A LIST OF NOTATION

:=	defined to be equal
.— ℕ	the natural numbers, starting with 0
$\Delta \mathcal{Y}$	the set of all probability distributions on \mathcal{Y}
$\frac{-3}{\chi^*}$	the set of all finite strings over the alphabet
	\mathcal{X}
\mathcal{X}^{∞}	the set of all infinite strings over the alpha-
	bet \mathcal{X}
\mathcal{A}	the (finite) set of possible actions
E	the (finite) set of possible percepts
α, β	two different actions, $\alpha, \beta \in \mathcal{A}$
a_t	the action in time step t
e_t	the percept in time step t
r_t	the reward in time step t , bounded between
U	0 and 1
$x_{< t}$	the history up to time $t - 1$, i.e., the first
	$t-1$ interactions, $a_1e_1a_2e_2\ldots a_{t-1}e_{t-1}$
ϵ	the history of length 0
ε	a small positive real number
γ	the discount function $\gamma: \mathbb{N} \to \mathbb{R}_{\geq 0}$
Γ_t	a discount normalization factor, Γ_t :=
	$\sum_{i=t}^{\infty} \gamma_i$
$H_t(\varepsilon)$	the ε -effective horizon, defined in (1)
π	a (stochastic) policy, i.e., a function π :
	$(\mathcal{A} \times \mathcal{E})^* \to \Delta \mathcal{A}$
$\pi^*_{ u}$	an optimal policy for environment ν
V^{π}_{ν}	value of the policy π in environment ν
n,k,i	natural numbers
t	(current) time step
m	time step at the end of an effective horizon
\mathcal{M}	a countable class of environments
$ u, \mu, ho$	environments from \mathcal{M} , i.e., functions ν :
	$(\mathcal{A} \times \mathcal{E})^* \times \mathcal{A} \to \Delta \mathcal{E}; \mu \text{ is the true envi-}$
	ronment
ξ	Bayesian mixture over all environments in
	\mathcal{M}

B OMITTED PROOFS

Let P and Q be two probability distributions. We say P is absolutely continuous with respect to Q ($P \ll Q$) iff Q(E) = 0 implies P(E) = 0 for all measurable sets E. If $P \ll Q$ then there is a function dP/dQ called Radon-Nikodym derivative such that

$$\int f dP = \int f \frac{dP}{dQ} dQ$$

for all measurable functions f. This function dP/dQ can be seen as a density function of P with respect to the background measure Q.

Proof of Lemma 2. Let P, R, and Q be probability measures with $P \ll Q$ and $R \ll Q$ (we can take Q :=

P/2 + R/2), let dP/dQ and dR/dQ denote their Radon-Nikodym derivative with respect to Q, and let X denote a random variable with values in [0, 1]. Then

$$\int XdP - \int XdR = \int \left(X \frac{dP}{dQ} - X \frac{dR}{dQ} \right) dQ$$

$$\leq \int_A X \left(\frac{dP}{dQ} - \frac{dR}{dQ} \right) dQ$$

with $A := \left\{ x \mid \frac{dP}{dQ}(x) - \frac{dR}{dQ}(x) \ge 0 \right\}$
$$\leq \int_A \left(\frac{dP}{dQ} - \frac{dR}{dQ} \right) dQ$$

$$= P(A) - R(A)$$

$$\leq \sup_A |P(A) - R(A)| = D(P, R)$$

From this also follows $\int X dR - \int X dP \leq D(R, P)$, and since D is symmetric we get

$$\left| \int XdP - \int XdR \right| \le D(P,R). \tag{9}$$

According to Definition 1, the value function is the expectation of the random variable $\sum_{k=t}^{m} \gamma_k r_k / \Gamma_t$ that is bounded between 0 and 1. Therefore we can use (9) with $P := \nu^{\pi_1} (\cdot \mid \boldsymbol{x}_{< t})$ and $R := \rho^{\pi_2} (\cdot \mid \boldsymbol{x}_{< t})$ on the space $(\mathcal{A} \times \mathcal{E})^m$ of the histories of length $\leq m$ to conclude that $|V_{\nu}^{\pi_1,m}(\boldsymbol{x}_{< t}) - V_{\rho}^{\pi_2,m}(\boldsymbol{x}_{< t})|$ is bounded by $D_m(\nu^{\pi_1}, \rho^{\pi_2} \mid \boldsymbol{x}_{< t})$.

Proof of Lemma 5. From Blackwell-Dubins' theorem [BD62] we get $D_{\infty}(\mu^{\pi}, \xi^{\pi} | \boldsymbol{x}_{< t}) \to 0 \ \mu^{\pi}$ -almost surely, and since D is bounded, this convergence also occurs in mean. Thus for every environment $\nu \in \mathcal{M}$,

$$\mathbb{E}_{\nu}^{\pi} \left[D_{\infty} (\nu^{\pi}, \xi^{\pi} \mid \boldsymbol{x}_{< t}) \right] \to 0 \text{ as } t \to \infty.$$
 (10)

Now

$$\begin{split} & \mathbb{E}_{\mu}^{\pi}[F_{\infty}^{\pi}(\boldsymbol{x}_{< t})] \\ & \leq \frac{1}{w(\mu)} \mathbb{E}_{\xi}^{\pi}[F_{\infty}^{\pi}(\boldsymbol{x}_{< t})] \\ & = \frac{1}{w(\mu)} \mathbb{E}_{\xi}^{\pi} \left[\sum_{\nu \in \mathcal{M}} w(\nu \mid \boldsymbol{x}_{< t}) D_{\infty}(\nu^{\pi}, \xi^{\pi} \mid \boldsymbol{x}_{< t}) \right] \\ & = \frac{1}{w(\mu)} \mathbb{E}_{\xi}^{\pi} \left[\sum_{\nu \in \mathcal{M}} w(\nu) \frac{\nu^{\pi}(\boldsymbol{x}_{< t})}{\xi^{\pi}(\boldsymbol{x}_{< t})} D_{\infty}(\nu^{\pi}, \xi^{\pi} \mid \boldsymbol{x}_{< t}) \right] \\ & = \frac{1}{w(\mu)} \sum_{\nu \in \mathcal{M}} w(\nu) \mathbb{E}_{\nu}^{\pi} \left[D_{\infty}(\nu^{\pi}, \xi^{\pi} \mid \boldsymbol{x}_{< t}) \right] \to 0 \end{split}$$

by [Hut05, Lem. 5.28ii] since total variation distance is bounded. $\hfill \Box$

Proof of Lemma 12. By Assumption 10a we have $\gamma_t > 0$ for all t and hence $\Gamma_t > 0$ for all t. By Assumption 10b have that γ is monotone decreasing, so we get for all $n \in \mathbb{N}$

$$\Gamma_t = \sum_{k=t}^{\infty} \gamma_k \leq \sum_{k=t}^{t+n-1} \gamma_t + \sum_{k=t+n}^{\infty} \gamma_k = n\gamma_t + \Gamma_{t+n}.$$

And with $n := H_t(\varepsilon)$ this yields

$$\frac{\gamma_t H_t(\varepsilon)}{\Gamma_t} \ge 1 - \frac{\Gamma_{t+H_t(\varepsilon)}}{\Gamma_t} \ge 1 - \varepsilon > 0.$$
(11)

In particular, this bound holds for all t and $\varepsilon > 0$.

Next, we define a series of nonnegative weights $(b_t)_{t\geq 1}$ such that

$$\sum_{t=t_0}^m d_k = \sum_{t=t_0}^m \frac{b_t}{\Gamma_t} \sum_{k=t}^m \gamma_k d_k.$$

This yields the constraints

$$\sum_{k=t_0}^t \frac{b_k}{\Gamma_k} \gamma_t = 1 \quad \forall t \ge t_0.$$

The solution to these constraints is

$$b_{t_0} = \frac{\Gamma_{t_0}}{\gamma_{t_0}}$$
, and $b_t = \frac{\Gamma_t}{\gamma_t} - \frac{\Gamma_t}{\gamma_{t-1}}$ for $t > t_0$. (12)

Thus we get

$$\sum_{t=t_0}^{m} b_t = \frac{\Gamma_{t_0}}{\gamma_{t_0}} + \sum_{t=t_0+1}^{m} \left(\frac{\Gamma_t}{\gamma_t} - \frac{\Gamma_t}{\gamma_{t-1}}\right)$$
$$= \frac{\Gamma_{m+1}}{\gamma_m} + \sum_{t=t_0}^{m} \left(\frac{\Gamma_t}{\gamma_t} - \frac{\Gamma_{t+1}}{\gamma_t}\right)$$
$$= \frac{\Gamma_{m+1}}{\gamma_m} + m - t_0 + 1$$
$$\leq \frac{H_m(\varepsilon)}{1 - \varepsilon} + m - t_0 + 1$$

for all $\varepsilon > 0$ according to (11).

Finally,

$$\sum_{t=1}^{m} d_t \leq \sum_{t=1}^{t_0} d_t + \sum_{t=t_0}^{m} \frac{b_t}{\Gamma_t} \sum_{k=t}^{m} \gamma_k d_k$$
$$\leq t_0 + \sum_{t=t_0}^{m} \frac{b_t}{\Gamma_t} \sum_{k=t}^{\infty} \gamma_k d_k - \sum_{t=t_0}^{m} \frac{b_t}{\Gamma_t} \sum_{k=m+1}^{\infty} \gamma_k d_k$$

and using the assumption (5) and $d_t \ge -1$,

$$< t_0 + \sum_{t=t_0}^m b_t \varepsilon + \sum_{t=t_0}^m \frac{b_t \Gamma_{m+1}}{\Gamma_t}$$
$$\leq t_0 + \frac{\varepsilon H_m(\varepsilon)}{1-\varepsilon} + \varepsilon (m-t_0+1) + \sum_{t=t_0}^m \frac{b_t \Gamma_{m+1}}{\Gamma_t}$$

For the latter term we substitute (12) to get

$$\sum_{t=t_0}^{m} \frac{b_t \Gamma_{m+1}}{\Gamma_t} = \frac{\Gamma_{m+1}}{\gamma_{t_0}} + \sum_{t=t_0+1}^{m} \left(\frac{\Gamma_{m+1}}{\gamma_t} - \frac{\Gamma_{m+1}}{\gamma_{t-1}}\right)$$
$$= \frac{\Gamma_{m+1}}{\gamma_m} \le \frac{H_m(\varepsilon)}{1-\varepsilon}$$

with (11).