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1 Proof of Convergence

Proof of Theorem 1
Proof. Let Fc := σ{Iτp : p = 1, . . . , P, τ = 1, . . . , c} be the filtration generated by the random samplings Iτp up to
iteration counter c, i.elet@tokeneonedot, the information up to iteration c. Note that for all p and c, Wc

p and Wc are
Fc−1 measurable (since τ qp (c) ≤ c− 1 by assumption), and Icp is independent of Fc−1. Recall that the partial update
generated by machine p at its c-th iteration is

Up(W
c
p, I

c
p) = −ηc|Sp|

∑
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∇fj(Wc
p)

Then it holds that
Up(W

c
p) = E[Up(Wc
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p)|Fc−1] = −ηc∇Fp(Wc

p)

(Note that we have suppressed the dependence of Up on the iteration counter c.)
Then, we have
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Similarly we have
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The variance term in the above equality can be bounded as∑P
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Now use the update rule Wc+1
p = Wc

p +
∑P
p=1 Up(W
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p) and the descent lemma [1], we have
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Then take expectation on both sides, we obtain
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Now take expectation w.r.t all random variables, we obtain
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Next we proceed to bound the term E‖
∑P
p=1 Up(W

c
p)‖‖Wc −Wc

p‖. We list the auxiliary update rule and the
local update rule here for convenience.
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Now subtract the above two and use the bounded delay assumption 0 ≤ (c− 1)− τ qp (c) ≤ s, we obtain
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where the last inequality follows from the facts that ηc is strictly decreasing, and ‖
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Now plug this into the previous result in (6):
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Sum both sides over c = 0, ..., C:
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After rearranging terms we finally obtain∑C
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It then follows that
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where we ignore the higher order term (LF /2 + 2L(s + 1))η2c in the last equation for simplicity, and this does not
affect the order of the final estimate since we will use a diminishing stepsize ηc = O(1/

√
c). Now we can apply [2,

Theorem 4.2] to the last equation to conclude that
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Hence, we must have
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proving the first claim.
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By assumption the sequences {Wc
p}p,c and {Wc}c are bounded and the gradient of fj is continuous, thus ∇fj(Wt
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is bounded. Now take c → ∞ in the above inequality and notice that lim
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Lastly, the Lipschitz continuity of∇Fp further implies
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Thus there exists a common limit point of Wc,Wc
p that is a stationary point almost surely. The proof is now complete.

2 Sample Code for Sparse Coding
Figure 2 shows the sample code of implementing sparse coding in SFB. D is the feature dimensionality of data and J
is the dictionary size. Users need to write a SF computation function to specify how to compute the sufficient factors:
for each data sample xi, we first compute its sparse code a based on the dictionary B stored in the parameter matrix
sc.para mat. Given a, the sufficient factor u can be computed as Ba − xi and the sufficient factor v is simply a. In
addition, users need to provide a proximal operator function to specify how to project B to the `2 ball constraint set.

3 Implementation Details
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Figure 2: Implementation details on each worker in SFB.

sfb app sc ( int D, int J , int staleness)
//SF computation function
function compute sf ( sfb app sc ):

while ( ! converge ):
X=sample minibatch ()
foreach xi in X:

//compute sparse code
a = compute sparse code ( sc.para mat, xi )
//sufficient factor ui
sc.sf list[i].write u ( sc.para mat * a-xi )
//sufficient factor vi
sc.sf list[i].write v ( a )

commit()
//Proximal operator function
function prox ( sfb app sc ):

foreach column bi in sc.para mat:
if ‖bi‖2 > 1:
bi =

bi

‖bi‖2

Figure 1: Sample code of sparse coding in SFB

Figure 2 shows the implementation details on
each worker in SFB. Each worker maintains three
threads: SF computing thread, parameter update
thread and communication thread. Each worker
holds a local copy of the parameter matrix and
a partition of the training data. It also maintains
an input SF queue which stores the sufficient fac-
tors computed locally and received remotely and
an output SF queue which stores SFs to be sent
to other workers. In each iteration, the SF com-
puting thread checks the consistency policy de-
tailed in the main paper. If permitted, this thread
randomly chooses a minibatch of samples from
the training data, computes the SFs and pushes
them to the input and output SF queue. The pa-
rameter update thread fetches SFs from the input
SF queue and uses them to update the parame-
ter matrix. In proximal-SGD/SDCA, the proxi-
mal/dual operator function (provided by the user)
is automatically called by this thread as a function
pointer. The communication thread receives SFs
from other workers and pushes them into the input
SF queue and broadcasts SFs in the output SF queue to other workers. One worker is in charge of measuring the
objective value. Once the algorithm converges, this worker notifies all other workers to terminate the job. We imple-
mented SFB in C++. OpenMPI was used for communication between workers and OpenMP was used for multicore
parallelization within each machine.

The decentralized architecture of SFB makes it robust to machine failures. If one worker fails, the rest of workers
can continue to compute and broadcast the sufficient factors among themselves. In addition, SFB possesses high
elasticity [3]: new workers can be added and existing workers can be taken offline, without restarting the running
framework. A thorough study of fault tolerance and elasticity will be left for future work.
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Figure 3: Convergence time versus model size for MLR, DML, SC, L2-MLR (left to right), under SSP with stale-
ness=20.
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Figure 4: SFB scalability with varying machines, for MLR, DML, SC, L2-MLR (left to right), under SSP with
staleness=20.

4 Additional Experiment Results
Figure 3 shows the convergence time versus model size for MLR, DML, SC, L2-MLR, under SSP with staleness=20.
Figure 4 shows SFB scalability with varying machines under SSP with staleness=20, for MLR, DML, SC, L2-MLR.
Figure 5 shows the iteration throughput (left) and iteration quality (right) for MLR, under SSP (staleness=20). The
minibatch size was set to 100 for both SFB and FMS. As can be seen from the rightmost graph, SFB has a lightly
worse iteration quality than FMS. The reason we conjecture is that the centralized architecture of FMS is more robust
and stable than the decentralized architecture of SFB. On the other hand, the iteration throughput of SFB is much
higher than FMS as shown in the leftmost graph. Figure 6 shows the convergence time of MLR and L2-MLR versus
varying Q in partial broadcasting, under SSP (staleness=20). Figure 7 shows the communication volume of four
models under BSP. As shown in the figure, the communication volume of SFB is significantly lower than FMS and
Spark. Under the BSP consistency model, SFB and FMS share the same iteration quality, hence need the same number
of iterations to converge. Within each iteration, SFB communicates vectors while FMS transmits matrices. As a result,
the communication volume of SFB is much lower than FMS.
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Figure 5: MLR iteration throughput (left) and iteration quality (right) for MLR under SSP (staleness=20).
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