
Supplementary Material for “Faster Stochastic Variational
Inference using Proximal-Gradient Methods with General

Divergence Functions”

1 Examples of Splitting for Variational-Gaussian Inference

We give detailed derivations for the splitting-examples shown in Section 3.1 in the main paper. As
in the main paper, we denote the Gaussian posterior distribution by q(z|λ) := N (z|m,V), so that
λ = {m,V} with m being the mean and V being the covariance matrix.

1.1 Gaussian Process (GP) Models

Consider GP models for N input-output pairs {yn,xn} indexed by n. Let zn := f(xn) be the
latent function drawn from a GP with a zero-mean function and a covariance function κ(x,x′). We
denote the Kernel matrix obtained on the data xn for all n by K.

We use a non-Gaussian likelihood p(yn|zn) to model the output, and assume that each yn is
independently sampled from this likelihood given z. The joint-distribution over y and z is shown
below:

p(y, z) =
N∏

n=1

p(yn|zn)N (z|0,K) (1)

The ratio required for the lower bound is shown below, along with the split, where non-Gaussian
terms are in p̃d and Gaussian terms are in p̃e:

p(y, z)

q(z|m,V)
=

N∏

n=1

p(yn|zn)
︸ ︷︷ ︸

p̃d(z|λ)

N (z|0,K)

N (z|m,V)︸ ︷︷ ︸
p̃e(z|λ)

. (2)

By substituting in Eq. 1 of the main paper, we can obtain the lower bound L after a few simplifica-

1

tions, as shown below:

L(m,V) := Eq(z)
[
log

p(y, z)

q(z|m,V)

]
, (3)

= Eq(z)

[
N∑

n=1

log p(yn|zn)
]
+ Eq(z)

[
log
N (z|0,K)

N (z|m,V)

]
, (4)

=

N∑

n=1

Eq[log p(yn|zn)]
︸ ︷︷ ︸

−f(λ)

−DKL[N (z|m,V) ‖N (z|0,K)]︸ ︷︷ ︸
h(λ)

. (5)

The assumption A2 is satisfied since the KL divergence is convex in both m and V. This is clear
from the expression of the KL divergence:

DKL [N (z|m,V)||N (z|0,K)] = 1
2 [− log |VK−1|+ Tr(VK−1) + mTK−1m−D] (6)

where D is the dimensionality of z. Convexity w.r.t. m follows from the fact that the above is
quadratic in m. Convexity w.r.t. V follows due to concavity of log |V| (trace is linear, so does not
matter).

Assumption A1 depends on the choice of the likelihood p(yn|zn), but is usually satisfied. Sim-
plest example is a Gaussian likelihood for which the function f takes the following form:

f(m,V) =
N∑

n=1

Eq[− log p(yn|zn)] =
N∑

n=1

Eq[− logN (yn|zn, σ2)] (7)

=
N∑

n=1

1
2 log(2πσ

2) +
1

2σ2
[
(yn −mn)

2 + vn
]

(8)

where mn is the n’th element of m and vn is the n’th diagonal entry of V. This clearly satisfies
A1, since the objective is quadratic in m and linear in V.

Here is an example where A1 is not satisfied: for Poisson likelihood log p(yn|zn) = exp[ynzn−
ezn]/yn! with rate parameter equal to ezn , the function f takes the following form:

f(m,V) =

N∑

n=1

Eq[− log p(yn|zn)] =
N∑

n=1

[−ynmn + emn+vn/2 + log(yn!)] (9)

whose derivative is not Lipschitz continuous since exponential is not Lipschitz.

1.2 Generalized Linear Models (GLMs)

We now describe a split for Generalized linear models. We model the output yn by using an expo-
nential family distribution whose natural-parameter is equal to ηn := xTnz. Assuming a standard

2

Gaussian prior over z, the joint distribution can be written as follows:

p(y, z) :=

N∏

n=1

p(yn|xTnz)N (z|0, I) (10)

A similar split can be obtained by putting non-conjugate terms p(yn|xTnz) in p̃d and the rest in p̃e:

p(y, z)

q(z|λ) =
N∏

n=1

p(yn|xTnz)

︸ ︷︷ ︸
p̃d(z|λ)

N (z|0, I)
N (z|m,V)︸ ︷︷ ︸

p̃e(z|λ)

.

The lower bound can be shown to be the following:

L(m,V) :=
N∑

n=1

Eq[log p(yn|xTnz)]

︸ ︷︷ ︸
−f(λ)

−DKL[N (z|m,V) ‖N (z|0, I)]︸ ︷︷ ︸
h(λ)

. (11)

which is very similar to the GP case. Therefore, Assumptions A1 and A2 will follow with similar
arguments.

1.3 Correlated Topic Model (CTM)

We consider text documents with a vocabulary sizeN . Let z be a lengthK real-valued vector which
follows a Gaussian distribution shown in (12). Given z, a topic tn is sampled for the n’th word
using a multinomial distribution shown in (13). Probability of observing a word in the vocabulary
is then given by (14).

p(z|θ) = N (z|µ,Σ), (12)

p(tn = k|z) = exp(zk)∑K
j=1 exp(zj)

, (13)

p(Observing a word v|tn,θ) = βv,tn . (14)

Here β is a N ×K real-valued matrix with non-negative entries and columns that sum to 1. The
parameter set for this model is given by θ = {µ,Σ,β}. We can marginalize out tn and obtain the
data-likelihood given z,

p(Observing a word v|z,θ) =
K∑

k=1

p(Observing a word v|tn = k,θ)p(tn = k|z), (15)

=

K∑

k=1

βvk
ezk

∑K
j=1 e

zj
. (16)

3

Given that we observe n’th word yn times, we can write the following joint distribution:

p(y, z) :=

N∏

n=1

[
K∑

k=1

βn,k
ezk∑
j e

zj

]yn
N (z|µ,Σ) (17)

We can then use the following split:

p(y, z)

q(z|λ) =

N∏

n=1

[
K∑

k=1

βn,k
ezk∑
j e

zj

]yn

︸ ︷︷ ︸
p̃d(z|λ)

N (z|µ,Σ)

N (z|m,V)︸ ︷︷ ︸
p̃e(z|λ)

,

where µ,Σ are parameters of the Gaussian prior and βn,k are parameters of K multinomials.
The lower bound is shown below:

L(m,V) :=
N∑

n=1

yn

{
Eq

[
log

(
K∑

k=1

βn,ke
zk

)]}
−WEq

log

K∑

j=1

ezj

− DKL[N (z|m,V) ‖N (z|0, I)]. (18)

where W =
∑

n yn is the total number of words. The top line is the function [−f(λ)] while the
bottom line is [−h(λ)].

There are two intractable expectations in f , each involving expectation of a log-sum-exp func-
tion. Wang and Blei (2013) use the Delta method and Laplace method to approximate these expec-
tations. In contrast, in PG-SVI algorithm, we use Monte Carlo to approximate the gradient of these
functions.

2 Proof of Proposition 1 and 2

We first prove the Proposition 2. Proposition 1 is obtained as a special case of it. Our proof
technique is borrowed from Ghadimi et. al. (2014). We extend their results to general divergence
functions.

We denote the proximal projection at λk with gradient g and step-size β by,

P(λk,g, β) :=
1

β
(λk − λk+1), (19)

where λk+1 = argmin
λ∈S

λTg + h(λ) +
1

β
D(λ ‖λk). (20)

The following lemma gives a bound on the norm of P(λk,g, β).
Lemma 1. The following holds for any λk ∈ S, any real-valued vector g and β > 0.

gTP(λk,g, β) ≥ α||P(λk,g, β)||2 +
1

β
[h(λk+1)− h(λk)] (21)

4

Proof. The gradient of the right hand side of (20) is given as follows:

g +5h(λ) + 1

β
5λ D(λ ‖λk). (22)

We use this to derive the optimality condition of (20). For any λ, the following holds from the
optimality condition:

(λ− λk+1)
T

[
g +5h(λk+1) +

1

β
5λ D(λk+1 ‖λk)

]
≥ 0. (23)

Letting λ = λk,

(λk − λk+1)
T

[
g +5h(λk+1) +

1

β
5λ D(λk+1 ‖λk)

]
≥ 0, (24)

which implies,

gT (λk − λk+1) ≥
1

β
(λk+1 − λk)

T 5λ D(λk+1 ‖λk) + h(λk+1)− h(λk), (25)

≥ α

β
||λk+1 − λk||2 + h(λk+1)− h(λk). (26)

The first line follows from Assumption A2 (convexity of h), and the second line follows from
Assumption A6.

Now, we are ready to prove Proposition 2:

Proof. Let g̃λ,k := P(λk,∇f(λk), βk). Since f is L-smooth (Assumption A1), for any k =
0, 1, . . . , t− 1 we have,

f(λk+1) ≤ f(λk) + 〈5f(λk),λk+1 − λk〉+
L

2
‖λk+1 − λk‖2,

= f(λk)− βk 〈5f(λk), g̃λ,k〉+
L

2
β2k‖g̃λ,k‖2,

≤ f(λk)− βkα‖g̃λ,k‖2 − [h(λk+1)− h(λk)] +
L

2
β2k‖g̃λ,k‖2.

The second line follows from the definition of P and the last line is due to Lemma 1. Rearranging
the terms we get:

− L(λk+1) + L(λk) ≤ −[βkα−
L

2
β2k]‖g̃λ,k‖2,

⇒ L(λk+1)− L(λk) ≥ [βkα−
L

2
β2k]‖g̃λ,k‖2.

5

Summing these term for all k = 0, 1, . . . t− 1, we get the following:

L(λt−1)− L(λ0) ≥
t−1∑

k=0

[βkα−
L

2
β2k]‖g̃λ,k‖2.

By noting that the global maximum of the lower bound always upper bounds any other value, we
get L(λ∗)− L(λ0) ≥ L(λt−1)− L(λ0). Using this,

L(λ∗)− L(λ0) ≥
t−1∑

k=0

[βkα−
L

2
β2k]‖g̃λ,k‖2,

⇒ min
k=0,1,...,t−1

‖g̃λ,k‖2[
t−1∑

k=0

[βkα−
L

2
β2k]] ≤ L(λ∗)− L(λ0).

Since we assume at least one of βk < 2α/L, we can divide by the summation term, to get the
following:

min
k=0,1,...,t−1

‖g̃λ,k‖2 ≤
L(λ∗)− L(λ1)∑t−1
k=0[βkα− L

2 β
2
k]
,

which proves the Proposition 2.

Proposition 1 can be obtained by simply plugging in βk = α/L.

Proof.

min
k=0,1,...,t−1

‖g̃λ,k‖2 ≤
C0∑t−1

k=0[
α2

L − α2

2L]
=

2C0L

α2t
.

Expanding the left hand side, we get the required result:

min
k=0,1,...,t

‖λk+1 − λk‖2 ≤ βk
2C0L

α2t
=

2C0

αt
.

3 Proof of Proposition 3

We will first prove the following theorem, which gives a similar result to Proposition 2 but for a
stochastic gradient ∇̂f .

Theorem 1. If we choose the step-size βk such that 0 < βk ≤ 2α∗/L with βk < 2α∗/L for at
least one k, then,

ER,ξ
(‖λR+1 − λR‖2

βR

)
≤

C0 +
cσ2

2

∑t−1
k=0

βk
Mk∑t−1

k=0

(
α∗βk − Lβ2k/2

) . (27)

6

where the expectation is taken over R ∈ {0, 1, 2, . . . , t − 1} which is a discrete random variable
drawn from the probability mass function

Prob(R = k) =
α∗βk − Lβ2k/2∑t−1

k=0

(
α∗βk − Lβ2k/2

) ,

and over ξ := {ξ1, ξ2, . . . , ξt−1} with ξk is the noise in the stochastic approximation ∇̂f .

Proof. Let g̃λ,k := P(λk, ∇̂f(λk), βk), δk := ∇̂f(λk) −5f(λk). Since f is L-smooth, for any
k = 0, 1, . . . , t we have,

f(λk+1) ≤ f(λk) + 〈5f(λk),λk+1 − λk〉+
L

2
‖λk+1 − λk‖2 (28)

= f(λk)− βk 〈5f(λk), g̃λ,k〉+
L

2
β2k‖g̃λ,k‖2 (29)

= f(λk)− βk
〈
∇̂f(λk), g̃λ,k

〉
+
L

2
β2k‖g̃λ,k‖2 + βk 〈δk, g̃λ,k〉 (30)

where we have used the definition of g̃λ,k and δk. Now using Lemma 1 on the second term and
Cauchy-Schwarz for the last term, we get the following:

f(λk+1) ≤ f(λk)−
[
αβk‖g̃λ,k‖2 + h(λk+1)− h(λk)

]
+
L

2
β2k‖g̃λ,k‖2 + βk‖δk‖‖g̃λ,k‖ (31)

After rearranging and using Young’s inequality ‖δk‖‖g̃λ,k‖ ≤ (c/2)‖δk‖2 + 1/(2c)‖g̃λ,k‖2 given
a constant c > 0, we get

−L(λk+1) ≤ −L(λk)− αβk‖g̃λ,k‖2 +
L

2
β2k‖g̃λ,k‖2 +

βk
2c
‖g̃λ,k‖2 +

βkc

2
‖δk‖2 (32)

= −L(λk)−
(
(α− 1/(2c))βk −

L

2
β2k

)
‖g̃λ,k‖2 +

cβk
2
‖δk‖2 (33)

Now considering c > 1/(2α), α∗ = α− 1/(2c) and βk ≤ 2α∗
L , and summing up both side for

iteration k = 0, 1 . . . , t− 1, we obtain

t−1∑

k=0

(
α∗βk −

L

2
β2k

)
‖g̃λ,k‖2 ≤ L∗ − L(λ0) +

t−1∑

k=0

cβk
2
‖δk‖2 (34)

Now by taking expectation w.r.t. ξ on both side and using the fact that Eξ‖δk‖2 ≤ σ2

Mk
by assump-

tion A3 and A4, we get

t−1∑

k=0

(
α∗βk −

L

2
β2k

)
Eξ‖g̃λ,k‖2 ≤ C0 +

cσ2

2

t∑

k=0

βk
Mk

(35)

7

Noting that the expectation w.r.t. R and ξ can be written in terms of expectation w.r.t. ξ alone,

ER,ξ[‖g̃λk,R‖2] =
∑t

k=0

(
α∗βk − L

2 β
2
k

)
Eξ‖g̃λ,k‖2∑t

k=0

(
α∗βk − L

2 β
2
k

) (36)

whose numerator is basically the term in the left hand side of (35). Dividing (35) by
∑t

k=0

(
α∗βk − L

2 β
2
k

)
,

we get the required result.

By substituting βk = γα∗/L for 0 < γ < 2 and Mk =M in (27),

ER,ξ
(
‖λR+1 − λR‖2

)
≤ γα∗

L

C0 +
cσ2

2

∑t−1
k=0

βk
Mk∑t−1

k=1

(
α∗βk − Lβ2k/2

) (37)

=
γα∗
L

C0 +
cσ2α∗t
2LM

α2
∗tγ(2−γ)

2L

=
1

2− γ

(
2C0

α∗t
+
γcσ2

ML

)
(38)

The probability distribution of R also reduces to a uniform distribution with probability of each
iteration being 1/t. This proves Proposition 3.

4 Derivation of Closed-Form Updates for the GP Model

The PG-SVI iterations λk+1 = minλ∈S λT
[
5̂f(λk)

]
+ h(λ) + 1

βk
D(λ‖λk) takes the following

form for the GP model, as discussed in Section 6 of the main paper:

(mk+1,Vk+1) = arg min
m,V�0

(mnαnk,k +
1
2vnγnk,k) +DKL [N (z|m,V)||N (z|0,K)]

+
1

βk
DKL [N (z|m,V)||N (z|mk,Vk)] . (39)

where nk is the example selected in k’th iteration. We will now show that its solution can be
obtained in closed-form.

4.1 Full Update of Vk+1

We first derive the full update of Vk+1. The KL divergence between two Gaussian distributions is
given as follows:

DKL [N (z|m,V)||N (z|0,K)] = −1
2 [log |VK−1| − Tr(VK−1)−mTK−1m +D] (40)

8

Using this, we expand the last two terms of (39) to get the following,

− 1
2

[
log |VK−1| − Tr(VK−1)−mTK−1m +D

]

− 1
2

1

βk

[
log |VK−1| − Tr{VV−1k } − (m−mk)

TV−1k (m−mk) +D
]

= −1
2

[(
1 +

1

βk

)
log |V| − Tr{V(K−1 +

1

βk
V−1k)} −mTK−1m

− 1

βk
(m−mk)

TV−1k (m−mk) +

(
1 +

1

βk

)
(D − log |K|)

]
(41)

Taking derivative of (39) with respect to V at V = Vk+1 and setting it to zero, we get the
following (here In is a matrix with all zeros, except the n’th diagonal element which is set to 1):

⇒ −
(
1 +

1

βk

)
V−1k+1 +

(
K−1 +

1

βk
V−1k

)
+ γnk,kInk

= 0 (42)

⇒ V−1k+1 =
1

1 + βk
V−1k +

βk
1 + βk

(
K−1 + γnk,kInk

)
(43)

⇒ V−1k+1 = rkV
−1
k + (1− rk)

(
K−1 + γnk,kInk

)
(44)

which gives us the update of Vk+1 for rk := 1/(1 + βk).

4.2 Avoiding a full update of Vk+1

A full update will require storing the matrix Vk+1. Fortunately, we can avoid storing the full
matrix and still do an exact update. The key point here is to notice that to compute the stochastic
gradient in the next iteration we only need one diagonal element of Vk+1 rather than the whole
matrix. Specifically, if we sample nk+1’th example at the iteration k+1, then we need to compute
vnk+1,k+1 which is the nk+1’th diagonal element of Vk+1. This can be done by solving one linear
equation, as we show in this section. Specifically, we show that the following updates can be used
to compute vnk+1,k+1:

vnk+1,k+1 = κnk+1,nk+1
− κTnk+1

(
K + [diag(γ̃k)]

−1)−1 κnk+1
, (45)

where γ̃k = rkγ̃k−1 + (1− rk)γnk,k1nk
(1n is a vector of all zeros except its n’th entry which is

equal to 1). We start the recursion with γ̃0 = ε where ε is a small positive number.
We will now show that Vk can be reparameterized in terms of a vector γ̃k which contains

accumulated weighted sum of the gradient γnj ,j , for all j ≤ k. To show this, we recursively
substitute the update of Vj for j < k+1, as shown below (recall that nk is the example selected at
the k’th iteration). The second line is obtained by substituting the full update of Vk by using (44).
The third line is obtained after a few simplifications. The fourth line is obtained by substituting the

9

update of Vk−1 and a few simplifications.

V−1k+1 = rkV
−1
k + (1− rk)

[
K−1 + γnk,kInk

]
(46)

= rk
[
rk−1V

−1
k−1 + (1− rk−1)

(
K−1 + γnk−1,k−1Ink−1

)]
+ (1− rk)

[
K−1 + γnk,kInk

]
(47)

= rkrk−1V
−1
k−1 + (1− rkrk−1)K−1 +

[
rk(1− rk−1)γnk−1,k−1Ink−1

+ (1− rk)γnk,kInk

]

= rkrk−1rk−2V
−1
k−2 + (1− rkrk−1rk−2)K−1

+
[
rkrk−1(1− rk−2)γnk−2,k−2Ink−2

+ rk(1− rk−1)γnk−1,k−1Ink−1
+ (1− rk)γnk,kInk

]
(48)

This update expresses Vk+1 in terms of Vk−2, K, and gradients of the data example selected at
k, k − 1, and k − 2. Continuing in this fashion until k = 0, we can write the update as follows:

V−1k+1 = tkV
−1
0 + (1− tk)K−1 + [rkrk−1 . . . r3r2(1− r1)γn1,1In1

+ rkrk−1 . . . r4r3(1− r2)γn2,2In2 + rkrk−1 . . . r5r4(1− r3)γn3,3In2 + . . .

+ rkrk−1(1− rk−2)γnk−2,k−2Ink−2
+ rk(1− rk−1)γnk−1,k−1Ink−1

+ (1− rk)γnk,kInk
] (49)

where tk is the product of rk, rk−1, . . . , r0. We can write the updates more compactly by defining
the accumulation of the gradients γnj ,j for all j ≤ k by a vector γ̃k,

V−1k+1 = tkV
−1
0 + (1− tk)K−1 + diag(γ̃k) (50)

The vector γ̃k can be obtained by using a recursion. We illustrate this below, where we have
grouped the terms in (49) to show the recursion for γ̃k (here 1n is a vector with all zero entries
except n’th entry which is set to 1):entries except n’th entry which is set to 1):

rkrk−1 . . . r6r5r4r3r2(1− r1)γn1,11n1

+rkrk−1 . . . r6r5r4r3(1− r2)γn2,21n2

+rkrk−1 . . . r6r5r4(1− r3)γn3,31n3

+rkrk−1 . . . r6r5(1− r4)γn4,41n4

+rkrk−1 . . . r6(1− r5)γn5,51n5

...

In other words, at iteration k, we compute γ̃k given γ̃k−1 by modifying its nk’th as follows:

γ̃nk,k ← rkγ̃nk,k−1 + (1− rk)γnk,k (53)

γ̃nk,j ← rkγ̃nk,k−1 + (1− rk)γnk,k (54)

with an initialization γ̃ = ε where ε is a small constant. If we set V0 = K, then the formula
simplifies to the following:

V−1k+1 = K−1 + diag(γ̃) (55)

which is completely specified by γ̃, eliminating the need to compute and store Vk+1.
Now, the nk+1’th diagonal element can be obtained by using Materix Inversion Lemma, which

gives us the update (45).

4.3 Update of m

Taking derivative of (38) with respect to m at m = mk+1 and setting it to zero, we get the
following (here 1n is a vector with all zero entries except n’th entry which is set to 1):

⇒ −K−1mk+1 −
1

βk
V−1k (mk+1 −mk)− αnk,k1nk

= 0 (56)

⇒ −
[
K−1 +

1

βk
V−1k

]
mk+1 +

1

βk
V−1k mk − αnk,k1nk

= 0 (57)

⇒ mk+1 =

[
K−1 +

1

βk
V−1k

]−1 [1

βk
V−1k mk − αnk,k1nk

]
(58)

⇒ mk+1 =
[
(1− rk)K−1 + rkV

−1
k

]−1 [−(1− rk)αnk,k1nk
+ rkV

−1
k mk

]
(59)

where the last step is obtained using the fact that 1/βk = rk/(1− rk).
We simplify as shown below. The first step is obtained by adding and subtracting (1 −

rk)K
−1mk in the square bracket at the right. In the second step, we take mk out. The third

step is obtained by plugging in the updates of V−1k = K−1 + diag(γ̃). The fourth step is obtained

10

Therefore, γ̃k can be recursively updated as follows:

γ̃k = rkγ̃k−1 + (1− rk)γnk,k1nk
(51)

with an initialization γ̃0 = ε where ε is a small constant to avoid numerical issues.
If we set V0 = K, then the formula simplifies to the following:

V−1k+1 = K−1 + diag(γ̃k) (52)

which is completely specified by γ̃k, eliminating the need to compute and store Vk+1.
The nk+1’th diagonal element can be obtained by using Matrix Inversion Lemma, which gives

us the update (45).

10

4.3 Update of m

Taking derivative of (39) with respect to m at m = mk+1 and setting it to zero, we get the
following (here 1n is a vector with all zero entries except n’th entry which is set to 1):

⇒ −K−1mk+1 −
1

βk
V−1k (mk+1 −mk)− αnk,k1nk

= 0 (53)

⇒ −
[
K−1 +

1

βk
V−1k

]
mk+1 +

1

βk
V−1k mk − αnk,k1nk

= 0 (54)

⇒ mk+1 =

[
K−1 +

1

βk
V−1k

]−1 [1

βk
V−1k mk − αnk,k1nk

]
(55)

⇒ mk+1 =
[
(1− rk)K−1 + rkV

−1
k

]−1 [−(1− rk)αnk,k1nk
+ rkV

−1
k mk

]
(56)

where the last step is obtained using the fact that 1/βk = rk/(1− rk).
We simplify as shown below. The second line is obtained by adding and subtracting (1 −

rk)K
−1mk in the square bracket at the right. In the the third line, we take mk out. The fourth line

is obtained by plugging in the updates of V−1k = K−1 + diag(γ̃k). The fifth line is obtained by
using Matrix-Inversion lemma, and the sixth line is obtained by taking K−1 out of the right-most
term.

mk+1 =
[
(1− rk)K−1 + rkV

−1
k

]−1 [−(1− rk)αnk,k1nk
+ rkV

−1
k mk

]
(57)

=
[
(1− rk)K−1 + rkV

−1
k

]−1 [
(1− rk){−K−1mk − αnk,k1nk

}+ {(1− rk)K−1 + rkV
−1
k }mk

]

= mk + (1− rk)
[
(1− rk)K−1 + rkV

−1
k

]−1 (−K−1mk − αnk,k1nk

)
(58)

= mk − (1− rk)
[
K−1 + rkdiag(γ̃k−1)

]−1 (
K−1mk + αnk,k1nk

)
(59)

= mk − (1− rk)
[
K−K

(
K + diag(rkγ̃k−1)

−1)−1 K
] (

K−1mk + αnk,k1nk

)
(60)

= mk − (1− rk)
[
I−K

(
K + diag(rkγ̃k−1)

−1)−1] (mk + αnk,kκnk
) (61)

= mk − (1− rk)(I−KB−1k)(mk + αnk,kκnk
) (62)

where Bk := K + [diag(rkγ̃k−1)]
−1.

Since rkγ̃k−1 and γ̃k differ only slightly (by the new example gradient γnk
, we can instead use

the following approximate update:

mk+1 = mk − (1− rk)(I−KA−1k)(mk + αnk,kκnk
) (63)

where Ak := K + [diag(γ̃k)]
−1.

11

5 Closed-Form Updates for GLMs

We rewrite the lower bound as

−L(m,V) :=
N∑

n=1

fn(m̃n, ṽn)

︸ ︷︷ ︸
f(m,V)

+DKL[N (z|m,V) ‖N (z|0, I)]︸ ︷︷ ︸
h(m,V)

(64)

where fn(m̃n, ṽn) := −Eq[log p(yn|xTnz)] with m̃n := xTn and ṽn := xTnVxn. We can compute
a stochastic approximation to the gradient of f by randomly selecting an example nk (choosing
M = 1) and using a Monte Carlo gradient approximation to the gradient of fnk

. Similar to GP, we
define the following as our gradients of function fn:

αnk,k := N∇m̃nk
fnk

(m̃nk
, ṽnk

), γnk,k := 2N∇ṽnk
fnk

(m̃nk
, ṽnk

) (65)

The PG-SVI iteration can be written as follows:

(mk+1,Vk+1) = arg min
m,V�0

(m̃nαnk,k +
1
2 ṽnγnk,k) +DKL [N (z|m,V)||N (z|0, I)]

+
1

βk
DKL [N (z|m,V)||N (z|mk,Vk)] . (66)

Using a similar derivation to the GP model, we can show that the following updates will give us
the solution:

γ̃k = rkγ̃k−1 + (1− rk)γnk,k1nk
,

m̃k+1 = m̃k − (1− rk)(I−KA−1k)(mk + αnk,kκnk
),

ṽnk+1,k+1 = κnk+1,nk+1
− κTnk+1

A−1k κnk+1
, (67)

where K = XXT and m̃k := XTm.

6 Description of the Dataset for Binary GP Classification

Sonar Ionosphere USPS
of data points 208 351 1,781
of features 60 34 256
of training data points 165 280 884

7 Description of Algorithms for Binary GP Classification

We give implementation details of all the algorithms used for binary GP- classification experiment.
For all methods, we compute a stochastic estimate of the gradient by using a mini-batch size of

12

5, 5, and 20 for the three datasets: Sonar, Ionosphere, and USPS-3vs5 respectively. Similarly, the
number of MC samples used are 2000, 500, and 2000.

For GD, SGD, and all the adaptive methods, λ := {m,L} where L is the Cholesky factor of
V. The algorithmic parameters of these methods is given in Table 1. Below, we give details of
their updates.

For the GD method, we use the following update:

λk+1 = λk + α∇L(λk), (68)

where α is a fixed step-size.
For the SGD method, we use a stochastic gradient, instead of the exact gradient:

λk+1 = λk − αkgk, (69)

where αk = (k + 1)−κ is the step-size and gk := −∇̂L(λk).
We use the following updates for ADAGRAD:

sk = sk−1 + (gk � gk) , (70)

λk+1 = λk − α0

[
1√

sk + ε

]
� gk. (71)

where α0 is a fixed step-size and ε is a small constant used to avoid numerical errors.
We use the following update for RMSprop:

sk = ρsk−1 + (1− ρ) (gk � gk) , (72)

λk+1 = λk − α0

[
1√

sk + ε

]
� gk, (73)

where α0 is a fixed step-size and ρ is the decay factor.
We use the following updates for ADADELTA:

sk = ρsk−1 + (1− ρ) (gk � gk) , (74)

λk+1 = λk − gADk , where gADk = α0

(√
δk + ε√
sk + ε

)
� gk, (75)

δk+1 = ρδk + (1− ρ)
(
gADk � gADk

)
. (76)

where again α0 is a fixed step-size, and ρ is the decay factor.
Finally, the updates for ADAM are shown below:

µk = ρµµk−1 + (1− ρµ)gk, (77)

sk = ρssk−1 + (1− ρs) (gk � gk) , (78)

gs,k =

√
sk

1− ρks
, (79)

λk+1 = λk − α0

[
1

gs,k + ε

]
�
[

µk
1− ρkµ

]
. (80)

13

Table 1: Algorithmic parameters for Binary GP classification experiment (Figure 2 in the main
paper). N is the number of training examples.

Parameter Sonar Ionosphere USPS
SGD

κ 0.8 0.51 0.6
α0 ×N 1200 25 800

ADAGRAD
α0 4.5 4 8

RMSprop
α0 0.1 0.04 0.1
ρ 0.9 0.9999 0.9

ADADELTA
α0 1.0 0.1 1.0
1− ρ 5× 10−10 10−11 10−12

ADAM
α0 0.04 0.25 2.5
ρµ 0.9 0.9 0.9
ρs 0.999 0.999 0.999

PG-SVI
βk ×N 0.2 2.0 2.5

where α0 is a fixed step-size and ρµ, ρs are decay factors.

14

	Examples of Splitting for Variational-Gaussian Inference
	Gaussian Process (GP) Models
	Generalized Linear Models (GLMs)
	Correlated Topic Model (CTM)

	Proof of Proposition 1 and 2
	Proof of Proposition 3
	Derivation of Closed-Form Updates for the GP Model
	Full Update of Vk+1
	Avoiding a full update of Vk+1
	Update of m

	Closed-Form Updates for GLMs
	Description of the Dataset for Binary GP Classification
	Description of Algorithms for Binary GP Classification

