear programming, and focus on exploring states that di-
rectly affect the results of the planner; Kakade et al. [2003]
proved that in certain situations, the amount of time re-
quired to compute a near-optimal policy depends on the
covering number of the state space, where, informally, the
covering number is the number of neighborhoods required
for accurate local modeling; Other papers (e.g., [Dean et al.
1998; Hauskrecht et al. 1998]) consider MDPs with large
action spaces.

We are far from the first to consider MDPs with continuous
time. For example, semi-MDPs (SMPDs) and continuous-
time MDPs have continuous time [Puterman 1994]. How-
ever, these models have discrete actions that can be taken
instantaneously, and do not consider continuous actions
taken over some duration of time. In Markov decision drift
processes [Hordijk and Van der Duyn Schouten 1984], the
state does not have to stay constant between successive ac-
tions (unlike an SMDP), and can evolve in a determinis-



tic way according to what is called a drift function. But
Markov decision drift processes do not have actions with
probabilistic outcomes that take place over an interval of
time. Hordijk and van der Duyn Schouten [1984] make
significant use of discrete approximations to compute opti-
mal policies, just as we do. There has also been work on
MDPs with continuous state space and action space (e.g.,
[Antos and Munos 2007; Feng et al. 2004]), but with dis-
crete time. For our applications, we need time, space, and
actions to be continuous; this adds new complications. In
control theory, there are methods for controlling continu-
ous time systems where system transitions are linear func-
tion of state and time [Zinober 1989]. These can be ex-
tended to non-linear systems [Khalil 2002]. However, the
transitions in these systems are usually deterministic, and
they do not deal with rewards or policies. Sutton, Precup,
and Singh [1999] consider high-level actions (which they
call options) that are taken over a duration of time (such as
“opening a door”), but they view time as discrete, which
significantly simplifies the model. Rachelson, Garcia, and
Fabiani [2008] consider continuous actions over some time
interval, however, they assume there are decision epochs,
which are the only time points where rewards are consid-
ered. In our model, the rewards depend on the entire state
sequence that the system traverses through while an action
is taken. While this makes the model more complicated, it
seems more appropriate for the problems of interest to us.

There has also been a great deal of work on bipedal robot
walking, since it is a fundamental motor task for which bi-
ological systems significantly outperform current robotic
systems [Tedrake et al. 2005]. There have been three main
approaches for solving the task:

• The first approach describes the kinematics of the
robot in detail using non-linear and linear equation
systems, then solves these systems to obtain desirable
trajectories. See, for example, [Huang et al. 2001;
Gonalves and Zampieri 2006; Kajita et al. 2003; Kim
et al. 2007; Strom et al. 2010; Xue et al. 2012].

• The second approach uses genetic algorithms [Cheng
and Lin 1997; Hasegawa et al. 2000; Picado et al.
2009]. The traits describing a gait are taken to be
the genes in a genetic algorithm. Different gaits (i.e.,
settings of the parameters) are evaluated in terms of
features such as stability and velocity; The most suc-
cessful gaits are retained, and used to produce the next
generation of gaits through selection, mutation, inver-
sion, and crossover of their genes. This approach can
also be used for to learn quadrupedal and nine-legged
walking. See, for example, [Chernova and Veloso
2004; Parker and Tarimo 2011; Parker et al. 2011;
Zykov et al. 2004].

• The third approach uses gradient learning, which
starts with either a working gait or a randomly ini-
tialized gait. It then improves the gait’s performance

by changing its parameters, using machine-learning
methods (such as neural networks) to find the most
profitable set of changes in the parameters. See, for
example, [Budden et al. 2013; Kim and Uther 2003;
Schulman et al. 2015; Tedrake et al. 2005]. this ap-
proach is also used in quadrupedal walking [Kohl and
Stone 2004].

Since the first approach requires a full description of the
robot’s kinematics, as well as composing and solving a
non-linear system, it requires a great deal of human in-
put. Moreover, its application is limited to walking prob-
lems. The approach is unable to produce gaits other than
those specified by human (e.g., to walk forward by step-
ping forward the left and the right legs in turn under a spe-
cific speed). Both the second and the third approach require
little human input (when starting from random gaits), and
may produce a variety of gaits. Both also have the potential
to be generalized to problems other than bipedal walking.
However, both are heuristic search algorithms, and have
no theoretical guarantee on their performance. In contrast,
our method produces a variety of gaits, provides a general
framework for solving robotic problems, and produces a
near-optimal policy in the limit. Moreover, our method re-
quires minimum human input, although, as the experiments
show, it does better with more human input.

A comparison of our method and the genetic algorithm may
provide insights into both methods. Although the two ap-
proaches seem different, the searching process made pos-
sible by selection, mutation, inversion, and crossover in a
genetic algorithm can be viewed as a special case of the
explore action in an MDPU. Conversely, the explore ac-
tion in an MDPU for the robot can be roughly viewed as
searching for a set of genes of unknown length (since a gait
can be understood as a continuous action over an uncertain
amount of time, composed of one or more shorter actions,
where each shorter action is described by a set of parame-
ters). Our approach can be viewed as being more flexible
than a genetic algorithm; in a genetic algorithm, the length
of the chromosome (i.e., the number of parameters that de-
scribe the gait) is fixed; only their values that give the best
performance are unknown.

The recent work of Mordatch et al [2016] also provides a
general approach for reinforcement learning in robot tasks.
Like us, they require prior knowledge only of the mobility
range of each of the robot’s joints, and not their kinemat-
ics; they also model the problem as an MDP. Their goal
is to find an optimal trajectory (i.e., a sequence of states),
such that when followed, performs a desired task (such as
reaching out the robot’s hand to a desired position) with
minimal cost. They use neural networks to solve the cost-
minimization problem. Thus, their approach does not have
any guarantees of (approximate) optimality of the perfor-
mance. Moreover, the complexity of their approach grows
quickly as the length of the trajectory grows (while ours is
polynomial in the number of useful actions, states visited,



and the difficulty of discovering new actions, and thus is not
significantly affected by the length of the trajectory). That
said, Mordatch et al.’s method has successfully learned a
few relatively simple tasks on a physical DARwIn OP2
robot, including hand reaching and leaning the robot’s torso
to a desired position [Mordatch et al. 2016], although it has
not yet been applied to walking.

6 CONCLUSION

We have provided a general approach that allows robots to
learn new tasks on their own. We make no assumptions on
the structure of the tasks to be learned. We proved that in
the limit, the method gives a near-optimal policy. The ap-
proach can be easily applied to various robotic tasks. We il-
lustrated this by applying it to the problem of bipedal walk-
ing. Using the approach, a humanoid robot, DARwIn OP,
was able to learn various walking gaits via simulations (see
https://youtu.be/qW51iInpdV0 for a video). We plan to ap-
ply our approach to more robotic tasks, such as learning to
run and to walk up and down stairs. We believe the process
will be quite instructive in terms of adding useful learn-
ing heuristics to our approach, both specific to these tasks
and to more general robotic tasks. We are also interested
in having the robot simulate learning to walk in the same
way a baby does, for example, by limiting the robot’s abil-
ities initially, so that it must crawl before it walks. Part of
our interest lies in seeing if such initial limitations actually
make learning more efficient.
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Appendix

In this appendix, we provide proofs of Theorems 3.1 and
3.1. We start with Theorem 3.2. We repeat the statement of
the theorem for the reader’s convenience.

Theorem 3.2: Using an exploration method where
Di(1, t) ≥ β for all i, t > 0 where β ∈ (0, 1) is a con-
stant, for any α > 0 and 0 < δ < 1, the robot can obtain
an α-optimal policy to M∞ with probability at least 1 − δ
in time polynomial in l, |Al|, |Sl|, 1/β, 1/α, 1/δ,Rmax and
T l, where l is the smallest i such that the optimal policy for
M ′i is (α/2)-optimal toM∞,Rlmax is the maximum reward
(that a transition can obtain) in M ′l , and T l is the ε-return
mixing time for M ′l .

Proof: Since Di(1, t) ≥ β for i ≥ 1, for all levels i ≥
1, we have Ψ(t) ≥ β · t ≥ β ln(t) for all t ≥ 1. By
Theorem 2.5, for each level i, with probability at least 1−δ,



we can obtain a policy πi that is (α/2)-optimal for M ′i in
time polynomial in |Ai|, |Si|, 1/β, 2/α, 1/δ,Rimax, and T i

using the URMAX algorithm, whereRimax is the maximum
reward in M ′i and T i is the (α/2)-return mixing time for
M ′i .

However, we are not interested in obtaining a near-optimal
policy for M ′i ; we want a near-optimal policy for M∞. Let
l be the smallest i such that the optimal policy for M ′i is
(α/2)-optimal forM∞. Such a level lmust exist, due to the
continuity of the reward and transition functions of M∞.
For suppose that π is the optimal policy in M∞. By con-
tinuity, there exists a level l and a policy π′ at level l such
that the expected reward of π′ is within α/2 of that of π.
But then the optimal policy at level l must have expected
reward within α/2 of that of π.7 Since πl is (α/2)-optimal
for M ′l , and the optimal policy for M ′l is (α/2)-optimal for
M∞, πl must be α-optimal for M∞.

Thus, if we knew l and the values of all the relevant param-
eters, then by running URMAX at each level from 1 to l,
we could obtain an α-optimal policy for M∞ in time poly-
nomial in l, |Sl|, 1/k, 2/ε, 1/δ, Rjmax, |Aj | and T j for all
j ∈ [1, l]. Note that we include |Aj | and T j for all j ∈ [1, l]
here. This is because we did not assume each discretization
level j+1 is a refinement of the discretization level j; thus,
it could happen that Rlmax < Rjmax for some j < l, or
|Al| < |Aj | for some j < l, or that T l < T j for some
j < l. However, we show below that we actually need only
Rlmax, |Al|, and T l (instead of all Rjmax, |Aj |, and T j).

The problem with the approach described in the previous
paragraph is that we do not know l nor the values |Sl, |Aj |,
T j and Rjmax for j ∈ [1, l]. We solve this problem just as
HRS solved the analogous problem when running the UR-
MAX algorithm (see [Halpern et al. 2010]): we diagonal-
ize. Specifically, we start running URMAX at discretiza-
tion level 1 under the assumption that the parameters (|A1|,
|S1|, R1

max, |S1|) all have value 1. level 2 with the param-
eters set to 1, and run URMAX at level 1 with parameters
set to 2; and so on. The process is described in Figure 4.
A similar approach is used by HRS to increase the value of
unknown parameters. We call running URMAX at a spe-
cific particular discretization level using a particular setting
of the parameters an iteration of URMAX. For example,
running URMAX at discretization level 3 with the parame-
ters set to 4 is one iteration of URMAX.

To deal with the fact that we do not know l, we always keep
track of the current candidate for best policy. (That is, the
policy that is optimal given the current set of assumptions
about values of the parameters, given the actions that have

7Actually, there may not be an optimal policy inM∞. That is,
there may be a reward γ such that no policy in M∞ has a reward
of γ or greater, and a sequence of policies π1, π2, . . . such that
the expected reward of the πj approaches γ, although no policy
in the sequence actually has expected reward γ. But essentially
the same argument still applies: We take a policy π in M∞ that
has a reward greater than γ − α/4 and and choose a level l that
has a policy approximating π within α/4.

been discovered and our current estimate of the transition
probabilities.) At the end of each iteration of URMAX we
run the current candidate optimal policy a sufficient num-
ber of times so as to guarantee that the average payoff of
URMAX is close to optimal, if the current candidate op-
timal policy is indeed α-optimal.8 Eventually, URMAX
will reach a stage where it is exploring discretization level
l using values for the parameters |Al|, |Sl|, Rlmax and T l

that are at least as high as the actual values. At that point,
the candidate for optimal policy is almost certain to be α-
optimal for M∞. (Recall that l is defined to be the dis-
cretization level at which the optimal policy is α/2-optimal
for M∞.) After this point, we always run a policy that is at
least α-optimal to M∞. Note that this happens even if we
do not know the value of l or any of the relevant parameters.

Thus, although URMAX runs forever, from some point in
time it has discovered an α-optimal algorithm. Moreover,
due to the “diagonal” manner in which URMAX is run,
the candidate optimal policy is (with probability 1 − δ) α-
optimal after time polynomial in l, |Al|, |Sl|, T l, Rlmax, k,
1/δ, and 2/α. From that point on, we are guaranteed to run
policies that are α-optimal for M∞.

Theorem 3.1: Using brute-force exploration, for any α >
0 and 0 < δ < 1, a DM can find an α-optimal policy in
M∞ with probability at least 1 − δ in time polynomial in
l, |A′l|, |Sl|, 1/α, 1/δ, Rlmax and T l, where l is the least
i such that the optimal policy for M ′i is (α/2)-optimal for
M∞, Rlmax is the maximum reward (that a transition can
obtain) in M ′l , and T l is the ε-return mixing time for M ′l .

Proof: At any discretization level, there are only finitely
many possible actions. Since the brute force exploration
examines all possible actions at each level, it is guaranteed
to find all useful actions, and thus the near-optimal policy
for that level.

We apply the URMAX algorithm diagonally as described
in the Proof for Theorem 3.2, so that sooner or later, we
will reach the discretization level i such that the optimal
policy for M ′i is ε-close to P ∗, and run URMAX in that
level with parameters values no less than the real values of
|Ai|, |Si|, Ti and Rimax. Thus, we are guaranteed to obtain
an ε-near-optimal policy.

8The number of times that we need to run the policy is com-
puted in [Halpern et al. 2010].


