
A Technical Proof

We prove Theorem 4 and Theorem 9 in this section.

A.1 Proof of Theorem 4

We follows Dai et al. (2014) to decompose the error
into two terms,

|ft(x)− f∗(x)|2 ≤ 2|ft(x)− ht(x)|2 + 2κ‖ht − f∗‖2H,

where

ht(·) = Eω[ft(·)] = Eω[

t∑
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(·)] =

t∑
i=1

aitξωi
(·).

Lemma 1. (Dai et al., 2014) Assume `′(u, y) is L-
Lipschitz continuous in terms of u ∈ R. Let f∗ be
the optimal solution to our target problem. Then if
we set γt = θ

t with θ such that θν ∈ (1, 2) ∪ Z+, and
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(
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)
≤ C2

t then

EDt,ωt
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where

S = max

{
‖f∗‖H ,

Q+
√
Q2+Z(1+θν)2θ2κM2

Z

}
,

Z = 2λθ − 1, Q =
√

2κ1/2LCθ.

With Lemma 1, the remaining task is to bound
EDt,ωt

(
|ft+1(x)− ht+1(x)|2

)
. We define the following

terms to simplify the notations.

Definition 2. • G = {x|(x − 1) mod (G + U) <
G and 1 ≤ x ≤ t}.

• Gk = {x|x ∈ G and dx/(G+ U)e = k}.

• Uk = {x|x /∈ G, dx/(G+ U)e = k and 1 ≤ x ≤ t}.

• δi(x) = ζt(x)− ξt(x)

• Vi(x) = aitδi(x) ≤ ci = |ait|u, where u = 2M(φ +
κ).

By definition, we have EDt,ωt
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)
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)2]
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 .
Applying Lemma 3, 5 and 6 to bound each term yields
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where the second inequality is by Lemma 7.

Lemma 3. If i ∈ Uk, then

E
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Vi(x)

)2
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U(U − 1)θ2u2

Bk2t2
.

Proof. By expanding the quadratic term in the expec-
tation,
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The second inequality is by Definition 2 and the third
inequality is by Lemma 8 and Lemma 4.



Lemma 4. (Dai et al., 2014) Suppose γi = θ
i , where

1 ≤ i ≤ t and θν ∈ (1, 2) ∪ Z+, then a
i
t ≤ θ

t .

Lemma 5. If i ∈ Uk, then
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The inequality is by Lemma 8 and Lemma 4.

Lemma 6. If p < q, then
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The inequality is by Lemma 8 and Lemma 4.

Lemma 7.
k−1∑
i=1

k∑
j=i+1

1

j
≤ k.

Proof.

k−1∑
i=1

k∑
j=i+1

1

j
≤
k−1∑
i=0

k∑
j=i+1

1

j
=
∑
i

i× 1

i
= k.

Lemma 8. If p < q, then
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Note that ∀i < j, E (δi(x)δj(x)) =
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[
Eωj

(
δi(x)δj(x)|ωj−1
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Therefore,
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A.2 Convergence Rate of CDSG

We analyze the convergence rate of proposed CDSG
in Theorem 9. The proof is mainly based on the dis-
cussion of Section 4.2.

Theorem 9 (Convergence rate of CDSG). When
θ
t ≤ γt ≤ θ′

t with θ, θ′ > 0 such that θλ ∈ (1, 2) ∪ Z+,
for any x ∈ X ,

EDt,ωt

[
|ft+1(x)− f∗(x)|2

]
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2C2
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2

t
,

where

S2 = max

‖f∗‖H , Q2 +

√
Q2

2 + Z(1 + θ̂λ)2θ̂2κM2

Z

 ,

with Z = 2λθ̂−1Q2 =
√

2κ1/2LC2θ̂, C0 = 2(κ+φ)Mθ̂,

and θ ≤ θ̂ ≤ θ′.

We first prove by induction to show that

EDt,ωt

(
|ft+1(x)− ht+1(x)|2

)
≤ u2

t∑
i

|ait|2. (1)

Since we are required to sample ω1 from P(ω), the
base case t = 1 holds. For t > 1, assume we already
sample ω1, . . . ,ωm, If there is no coordinate j with
ηj from (9) larger than θ/t, we sample ωt from P(ω).
Then the bound holds trivially. The last case is we
choose ωk as ωt, which implies 1 holds for the chosen
k. Then we complete proof for (1). If we set ηk as θ/t,
by Lemma 4, we get a bound for CDSG exactly the
same as the bound for DSG in Theorem 3.



The line search will make the step size larger than
θ/t in the certain iteration t. Let the step size of
each iteration is θt/t, where θt ≤ θ. Assume θ′ is

the upper bound of all θt, then there is θ̂ such that∑t
i=1(ait)

2 6 θ̂2

t , where θ ≤ θ̂ ≤ θ′. In practice, we ob-
serve that setting an upper bound on θ′ leads to better
performance, since it gives a tighter bound.

B Experiment with Deep Neural Nets

CIFAR 10. We use two convolution layers after con-
trast normalization and max-pooling layers. We use
the feature from the top max-pooling layer from a
trained neural net and use PCA to reduce the dimen-
sion into 256 for DSG-based algorithms.

MNIST 8M. We use LeNet-5 (LeCun et al., 1998)
and replace tanh units with rectified linear units. The
first two convolutions layers have 16 and 32 filters. The
fully connected layer has 128 neurons. We use the fea-
tures from the last max-pooling layer with dimension
1568 for DSG-based algorithms.

ImageNet. We use AlexNet (Krizhevsky et al.,
2012) for this dataset. The features for DSG-based al-
gorithms are from the last pooling layer of the jointly-
trained neural net.
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