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1 Proofs

1.1 Proof of Proposition 2

Proposition 2. Assume that the true generative process is
y = β ·D−1Ax+ε for some constant β, where ε is a vector
with the noise terms. Moreover, assume that assumptions
A1-A5 hold and X and Y are scaled to mean 0. Then the
following holds:

ρ2(x′,y) > ρ2(y′,x)⇔
Var(AD−1Ax) +Var(Aε)

Var(D−1Ax) +Var(ε)
>

Var(Ax)

Var(x)
.

Proof.

ρ(x′,y) =ρ(Ax, D−1Ax+ ε) (1)

=
Cov(Ax, D−1Ax) + Cov(Ax, ε)

Var(Ax)
(
Var(D−1Ax) +Var(ε)

)
=

Cov(Ax, D−1Ax)

Var(Ax)
(
Var(D−1Ax) +Var(ε)

) (2)

ρ(y′,x) =ρ(AD−1Ax+D−1Aε,x) (3)

=
Cov(AD−1Ax,x) + Cov(x, D−1Aε)

Var(x)
(
Var(AD−1Ax) +Var(D−1Aε)

)
=

Cov(AD−1Ax,x)

Var(x)
(
Var(AD−1Ax) +Var(D−1Aε)

)
(4)

The covariance, given that the mean of X and Y is 0, is
equal to the inner product of the variables.

Cov(Ax, D−1Ax) = 〈Ax, D−1Ax〉 (5)

= x>A>D−1Ax (6)

= x>AD−1Ax (7)

Cov(AD−1Ax,x) = 〈AD−1Ax,x〉 (8)

= x>AD−1Ax (9)

Therefore, for the square of the correlations we can write:

ρ(x′,y) > ρ(y′,x)⇔
1

Var(Ax)
(
Var(D−1Ax) +Var(ε)

) >
1

Var(x)
(
Var(AD−1Ax) +Var(Aε)

) ⇔
Var(AD−1Ax) +Var(Aε

Var(D−1Ax) +Var(ε)
>

Var(Ax)

Var(x)

1.2 Proof of Proposition 3

Proof. Assume that the true generative structure is:

y ∼ D−1Az+ εy

x ∼ D−1Az+ εx

The covariance between Ax and Ay is then given by

Cov(Ax,Ay)

=Cov(AD−1Az+Aεy, AD
−1Az+Aεx)

=Cov(AD−1Az+Aεy, AD
−1Az)+

Cov(AD−1Az+Aεy, Aεx)

=Cov(AD−1Az, AD−1Az) + Cov(AD−1Az, Aεx)

=Cov(AD−1Az, AD−1Az)

The covariance between Ax and y, is given by:

Cov(Ax, y)

=Cov(AD−1Az+Aεx, D
−1Az+ εy)

=Cov(AD−1Az, D−1Az+ εy)+

Cov(Aεx, D
−1Az+ εy)

=Cov(AD−1Az, D−1Az) + Cov(D−1Az, εy)

=Cov(AD−1Az, D−1Az)

≤Cov(AD−1Az, AD−1Az)
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Figure 1: Schematic representation of dataset consisting of
presidential candidates, voters. The upper row consists of
four candidates and the bottom row of five voters. An undi-
rected edge indicates that a voter would consider voting for
the presidential candidate.

AD−1Az and D−1Az are bounded by the size of the inter-
section between the set of a node’s immediate neighbors
and the set of its two-hop neighbors, since we have as-
sumed z are marginally independent by construction. Each
pair of one hop and two hop neighborhoods will diverge for
at least the degree of the node for each node, since the two
hop walk beginning from node i will return to that node an
equal number of its degree, which implies the final inequal-
ity.

2 Confounding Experiments

In addition to the experiments presented in the main text for
determining the direction of dependence, we also empiri-
cally evaluated the efficacy of confounding detection. We
replicated the experimental settings described in sections
6.1 and 6.2, except in this case both x and y are drawn
using a direct dependence on a third variable z. We then
determined confounding by testing whether the covariance
betweenAx andAy was greater than both Cov(Ax,y) and
Cov(Ay,x). The results for regular graphs can be seen in
Figure 2. The confounding test is very robust across all of
these dimensions. There is only a slight decrease in accu-
racy in even the most adversarial settings of large degree
and high-noise generating scenarios. Figure 3 shows per-
formance as the noise level is increased, across three non-
regular graph generation algorithms. For two of the three
graph generation procedures (Watts-Strogatz and Barabasi-
Albert), there is near perfect performance. The Erdos-
Renyi graph performance is considerably poorer. We con-
jecture that this is due to the high connectivity (each node
is connected to approximately 20% of its neighbors), which
greatly reduces the effective sample size. We plan on in-
vestigating methods to address causal inference on high-
connectivity graphs as future work.
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Candidate

Intention
to 

vote
Ideology Agenda

Figure 4: Example relational model that consists of the un-
derlying relational schema (ER diagram) and a relational
dependency (depicted with an arrow).

3 Extension to Multi-Relational Domains

In the main paper, we focused on single-entity single-
relationship networks (using the example of a social net-
work where people are friends with other people). How-
ever, our results can generalize to the (more expressive)
fully relational case. Relational domains consist of mul-
tiple types of entities that interact with each other through
multiple types of relationships. For example, consider a do-
main that consists of two types of entities, presidential can-
didates and voters, and a single type of relationship, which
candidate will a voter vote for.

In this work, we adopt the framework of probabilistic rela-
tional models (PRMs) [Friedman et al., 1999; Heckerman
et al., 2007] to represent relational domains and reason over
them.. In what follows, we introduce the basic concepts and
notation for PRMs.

A relational schema specifies the set of entity classes
(E1, . . . , En) and the set of relationship classes
(R1, . . . , Rm) of a domain. Relationship classes are
ordered tuples of entity classes. Every entity and rela-
tionship class is associated with a set of attributes and a
set of reference slots. We use the notation C.A to denote
that A is an attribute of class C. A reference slot for a
relationship class corresponds to an entity that participates
in the relationship. Conversely, a reference slot for an
entity, is a relationship it participates in. The notation C.ρ
is used to denote the reference slot ρ of class C. Reference
slots can be combined to form a slot chain, τ = ρ1 · · · ρk.
A relational schema can be graphically represented with
an Entity-Relationship (ER) diagram.

Figure 4 shows an example ER diagram for the domain
of voters and candidates. The relational schema for
that domain consists of two entity classes, Voter and
Candidate , and one relationship class, IntentionToVote.
The entity class Voter has one attribute, Ideology ,
and the entity class Candidate has one attribute,
Agenda . The entity class Voter has a reference slot
Voter .IntentionToVote and the entity class Candidate
has a reference slot Candidate.IntentionToVote.
The relationship class IntentionToVote has
two reference slots IntentionToVote.Voter and
IntentionToVote.Candidate . Crow’s feet notation
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Figure 2: Accuracy detecting confounding for regular graphs for varying degree (3a), size of network (3b), and noise
coefficient (3c).
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Figure 3: Orientation accuracy for different types of networks graphs for varying noise.

is used to denote that the IntentionToVote relationship
is many-to-many, i.e., a voter might intend to vote for
multiple candidates and a candidate can be voted by
multiple voters.

A relational skeleton is a partial instantiation of a relational
schema that specifies the set of entity and relationship in-
stances that exist in the domain. Figure 1 depicts an exam-
ple relational skeleton for the domain described in Figure 4.
It consists of five Voter instances and four Candidate in-
stances.

A probabilistic relational model consists of a dependence
structure, D, and a set of parameters associated with
it, θD. The dependence structure specifies for every
attribute C.X of the relational schema a set of parents,
Pa(C.X). The parents of an attribute C.A are other
attributes, either in the same class C (for example C.A′),
or on a different class, reachable through some slot
chain τ (for example C.τ.A′′). In our example, a depen-
dence structure could be Pa(Candidate.Agenda) =
Candidate.IntentionToVote.Voter .Ideology and
Pa(Voter .Ideology) = ∅, shown in Figure 4. This

means that the agenda of a candidate is affected by the
ideology of his/her potential voters, while nothing affects
a voter’s ideology. Finally, a ground graph can be con-
structed by applying the dependencies of a probabilistic
relational model to a relational skeleton.

We refer to variables of the form C.X as propositional
variables and to variables of the form C.τ.X as rela-
tional variables. It is worth noting that relational vari-
ables, when instantiated, might produce a set of values.
For example, Candidate.Agenda is a propositional vari-
able and Candidate.IntentionToVote.Voter .Ideology is
a relational variable. The instantiation of this relational
variable for a given candidate consists of the set of ideol-
ogy scores for all voters that would vote for that candidate.
In this work, we are concerned with detecting dependence
between a propositional variable C.X and a relational vari-
able C.τ.X .

The results presented in the main text can be extended
for the fully relational case. For the case of single-entity
single-relationship networks, we required regular graphs,
i.e., graphs where every node has the same degree. Simi-



lar regularity assumptions can be made for the case of fully
relational graphs.
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