
A Proof of validity for Recycled ESS

We give the complete proof of validity of Recycled
ESS here. The Markov chain at step i has state space
{x(i)
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, ...,x
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}. We prove that it converges to the station-
ary distribution with each element identically distributed
according to the target distribution p

⇤.
Lemma A.1. Let T
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applications of line 9 of Algorithm 1). Then T
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where p(y|x(i�1)
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) = 1/L(x(i�1)
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). We show that the algo-
rithm is reversible i.e.
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where
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To prove Equation (5), we first show that:
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The argument is as follows: probability of the first angle
✓

j,1

is always 1/2⇡. The intermediate angles were drawn
with probabilities 1/(✓
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) where (✓
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denotes the angle bracket for ✓
j,k

. Whenever the bracket
was shrunk, it was done so that x̂(i)

j

remained selectable.
Now lets consider the reverse transitions starting from x̂

(i)

j

.
The reverse transitions begin by drawing the same thresh-
old y and then make the same intermediate proposals. This
involves making the same shrinking decisions as forward
transitions. Since same angle brackets (

ˆ
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,

ˆ
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) are
sampled, the probabilities for drawing angles in forward
and reverse transitions remains the same.

Additionally, we use the fact that
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as x̂
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and ⌫̂ are simply obtained by rotations of x
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and ⌫ by ˆ
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. This combined with the result in equation(6)
proves equation(5) and shows that T

j

is invariant to p

⇤.


