
The Mondrian Kernel
Supplementary material

A Proofs

Definition 1. The linear dimension of an axis-aligned box
X = X1 × · · · × XD ⊆ RD is |X | := |X1|+ · · ·+ |XD|.

Our first result is a tail bound on the number of partition
cells generated by a Mondrian process. We will use it as
a Lemma in Proposition 4, but it also confirms that with
probability 1, the Mondrian process does not explode (does
not generate infinitely many partition cells in finite time).

Proposition 3. LetM be a Mondrian process on an axis-
aligned boxX . For t ≥ 0, letNt be the number of partition
cells generated byM until time t. Then

∀n ∈ R+ P[Nt > n] ≤ e|X |t

n
.

In particular, the Mondrian process does not explode.

Proof. At any time s, by lack of memory of the exponential
distribution, the residual time until a partition cell c splits
into two has Exp(|c|) distribution and is independent of all
other cells by construction of the Mondrian process. As
|c| ≤ |X |, this cell splitting process is dominated by a Yule
process with birth rate |X |. The number Ñt of individuals
at time t of a Yule process with birth rate |X | has geometric
distribution with mean e|X |t and Markov’s inequality yields

P[Nt > n] ≤ P[Ñt > n] ≤ e|X |t

n
.

as claimed. Hence P[Nt =∞] = limn→∞ P[Nt > n] = 0
for any t.

We define an ε-grid covering a (closed) interval as a set
of points at most ε distance apart, including the boundary
points, and with minimal possible cardinality:

Definition 2. Let X1 = [a1, b1] be an interval of length
|X1| = b1 − a1 and let 0 < ε < |X1|. Define K := d |X1|

ε e.
An ε-grid covering X1 is a set U1 of K + 1 points u0 <
u1 < · · · < uK in X1 such that u0 = a1, uK = b1 and
|ui − ui−1| ≤ ε for all 1 ≤ i ≤ K.

Note that such an ε-grid exists by our choice of K, as we
can take, e.g., ui = iε for 1 ≤ i < K. The next lemma
bounds the probability that two arrivals of a Poisson pro-
cess running on a bounded interval occur between two con-
secutive points of an ε-grid covering that interval.

Lemma 1. Consider a Poisson process with rate λ running
on a bounded interval [0, L]. Let U be an ε-grid covering
of [0, L]. Then the probability that two or more arrivals of
the process occur between any two consecutive points of U
is at most 2λ2Lε.

Proof. As the distance between any two consecutive points
of the ε-grid is at most ε by definition, the number of ar-
rivals in a line segment between such two points is domi-
nated by a Poisson random variable with mean λε. As there
are dLε e such segments, the sought probability p can be up-
per bounded using a union bound as

p ≤
⌈
L

ε

⌉ (
1− e−λε − e−λελε

)
and using 1− e−x ≤ x twice, we obtain as claimed

p ≤
⌈
L

ε

⌉ (
λε− e−λελε

)
≤
⌈
L

ε

⌉
(λε)

2 ≤ 2Lλ2ε.

Definition 2 also set us up for defining the concept of an
ε-grid on higher-dimensional axis-aligned boxes:

Definition 3. Let X = X1 × · · · × XD ⊆ RD be an axis-
aligned box and let ε > 0. An ε-grid covering X is a
cartesian product U = U1 × · · · × UD, where each Ud is an
ε-grid covering of Xd in the sense of Definition 2.

Proposition 4. For any bounded input domain X ⊆ RD
and δ > 0, as M →∞,

P
[

sup
x,x′∈X

|kM (x,x′)− k∞(x,x′)| > δ

]
= O

(
M2/3e−Mδ2/(12D+2)

)
.

Proof. By extending X if necessary, we may assume with-
out loss of generality that X is an axis-aligned box with
linear dimension |X |.
Recall that a Mondrian kernel of order M corresponds to a
random features obtained from M independent Mondrians
with lifetime λ. Let U be an ε-grid covering X , where
ε > 0 will be specified later. The proof will upper bound
the probability of the following three “bad” events:

A1 := { any of the M Mondrian samples contains more
than n partition cells }
A2 := { the common refinement of the M Mondrian par-
titions, disregarding any potential cuts after generating n
cells in one Mondrian, has a partition cell that does not
contain an element of U }
A3 := { δ

2 -approximation fails on U , i.e., for some u1,
u2 ∈ U , |kM (u1,u2)− k∞(u1,u2)| > δ

2 }
The constant n ∈ R+ will be specified (optimized) later.
Note that A1 ∩ A2 implies that all partition cells in the
common refinement of all M Mondrian partitions contain
a grid point from U . Since kM is constant in each such cell,
making ε small enough, smoothness of the Laplace kernel
k∞ will ensure that ifAc3 holds then δ-approximation holds
throughout X .

Proposition 3 and a union bound over the M Mondrian



samples give immediately that

P(A1) ≤M e|X |λ

n
.

Note that the ε-grid U contains at most (2|X |/ε)D grid
points. Hoeffding’s inequality and a union bound over all
pairs of grid points gives for any ε > 0:

P(A3) ≤
[(

2
|X |
ε

)D]2 [
2 exp

(
−Mδ2/2

)]
.

To upper bound the probability of A2, note that at any time
t < λ, in each partition cell generated so far by any of the
M Mondrian processes, an exponential clock is associated
to each dimension d of the cell, and if that clock rings, the
cell is split at a random location a by a hyperplane lying
in dimension d. Consider the point process obtained by
projecting the cut points from all partition cells onto their
respective coordinate axes. If each Mondrian process gen-
erates no more than than n partition cells until its lifetime
λ is exhausted, the cut points on the d-th coordinate axis
come from at most Mn partition cells, each having width
at most |Xd| in dimension d. Therefore this point process
on the d-th coordinate axis can be thought of as taking a
suitable subset of points generated by a Poisson point pro-
cess with intensity Mn|Xd|λ. Thus by Lemma 1, the prob-
ability that two cut points in dimension d fall between two
adjacent coordinates of the ε-grid U is upper bounded by
2(Mnλ)2|Xd|ε. Observe that if this does not happen in
any of the D dimensions then all partition cells in the com-
mon refinement must contain a grid point from U . Hence,
taking the union bound over all D dimensions,

P(A2) ≤
D∑
d=1

2(Mnλ)2|Xd|ε = 2(Mnλ)2|X |ε.

Thus the probability of a “bad” event occuring is at most

P(A1 ∪A2 ∪A3)

≤ P(A1) + P(A2) + P(A3)

≤M e|X |λ

n
+ 2(Mnλ)2|X |ε+ 2

(
2
|X |
ε

)2D

e−Mδ2/2.

and minimizing over n ∈ R+ gives

P(A1 ∪A2 ∪A3)

≤
(

4λ2M2|X |εe2λ|X |
)1/3

+ 2

( |X |
ε

)2D

e−Mδ2/2.

If A1 ∩ A2 holds then each cell in the common refinement
of the M Mondrian partitions contains an element of the
ε-grid U , and the Laplace kernel of lifetime λ changes by
at most 1 − e−Dλε when moving from any point in X to

the nearest grid point in its partition cell (in the common
refinement). Therefore, as long as 2(1− e−Dλε) < δ

2 (i.e.,
ε ≤ 1

λD ln(1− δ
4 )), the event (A1 ∪A2 ∪A3)c implies that

δ-approximation holds throughout X . The upper bound on
P(A1 ∪A2 ∪A3) above is minimized for

ε0 =

(
12D|X |2De−Mδ2/2

(4λ|X |)1/3e2λ|X |/3

)

which tends to 0 as M → ∞ and so for large enough M ,
we do have ε0 ≤ 1

λD ln(1− δ
4 ). For these large enough M

it then holds that

P
[

sup
x,x′∈X

∣∣φ(x)Tφ(x′)− k(x,x′)
∣∣ > δ

]
≤ P(A1 ∪A2 ∪A3)

≤
(

4λ2M2|X |ε0e2λ|X |
)1/3

+ 2

( |X |
ε0

)2D

e−Mδ2/2

=
(

21/(2D)4λ2M2|X |2e2λL/D
)1/(3+1/2D)

e−
Mδ2

12D+2

∈ O
(
M2/3e−

Mδ2

12D+2

)
.

Proposition 5. In a Mondrian regression forest with a fac-
torizing Gaussian prior over leaf predictions, the learning
objective function can be stated as

min
w∈RC

N∑
n=1

1

M

M∑
m=1

loss(yn, ŷ(m)
n ) + γ2‖w‖22.

Proof. The predictive mean parameters w(m) in the leaves
of the m-th tree are fitted by solving

min
w(m)∈RC(m)

N∑
n=1

(yn −w(m)Tφ(m)
n )2 + γ2‖w(m)‖22

where γ2 is the ratio of noise and prior variance in the pre-
dictive model. The parameters w(m) are disjoint for differ-
ent trees, so these M independent optimization problems
are equivalent to minimizing the average

min
w(1),...,w(M)

1

M

M∑
m=1

(
N∑
n=1

(yn − ŷ(m)
n )2 + γ2‖w(m)‖22

)

where ŷ(m)
n := w(m)Tφ

(m)
n is the m-th tree’s prediction

at data point n. Rewriting in terms of the squared loss
loss(y, ŷ) := (y − ŷ)2 and the normalized concatenated
weights w := M−1/2[w(1)T · · ·w(M)T ]T , the learning
objective function becomes

min
w∈RC

N∑
n=1

1

M

M∑
m=1

loss(yn, ŷ(m)
n ) + γ2‖w‖22.



B Bayesian kernel width learning

Section 4.2.1 described how in a ridge regression setting,
the marginal likelihood L(λ) = p(y|X, λ) can be effi-
ciently computed for all λ ∈ [0,Λ]. With a prior p(λ) over
the lifetime (inverse kernel width) λ whose support is in-
cluded in [0,Λ], the posterior distribution over λ is

p(λ|y,X) ∝ p(λ)p(y|X, λ)

with normalizing constant

p(y|X) =

C−M∑
c=0

p(y|X, λ = τc)

∫ τc+1

τc

p(λ) dλ

where 0 = τ0 < τ1 < · · · < τC−M is the sequence of
times when new cuts appeared in any of the M Mondrian
samples. The predictive distribution at a new test point x∗
is obtained by marginalizing out λ:

p(y∗|x∗,X,y)

=

∫
p(y∗|x∗,X,y, λ)p(λ|y,x) dλ

=

C−M∑
c=0

p(y∗|x∗, λ = τc)p(τc ≤ λ < τc+1|y,X)

=

C−M∑
c=0

p(y∗|x∗, λ = τc)

∫ τc+1

τc

p(λ|y,X) dλ

=

C−M∑
c=0

p(y∗|x∗, λ = τc)

∫ τc+1

τc

p(λ)p(y|X, λ)

p(y|X)
dλ

=

C−M∑
c=0

p(y∗|x∗, λ = τc)p(y|X, λ = τc)

∫ τc+1

τc
p(λ) dλ

p(y|X)

=

∑C−M
c=0 p(y∗|x∗, λ = τc)p(y|X, λ = τc)

∫ τc+1

τc
p(λ) dλ∑C−M

c=0 p(y|X, λ = τc)
∫ τc+1

τc
p(λ) dλ

=

C−M∑
c=0

kcp(y∗|x∗, λ = τc)

where the mixing coefficients

kc :=
p(y|X, λ = τc)

∫ τc+1

τc
p(λ) dλ∑C−M

c=0 p(y|X, λ = τc)
∫ τc+1

τc
p(λ) dλ

can be precomputed and cached for faster predictions. The
integrals

∫ τc+1

τc
p(λ) dλ can be readily evaluated if we have

access to the cumulative distribution function of our prior
p(λ), which we assume.

C Online learning

Mirroring Section 4.2.1, we discuss the example of ridge
regression where exact online updates can be carried out.
Assume we have access to the regularized feature covari-
ance matrix A = ΦTΦ + δ2IC and its inverse A−1 or
Cholesky decomposition chol(A) before a new data point
x ∈ RD arrives, and we wish to update these efficiently.

If the dimensionality of φ increases by k due to x creating
k new non-empty partition cells, we first append k rows
and columns to A, containing 0s only, except on the main
diagonal we put δ2. Correspondingly, A−1 or chol(A) are
updated by appending k rows and columns, with non-zero
entries only on the main diagonal. (These entries would
equal δ−2 in A−1 and δ in chol(A)). This ensures the
feature map φ now incorporates all necessary features.

Noting that the (i, j)-entry of A− δ2IC counts data points
belonging to partition cells i and j at the same time (this can
be non-zero only if i, j correspond to different Mondrian
samples), normalized by 1/M , and that the (i, j)-entry of
the outer product φ(x)φ(x)T is 1/M if the new data point
x falls into both cells i and j, and 0 otherwise, we see that

Anew ← Aold + φ(x)φ(x)T

is a rank-1 update. Therefore both A−1 and chol(A) can
be updated efficiently in O(C2) time and the new MAP
weights ŵnew = A−1new(ΦTy) in O(MC) by exploiting
sparsity of φ(x). The determinant of the rank-1 updated
matrix Anew can also be updated in O(C2) time using
the Matrix determinant lemma, or obtained directly from
the Cholesky decomposition (as the squared product of
its diagonal entries) in O(C) time, allowing the training
marginal likelihood to be updated in O(NM + C2).


