A General Statistical Framework for Designing Strategy-proof Assignment Mechanisms

Appendix

A Generalization Bounds

For a rule class \mathcal{F}_i with finite Natarajan dimension of at most D, the following result relates the empirical and population 0-1 errors of any rule in \mathcal{F}_i : w.p. at least $1 - \delta$ (over draw of S), for all $f_i \in \mathcal{F}_i$,

$$\left| \mathbf{E}_{\theta \sim \mathcal{D}} \Big[\mathbf{1} \Big(g_i(\theta) \neq f_i(\theta) \Big) \Big] - \frac{1}{N} \sum_{k=1}^N \mathbf{1} \Big(y^k \neq f_i(\theta^k) \Big) \right| \leq \mathcal{O} \bigg(\sqrt{\frac{D \ln(m) + \ln(1/\delta)}{N}} \bigg).$$
(6)

The proof is involves a reduction to binary classification, and an application of a VC dimension based generalization bound (see for example proof of Theorem 4 in [21]; also see Eq. (6) in [21]). It is straightforward to extend the above result to a similar bound on the Hamming error metric of an outcome rule $f \in \mathcal{F}$:

Lemma 10. With probability at least $1 - \delta$ (over draw of $S \sim \mathcal{D}^N$), for all $f \in \mathcal{F}$,

$$\left| \mathbf{E}_{\theta \sim \mathcal{D}} \Big[\ell \big(g(\theta), f(\theta) \big) \Big] - \frac{1}{N} \sum_{k=1}^{N} \ell \big(y^k, f(\theta^k) \big) \right| \leq \mathcal{O} \bigg(\sqrt{\frac{D \ln(m) + \ln(n/\delta)}{N}} \bigg).$$

Proof. We would like to bound:

$$\sup_{f\in\mathcal{F}} \left| \mathbf{E}_{\theta\sim\mathcal{D}} \Big[\ell \big(g(\theta), f(\theta) \big) \Big] - \frac{1}{N} \sum_{k=1}^{N} \ell \big(y^k, f(\theta^k) \big) \right| \\ \leq \frac{1}{n} \sum_{i=1}^{n} \sup_{f_i\in\mathcal{F}_i} \left| \mathbf{E} \Big[\mathbf{1} \big(g_i(\theta) \neq f_i(\theta) \big) \Big] - \frac{1}{N} \sum_{k=1}^{N} \mathbf{1} \big(y^k \neq f_i(\theta^k) \big) \right|.$$

Applying (6) to the above expression, along with a union bound over all *i*, gives us the desired result.

B Proofs

B.1 Complete Proof of Lemma 5

Proof. For any $f : \Theta \to \Omega$, define a binary function $G_f : \Theta \to \{0, 1\}$ as $G_f(\theta) = \mathbf{1}(f_1(\theta) \neq \ldots \neq f_n(\theta))$. Clearly, f is feasible on S iff G_f evaluates to 1 on all type profiles in S, and feasible on all type profiles iff G_f evaluates to 1 on all type profiles.

Treating G_f as a binary classifier, the desired result can be derived using standard VC dimension based learnability results for binary classification [22], with the loss function being the 0-1 loss against a labeling of 1 on all profiles. Let $\mathcal{G} = \{G_f : \Theta \rightarrow \{0,1\} : f \in \mathcal{F}\}$ be the set of all such binary classifiers. Also, $\epsilon_{\text{infeasible}} = \mathbf{E}_{\theta \sim \mathcal{D}} [\mathbf{1}(G_{\hat{f}}(\theta) \neq 1))$. We then wish to bound the expected 0-1 error of a classifier $G_{\hat{f}}$ from \mathcal{G} that outputs 1 on all type profiles in S.

We first bound the VC dimension of \mathcal{G} . Since each \mathcal{F}_i has a Natarajan dimension of at most D, we have from Lemma 11 in [21] that the maximum number of ways a set of N profiles can be labeled by \mathcal{F}_i with labels [m] is at most $N^D m^{2D}$. Since each G_f is a function solely of the outputs of f_1, \ldots, f_n , the number of ways a set of N profiles can be labeled by \mathcal{G} with labels $\{0, 1\}$ is at most $(N^D m^{2D})^n$.

The VC dimension of \mathcal{G} is then given by the maximum value of N for which $2^N \leq (Nm^2)^{nD}$. We thus have that the VC dimension is at most $\mathcal{O}(nD\ln(mnD))$.

Since $\mathcal{F}_{SP} \neq \phi$, there always exists a function G_f consistent with a labeling of 1 on all profiles. A standard VC dimension based argument then gives us the following guarantee for the outcome rule \hat{f} that is feasible on sample S: w.p. at least $1 - \delta$ (over draw of S),

$$\epsilon_{\text{infeasible}} = \mathbf{E}_{\theta \sim \mathcal{D}} \Big[\mathbf{1} \Big(G_{\hat{f}}(\theta) \neq 1 \big) \Big) \quad \leqslant \quad \mathcal{O} \bigg(\frac{n D \ln(mnD) \ln(N) + \ln(1/\delta)}{N} \bigg),$$

which implies the statement of the lemma.

B.2 Proof of Theorem 7

Proof. Let $\mathbf{w}_i = [\underbrace{1, 1, \dots, 1}_{(n-1) \times m}, \underbrace{-1, -1, \dots, -1}_{n-1}]$. We first show that the corresponding payments are non-negative.

$$\begin{split} t_i^{\mathbf{w}}(\theta_{-i}, o) &= \mathbf{w}_i^\top \bar{\Psi}_i(\theta_{-i}, o) \\ &= \sum_{j \neq i} \sum_{o'=1}^m v_j(\theta_j, o') - \sum_{j \neq i} v_j(\theta_j, y_j^{\setminus i, o}) \\ &= \sum_{j \neq i} \sum_{o' \neq y_i^{\setminus i, o}} v_j(\theta_j, o') \ge 0. \end{split}$$

We next show that the outcome rule $f^{\mathbf{w}}$ is feasible, and in particular, outputs a welfare-maximizing assignment. Note that $f_i^{\mathbf{w}}(\theta)$ can output any one of the following items:

$$\begin{split} \mathcal{I}_{i} &= \underset{o \in [m]}{\operatorname{argmax}} \{ v_{i}(\theta_{i}, o) - \mathbf{w}_{i}^{\top} \bar{\Psi}_{i}(\theta_{-i}, o) \} \\ &= \underset{o \in [m]}{\operatorname{argmax}} \{ v_{i}(\theta_{i}, o) + \underset{j \neq i}{\sum} v_{j}(\theta_{j}, y_{j}^{\setminus i, o}) - \underbrace{\sum_{j \neq i} \sum_{o'=1}^{m} v_{j}(\theta_{j}, o')}_{T_{-i}} \} \\ &= \underset{o \in [m]}{\operatorname{argmax}} \{ \underset{y \in \Omega, \ y_{i} = o}{\max} \{ \sum_{i=1}^{n} v_{i}(\theta_{i}, y_{i}) \} \}, \end{split}$$

where T_{-i} is a term independent of agent *i*'s valuations and the item *o* over which the argmax is taken. If the above max is achieved by more than one item, then the individual functions $f_i^{\mathbf{w}}$ may not pick distinct items. However, in each of the following feasible assignments, agent *i* is assigned an optimal item from \mathcal{I}_i : $\operatorname{argmax}_{y \in \Omega} \{ \sum_{i=1}^n v_i(\theta_i, y_i) \}$. Thus \hat{f} is feasible as long as it uses a tie-breaking scheme that picks an assignment from this set. Such a tie-breaking scheme will not violate the agent-independence condition, as the agents continue to receive an optimal item based on their agent-independent prices.

B.3 Proof for Theorem 8

Proof. For ease of presentation, we omit the subscript *i* whenever clear from context. Let $A \subseteq \Theta$ be a set of *N* profiles N-shattered by $\widetilde{\mathcal{F}}^{\Psi}$. Then there exists labelings $L_1, L_2 : A \to [m]$ that disagree on all profiles in *A* such that for all $B \subseteq A$, there is a **w** with $f^{\mathbf{w}}(\theta) = L_1(\theta), \forall \theta \in B$ and $f^{\mathbf{w}}(\theta) = L_2(\theta), \forall \theta \in A \setminus B$.

To bound the Natarajan dimension of $\widetilde{\mathcal{F}}^{\Psi}$, define $\xi^{\mathbf{w}} : \Theta \to \{0, 1\}$ that for any $\theta \in \Theta$ outputs 1 if $f^{\mathbf{w}}(\theta) = L_1(\theta)$ and 0 otherwise. Then for all subsets *B* of a *N*-shattered set *A*, there is a \mathbf{w} with $\xi^{\mathbf{w}}(\theta) = 1, \forall \theta \in B$ and $\xi^{\mathbf{w}}(\theta) = 0, \forall \theta \in A \setminus B$. This implies that if a set is N-shattered by $\widetilde{\mathcal{F}}^{\Psi}$, it is (binary) shattered by the class $\{\xi^{\mathbf{w}} : \mathbf{w} \in \mathbb{R}^d\} = \Xi$ (say). Thus the size of the largest set N-shattered by $\widetilde{\mathcal{F}}^{\Psi}$ is no larger than the size of the largest set (binary) shattered by Ξ . The Natarajan dimension of $\widetilde{\mathcal{F}}^{\Psi}$ is therefore upper bounded by the VC dimension of Ξ .

What remains is to bound the VC dimension of Ξ . Note that $\xi^{\mathbf{w}}(\theta) = 1$ only when $\mathbf{w}^{\top} \Psi_i(\theta_{-i}, L_1(\theta)) \leq 1$ and $L_1(\theta) \geq_i o, \forall o \in \{o' \in [m] : \mathbf{w}^{\top} \Psi_i(\theta_{-i}, o') \leq 1\}$. Also note that when $\theta \in \Theta$ is fixed, the output of $\xi^{\mathbf{w}}(\theta)$ for different $\mathbf{w} \in \mathbb{R}^d$ is solely determined by the value of the binary vector $[\mathbf{1}(\mathbf{w}^{\top} \Psi_i(\theta_{-i}, o) \leq 1)]_{o=1}^m \in \{0, 1\}^m$. Thus the number of ways a fixed set $A \subseteq \Theta$ can be labeled by Ξ cannot be larger than the number of ways A can be labeled with the binary vectors $[\mathbf{1}(\mathbf{w}^{\top} \Psi_i(\theta_{-i}, o) \leq 1)]_{o=1}^m \in \{0, 1\}^m$ for different $\mathbf{w} \in \mathbb{R}^d$.

Each entry of the above binary vector can be seen as a linear separator. Given that the VC dimension of linear separators in \mathbb{R}^d (with a constant bias term) is d, by Sauer's lemma, the number of ways a set of N profiles can be labeled by a single entry $\mathbf{1}(\mathbf{w}^{\top}\Psi_i(\theta_{-i}, o) \leq 1)$ is at most $(Ne)^d$. The total number of ways the set can be labeled with binary vectors of the above form is at most $(Ne)^{md}$. The VC dimension of Ξ is then the largest N for which $2^N \leq (Ne)^{md}$. We thus get that the VC dimension of Ξ is at most $\mathcal{O}((md) \ln(md))$, as desired.

B.4 Proof of Theorem 9

Proof. Fix a priority $\pi : [n] \to [n]$ over the agents, where $\pi(i)$ denotes the priority to agent *i* (with 1 indicating the lowest priority, and *n* indicating the highest). Define $\mathbf{w}_i \in \mathbb{R}^{n \times m}$ as follows: for $j \in [n], k \in [m]$,

$$w_i[j,k] = \begin{cases} 2 & \pi(j) > \pi(i), \ k \ge m - n + \pi(j) \\ 0 & \text{otherwise.} \end{cases}$$

We show that the resulting outcome rule is a feasible serial dictator style mechanism where the agents are served according to the priority ordering π . We show this for the case when m = n. The proof easily extends to the case where this is not true.

Recall that the entry (j, k) for $j \neq i$ in the feature map $\widetilde{\Psi}_i(\theta_{-i}, o)$ is 1 when agent j assigns a rank of k to item o, i.e. $\operatorname{rank}_j(\theta_j, o) = k$. One can then observe that virtual price function, $t_i^{\operatorname{vir}, \mathbf{w}}(\theta_{-i}, o) = \mathbf{w}_i^\top \widetilde{\Psi}_i(\theta_{-i}, o) \geq 2$ whenever an agent with a higher priority assigns item o a rank greater or equal to its priority level, i.e. whenever $\operatorname{rank}_j(\theta_j, o) \geq \pi(j)$ for some j with $\pi(j) > \pi(i)$. The item o is then not affordable to agent i, as the virtual price exceeds a budget of 1.

The resulting outcome rule is similar to a serial dictatorship mechanism and serves the agents according to the priorities π : agent $\pi^{-1}(1)$ affords all items; agent $\pi^{-1}(2)$ affords all but the item most-preferred by agent $\pi^{-1}(1)$; agent $\pi^{-1}(3)$ affords all items except the most-preferred item by agent $\pi^{-1}(1)$, and the first- and second-most preferred items by agent $\pi^{-1}(2)$; and so on. Thus the most-preferred affordable item for a given agent is always unaffordable for lower priority agents. Since each agent receives its most-preferred affordable item (and is unassigned if it cannot afford any), there are no conflicts in assignments.