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Abstract

In reinforcement learning, policies are typically
evaluated according to the expectation of cumu-
lated rewards. Researchers in decision theory
have argued that more sophisticated decision cri-
teria can better model the preferences of a de-
cision maker. In particular, Skew-Symmetric
Bilinear (SSB) utility functions generalize von
Neumann and Morgenstern’s expected utility
(EU) theory to encompass rational decision be-
haviors that EU cannot accommodate. In this pa-
per, we adopt an SSB utility function to compare
policies in the reinforcement learning setting. We
provide a model-free SSB reinforcement learning
algorithm, SSB Q-learning, and prove its con-
vergence towards a policy that is ε-optimal ac-
cording to SSB. The proposed algorithm is an
adaptation of fictitious play [Brown, 1951] com-
bined with techniques from stochastic approxi-
mation [Borkar, 1997]. We also present some ex-
perimental results which evaluate our approach
in a variety of settings.

1 INTRODUCTION

In problems of sequential decision-making under uncer-
tainty (often represented as Markov Decision Problems—
MDPs [Puterman, 1994]), an agent has to repeatedly
choose according to her current state an action whose con-
sequences are uncertain, in order to maximize a certain cri-
terion in the long run. In most cases, the criterion chosen is
the expectation of cumulated rewards, but it is not risk sen-
sitive and fails to explain widely observed violations of ax-
ioms such as transitivity or von Neumann’s independence
axiom. One of the aims of decision theory is to provide
criteria able to account for such behaviors.

Interestingly, the Skew-Symmetric Bilinear (SSB) utility
theory [Fishburn, 1984] defines a family of decision crite-
ria able to represent risk-averse and risk-seeking behaviors,

intransitive choices and violations of the independence ax-
iom. In particular it encompasses the expected utility (EU)
model [von Neumann and Morgenstern, 1947], which is the
most popular risk sensitive criterion in decision theory. In
SSB theory a binary functional ϕ over probability distribu-
tions is given, where the sign of ϕ(p,q) gives the prefer-
ence between two distributions p and q. Furthermore, par-
ticular choices of ϕ allow decision criteria that only rely
on ordinal pieces of information such as “this trajectory is
preferred to this other trajectory” to be used. This prop-
erty is of interest for MDPs as the optimal policy can be
highly sensitive to the reward function, but specifying such
a reward function is often difficult even for an expert user.

Such preference-based approaches have received much
attention lately [Akrour et al., 2012, Furnkranz et al.,
2012, Busa-fekete et al., 2014, Wilson et al., 2012, Wirth
and Fürnkranz, 2013, Wirth and Neumann, 2015], and a
special case of SSB utility function which optimizes the
probability of yielding a preferred outcome has been inves-
tigated in various domains [Busa-fekete et al., 2014, Dudı́k
et al., 2015, Rivest and Shen, 2010]. In reinforcement
learning (RL), Busa-Fekete et al. [2014] provided a meta-
heuristic algorithm using evolutionary strategies to com-
pute a “good” policy. Designing a learning scheme for an
RL problem using an SSB utility function would therefore
enable RL problems to be solved for a large class of criteria
including “preference-based” criteria.

The possibility of intransitive preferences in SSB utility
theory could be seen as a significant barrier to its use in
automated decision making. However, the seminal work of
Gilbert et al. [2015a] shows that an SSB-optimal strategy
always exists as a mixture of policies, and furthermore, that
in a finite horizon MDP where the model is known, such
an SSB-optimal strategy can be computed using a double
oracle approach. Unfortunately, this approach suffers two
drawbacks: its time and space requirements might become
prohibitive if the optimal mixture of policies is composed
of too many policies, and it does not generalize to the case
where the model is unknown, and thus cannot be used to
derive a model-free RL algorithm.



We remedy this by providing a new algorithm which be-
haves optimally in an MDP with an SSB utility function,
from which we derive a model-free RL algorithm in or-
der to learn an SSB-optimal policy when the model is un-
known. While the approach is still based on game-theoretic
arguments, the algorithm differs in spirit and resem-
bles an adaptation of a fictitious play algorithm [Brown,
1951] combined with Q-learning [Watkins and Dayan,
1992] using stochastic approximation techniques with two
timescales [Borkar, 2008]. Kalathil et al. [2014] recently
exploited a similar two-timescale technique in MDPs, but
in a different context; using the average expected reward
criterion with vector rewards, their goal is to learn a policy
whose vectorial value approaches a fixed set.

The paper is organized as follows. In Section 2, we give
the background elements and introduce our notations. In
Section 3, we give a game theoretic view of the resolution
of an RL problem with an SSB utility function and present
a fictitious play approach to solve it. Lastly, in Section 4,
we present some experimental results.

2 SSB MARKOV DECISION PROCESSES

We study in this paper episodic MDPs with finite state and
action spaces. An MDPM is formally defined by a tuple
(S,F ,A,P, s0) where: S is a finite collection of states;
F = {f1, f2, . . . , f|F|} ⊂ S is a finite set of final states;
A = {As|s ∈ S} is a collection of finite sets of possi-
ble actions, one for each state; P is the transition function
whereP(s′|s, a) is the probability that the state at time step
t+ 1 is s′, given that the state at time step t was s and that
the agent performed action a; s0 ∈ S \F is the initial state
in which all episodes start.1

Whereas preferences over state-action pairs are typically
modeled with numerical rewards, in our framework we as-
sume that the final states summarize the preference infor-
mation. More precisely, we assume that the decision maker
has a preference relation� over possible final states, where
f � f ′ means that ending in final state f is at least as good
as ending in f ′. Note that we do not assume � to be total
or even transitive, thus accommodating a wide variety of
preference behaviors, including those deviating from nor-
mative decision theory. A “standard” MDP (with rewards
obtained at each time step) could still be represented in our
setting with the notion of an augmented MDP [Gilbert et
al., 2015a] at the cost of introducing additional states.

We assume (as standard in RL) that S, A, s0 and F are
known, that P is unknown and that at each step the agent
knows exactly which state she occupies.

We call episode a succession of state-action pairs

1A probability distribution P0 over initial states can easily be
accommodated by using a dummy state s0 with one dummy ac-
tion whose transitions to all the other states are governed by P0.

Table 1: Probabilities for Each Gardner Die
1 2 3 4 5 6

pA 1/6 0 0 5/6 0 0
pB 0 0 5/6 0 0 1/6
pC 0 1/2 0 0 1/2 0

(s0,a0,s1,. . . ,st−1,at−1,st), starting in s0 and ending in a
final state st ∈ F . When the current episode ends, a new
episode starts in state s0. We further assume that the length
of an episode is upper-bounded by a constant Tmax ∈ N.

A policy π at horizon T indicates which action to perform
in each nonfinal state for each time step t < T . A policy is
Markovian if the action depends only on the current state
and timestep (otherwise it may depend on all state-action
pairs encoutered so far); deterministic if it prescribes ex-
actly one action, or randomized if it prescribes a probability
distribution over actions; stationary if the action prescribed
does not depend on the timestep. We write Πs for the set
of Markovian stationary deterministic policies.

Importantly, given a set Π = {π1, π2, . . .} of policies,
we define an enlarged set Π̃ of policies, that denotes the
set consisting of mixtures of policies, i.e., Π̃ = {π̃ =
(π1|α1, π

2|α2, . . .) :
∑
i αi = 1, αi ≥ 0}, where π̃ is the

mixed policy2 that randomly selects policy πi with proba-
bility αi at the beginning of each episode.

Example 1. As a running example, we consider a variant
of the classical “Gardner dice” two-player game. Each
player has three six-sided dice, written A,B,C and biased
as shown in Table 1. Players simultaneously choose a die
to throw, and whoever rolls the highest number wins.

It is easy to see that die A rolls higher than B most of the
time, so die A should be preferred to B, but B mostly beats
C, and C mostly beats A, hence the relation “more likely
to win” is cyclic. The optimal policy for this problem is to
play dice A, B and C with probabilities 3/13, 3/13 and
7/13, respectively [Gilbert et al., 2015a].

For illustrative purposes, we consider a variant where each
player makes sequential decisions: she must first choose
whether to throw die A (action aA) or not (aBC ). If she
chooses aBC , then she can choose to throw B (action aB)
or C (aC). Clearly, this does not change the probabilities
with which to throw each die in an optimal policy.

This problem can be represented as an MDP where Tmax is
2, with an initial state s0 where As0 = {aA, aBC}; a state
sBC (reached by choosing action aBC in s0); and six final
states {f1, . . . , f6} representing the numbers rolled. An ex-
ample transition probability is P(f3|sBC , aB) = 5/6, and
an example episode is (s0, aBC , sBC , aC , f5). An example
(Markovian stationary deterministic) policy is πB(s0) =
aBC , πB(sBC ) = aB .

Using similar notation for A and C, the optimal policy is

2Not to be confused with the notion of randomized policies.



the mixed policy π̃∗=(πA|3/13,πB |3/13,πC |7/13), which
dictates that the player draws one of πA,πB ,πC at the start
of an episode, following it for the whole episode. 3

Our aim is to find an optimal (defined in the next subsec-
tion) policy. Recall that the decision maker has a preference
relation � over possible final states; we want to compare
policies by considering this preference relation. In other
words, we want to lift the preference relation � defined on
final states to a preference relation defined on policies.

2.1 COMPARING POLICIES WITH AN SSB
UTILITY FUNCTION

We assume throughout the paper that the agent’s prefer-
ences between probability distributions are described by
the SSB model as presented and axiomatized by Fish-
burn [1984]. In this model, an agent is endowed with a
binary functional ϕ over ordered pairs (f, f ′) ∈ F2 of final
states, indicating the intensity with which she prefers f to
f ′, with f � f ′ ⇔ ϕ(f, f ′) ≥ 0. Functional ϕ is assumed
to be skew-symmetric, i.e., ϕ(f, f ′) = −ϕ(f ′, f) and is
extended to the space of probability distributions over F
by bilinearity (wrt the mixture operation on distributions).
The SSB criterion for comparing p and q is then written:

ϕ(p,q) =
∑

f,f ′∈F

p(f)q(f ′)ϕ(f, f ′) (1)

where p(f) (resp. q(f ′)) denotes the probability of reach-
ing the final state f (resp. f ′) in distribution p (resp. q).
We have p � q if ϕ(p,q) > 0 (strict preference), and
p ∼ q if ϕ(p,q) = 0 (indifference).

Any policy π in an MDP induces a probability distribu-
tion pπ over final states (reached after at most Tmax time
steps); pπ is referred to as the final state distribution of π.
As comparing policies amounts to comparing their induced
distributions, we write ϕ(π, π′) for ϕ(pπ,pπ

′
) to simplify

notation and define the preference relation % over policies:

π % π′ ≡ ϕ(π, π′) ≥ 0 (2)

Example 2 (continued). The goal of beating the oppo-
nent’s roll can be expressed as ϕ(fm, fn) = 1 for m > n,
−1 for m < n, and 0 for m = n. The deterministic poli-
cies πA, πB , πC amount to rolling the corresponding die,
inducing the final state distributions pA,pB ,pC of Table 1

3Note the difference with the randomized (stationary) policy π
which draws aA with probability 3/13 in s0, and, independently
of this, draws aB (resp. aC ) with probability 3/10 (resp. 7/10) in
sBC . The expectation of reaching each final state is nonetheless
the same in π and π̃∗ (hence π is also optimal).

over final states. We have (zero entries are irrelevant):

ϕ(pA,pB)

= pA(f1)pB(f3)ϕ(f1, f3) + pA(f1)pB(f6)ϕ(f1, f6)

+ pA(f4)pB(f3)ϕ(f4, f3) + pA(f4)pB(f6)ϕ(f4, f6)

=
1

6
· 5

6
· (−1) +

1

6
· 1

6
· (−1) +

5

6
· 5

6
· 1 +

5

6
· 1

6
· (−1)

= 14/36 > 0,

showing that die A should be preferred to die B.

If we were to define ϕ by ϕ(fm, fn) = m− n, the strength
of a victory (or defeat) would be taken into account. The
policies in this case would be compared wrt the expectation
of the roll (as explained below).

The SSB model is very general, as it can take into account
choice intransitivity, which is widely observed in practice
[Fishburn, 1991]. Moreover, the SSB model can represent
different risk attitudes via an adequate choice of ϕ. For
example, it represents risk-averse behavior (in the weak
sense) if the certainty equivalent of a distribution p is less
than or equal to its expected value, where the certainty
equivalent of a distribution p is the element f such that
ϕ(p, f) = 0 (i.e., p ∼ f ). Nakamura [1989] shows how to
design risk averse and risk seeking SSB utility functions.

The SSB model also encompasses many decision criteria,
such as the expectation criterion ϕ(f, f ′) = c(f) − c(f ′)
(where c denotes a utility/cost function); the probability
threshold criterion [Yu et al., 1998] ϕ(f, f ′) = 1c(f)≥τ −
1c(f ′)≥τ , which states that p � q if

∑
c(f)≥τ p(f) >∑

c(f)≥τ q(f) for a threshold τ ∈ R; and the dominance
relation ϕ(f, f ′) = 1 (resp. 0,−1) if f � f ′ (resp. f ∼ f ′,
f ≺ f ′), which states that p � q if

∑
f�f ′ p(f)q(f ′) >∑

f ′�f p(f)q(f ′) (as in Example 2). In other words p is
preferred to q if a final state generated according to p is
more likely to be preferred to a final state generated ac-
cording to q than the converse. This is called probabilistic
dominance in the following.

Probabilistic Dominance (PD) is interesting as it only relies
on ordinal pieces of information. Its axiomatic characteri-
zation was given by Blavatskyy [2006] and it has been ex-
plored lately in various domains such as RL [Busa-fekete
et al., 2014], voting systems [Rivest and Shen, 2010] and
dueling bandits [Dudı́k et al., 2015]. In the latter work, the
authors adopt the name of von Neumann solution for the PD
optimal solution. Indeed, as will be discussed in the next
section, finding an SSB-optimal policy (and in particular,
finding an optimal policy according to PD) is equivalent to
finding a Nash equilibrium in a finite zero-sum two-player
game. Thus the existence of a von Neumann solution is
implied by von Neumann’s minimax theorem.

In standard MDPs, the optimal policy can be highly sen-
sitive to the reward function used, and yet designing a nu-
merical reward function is often cognitively difficult, even



for an expert user. This issue is tackled in preference-
based approaches [Akrour et al., 2012, Weng and Zanut-
tini., 2013, Gilbert et al., 2015b, Weng et al., 2013, Busa-
fekete et al., 2014, Furnkranz et al., 2012, Wilson et al.,
2012, Wirth and Fürnkranz, 2013, Wirth and Neumann,
2015] by only considering ordinal pieces of information,
such as feedbacks of the type “this trajectory is prefer-
able to that one”. We can distinguish two types of ap-
proach. The first [Wirth and Fürnkranz, 2013, Wirth and
Neumann, 2015, Weng et al., 2013] aims to recover a nu-
merical reward function that explains most of the expressed
preferences of the user and can be used with classic crite-
ria. The second [Busa-fekete et al., 2014, Furnkranz et al.,
2012] deals with purely ordinal criteria, e.g., Busa-Fekete
et al. [2014] find a good policy (wrt to PD) using a meta-
heuristic algorithm based on evolutionary strategies in fi-
nite horizon continuous MDPs.
Example 3. Consider a car racing against the clock. The
driver aims to complete the race in the shortest time possi-
ble, but must find the right compromise between speed and
the risk of being eliminated; driving too fast can cause the
car to run off the track and be eliminated from the compe-
tition; the relation between the car’s speed and going off
track is stochastic (the faster, the more likely). This is eas-
ily modeled as an MDP where policies induce a distribution
over the race’s possible outcomes. The preference � over
final states is determined by two conditions: (i) race com-
pletion is always strictly preferred to an elimination, and
(ii) a trajectory completing the race in time t1 is strictly
preferred to completion in time t2 > t1.

In this model, adopting SSB with probabilistic dominance
finds the “best” policy for a driver who wants to maxi-
mize her chance of winning a race (against other drivers
facing the same MDP). In contrast, traditional approaches
would solve this problem by setting a (large) negative re-
ward relim for an elimination and a small negative reward
for each time step before completing the race, and then
maximize expectation of rewards using, for example, Q-
learning or any other classic algorithm. Different values
of relim would result in very different policies, and while it
might be possible to find a good compromise value allow-
ing for a competitive behavior, manually tuning the reward
function would be difficult in more complex scenarios.

Consequently, designing and implementing an algorithm
for solving MDPs in an RL setting with an SSB utility func-
tion also gives us a tool to compute optimal policies for a
large class of criteria, including “preference based” ones.
A first step towards the design of this algorithm is to give a
game-theoretic view of the problem.

2.2 A GAME ON POLICIES

When an MDP is fixed, Equations 1 and 2 induce a zero-
sum two-player symmetric game where the set of strate-
gies coincides with the set of possible policies. The players

i ∈ {1, 2} simultaneously choose a strategy π̃i (pure or
mixed). The resulting payoff is then given by ϕ(π̃1, π̃2).
As emphasized by Gilbert et al. [2015a], an SSB optimal
policy can be found by computing a Nash equilibrium of
this game. Indeed, Nash equilibria (π̃∗, π̃∗) are character-
ized by ∀π̃, ϕ(π̃∗, π̃) ≥ 0.

Gilbert et al. [2015a] also showed that in this game, a best
response to a strategy π̃ is given by a policy maximizing the
expectation of cumulated rewards with reward function:

Rpπ̃ (s) =

{
1>i Φpπ̃ if s = fi ∈ F
0 otherwise

where 1i is the ith canonical vector, > is the transpose op-
erator and Φ is the SSB matrix (i.e., Φi,j = ϕ(fi, fj)). Put
another way, the reward obtained when arriving in the ith

final state is given by the ith element of the vector Φpπ

(the reward is 0 for nonfinal states). Since this defines a
standard MDP, there is always a stationary, Markovian and
deterministic optimal policy (i.e., the best response to π̃).
Thus we can restrict ourselves to the finite game with Πs

as the set of pure strategies. To summarize, a Nash equilib-
rium of this game will give an SSB-optimal policy, in the
form of a mixed policy π̃∗ ∈ Π̃s.

Example 4 (continued). The game induced by our run-
ning example has pure strategies πA, πB , πC for both play-
ers, with payoff, e.g., ϕ(πA, πB) = 14/36 (Example 2).
Consider the mixed policy π̃AAB = (πA|2/3, πB |1/3);
Table 1 gives its final state distribution pπ̃AAB =
(2/18, 0, 5/18, 10/18, 0, 1/18). The value of response πA
to π̃AAB is given by

pπA · Φ · pπ̃AAB

=(
1

6
, 0, 0,

5

6
, 0, 0)>(−16

18
,−14

18
,− 9

18
,

6

18
,

16

18
,

17

18
)=

7

54

Similarly, the values of πB , πC are −7/27 and 1/18 re-
spectively, so a best response to π̃AAB is πA. The sec-
ond component of vector Φ · pπ̃AAB can be computed as
follows. We know that rolling 2 is worse than 16/18 and
better than 2/18 of the outcomes of pπ̃AAB , and ϕ(fi, fj)
is always 1 for i > j. Therefore this component is
−1 · 16/18 + 1 · 2/18 = −14/18.

In a finite zero-sum symmetric game, it is well-known that
there exists a symmetric Nash Equilibrium (NE). We aim to
compute this NE on policies characterized by payoff func-
tion ϕ (solving the game).

3 SOLVING THE GAME

Games in strategic forms can be solved by linear program-
ming [Chvátal, 1983], unfortunately, here, the game is too
large to be solved directly (we remind the reader that the
number of pure strategies of the game is equal to the num-
ber of deterministic stationary policies of the MDP, which



is exponential in the number of states).4 If the model was
known, one could rely on the double oracle algorithm of
Gilbert et al. [2015a]. Unfortunately, that approach suffers
some drawbacks. Firstly, if the optimal mixture of policies
π̃∗ is composed of too many policies, its time and space re-
quirements might become prohibitive, as the double oracle
algorithm would have to compute and store all polices that
are in the support of π̃∗. Secondly, this approach does not
generalize to the case where the model is unknown. Thus
it can not be used to derive a model-free RL algorithm. We
therefore turn to a different approach, based on fictitious
play and on a double timescale technique.

3.1 LEARNING SETTING

In RL, one typically expects convergence to playing an
optimal policy at each step. Since in our case the op-
timal policy is mixed, this cannot be evaluated at each
time step independently. Rather, after any number n of
episodes, we consider the final state distribution, defined
as (f1|α1, . . . , f|F||α|F|), where for all i, αi is the fraction
of episodes so far in which the final state was fi.

We define the loss L(p) of a distribution over final states to
be the value of its best response against it:

L(p)
def
= ϕ(pBR,p)

where pBR is the vector of final state frequencies of a pol-
icy which maximizes the expectation of cumulated rewards
with respect to reward funtion Rp (hence a best response
to p). Since L(pπ̃

∗
) = 0 characterizes SSB-optimal poli-

cies π̃∗, it is natural to measure the quality of learning by
the decrease in loss of the final state distribution so far pn,
as n increases. Convergence to an SSB-optimal policy then
amounts to L(pn)→0 with n→∞.

Rephrasing, we expect that, considering the final states
reached from the beginning, in retrospect their frequencies
are approximately equivalent to those we would have ob-
tained had we played a mixed optimal policy from the start
(and more and more exactly as n increases). This corre-
sponds to the standard “on-line” setting of RL, in which
success is measured from the start.

3.2 FICTITIOUS PLAY

Fictitious Play is an algorithm that only needs a best re-
sponse procedure to solve a game. The algorithm main-
tains for each player her mixed policy so far π̃n, defined
as (π1|α1, . . . , π

k|αk), where for all i, αi is the fraction of
episodes so far in which the stationary, deterministic policy
πi has been played. At each time step, each player consid-
ers that π̃n perfectly represents the mixed strategy that is

4Our running example does not illustrate this combinatorial
explosion, but it clearly arises, e.g., in the “intransitive grid” and
the “race against the clock” (see Section 4).

Algorithm 1: Fictitious Play
Data: Game G, arbitrary pure strategy π0

1 while True do
2 Play πn
3 # update current mixed policy
4 π̃n+1 = (π1|α1, . . . , π

k|αk) with

5

{
αi = n · αi/(n+ 1) + 1/(n+ 1) for πi = πn
αi = n · αi/(n+ 1) for πi 6= πn

6 πn+1 = BestResponseTo(π̃n+1)

used by the adversary and plays a best response to it. The
algorithm converges to a Nash equilibrium of the game (in
the sense that L(pn) converges to 0) when the game is a
finite zero-sum game. Fictitious play is represented in Al-
gorithm 1 for a symmetric two-player zero-sum game. As
the game is symmetric, we only need to consider the mixed
policy so far, π̃n, of a player playing against herself.

Example 5 (continued). Assume the agent chooses initial
strategy π0 = πB , then after one episode/game we have
π̃1 = (πB |1). Now πA is a best response to π̃1 (Example 2),
hence π1 = πA. So the agent plays πA during the second
episode, and we get π̃2 = (πA|1/2, πB |1/2). Now it is
easy to see that πA is a best response to π̃2, so the agent
again plays πA and gets π̃3 = (πA|2/3, πB |1/3). From
Example 4 we get that πA is a best response to π̃3, and that
the loss of π̃3 is L(pπ̃3) = ϕ(πA, π̃3) = 7/54.

3.3 SSB Q-LEARNING

This subsection makes a first step towards the adaptation of
fictitious play to solve the game induced by an MDP and an
SSB utility function. Recall from Section 2.2 that the best
responses to the mixed strategy so far, π̃n, are exactly the
optimal policies in the (standard) MDP with reward func-
tionRpπ̃n . In other words, best responses can be computed
as a function of pπ̃n only. Accordingly, instead of record-
ing π̃n as such, which involves an exponential number k
of pure policies πi in the worst case, as in Algorithm 1, it
is enough to record the vector pn = pπ̃n . Then we can
rewrite Lines 4–6 of Algorithm 1 as:

pn+1 =n · pn/(n+ 1) + pπn/(n+ 1)

πn+1 =BestResponseTo(pn+1)

However, in practice, when policy πn is played, one ob-
serves only one drawing from pπn , and not the distribu-
tion itself. Hence our first adaptation of fictitious play is as
given in Algorithm 2. Note that we do not know the model
of the MDP, so we use BestResponseTo as an oracle. We
find a better solution later in this section.

Example 6 (continued). Let π0 = πB again. Hence the
agent plays πB during one complete episode. If the die rolls
3, we get p1 = (f3|1). Then the best response is computed
as one to a strategy which always yields f3, and we get
π1 = πA. The agent therefore plays πA during one episode,



Algorithm 2: Approximate Fictitious Play
Data: MDPM, SSB function ϕ, arbitrary policy π0 ∈ Πs

1 while True do
2 Play πn for one episode
3 fi = final state reached
4 pn+1 = n · pn/(n+ 1) + 1i/(n+ 1)
5 πn+1 = BestResponseTo(pn+1)

and if the die rolls 4, we get p2 =(f3|1/2, f4|1/2), to which
a best response is π2 = πA. If the die then rolls 1, we
get p3 = (f1|1/3, f3|1/3, f4|1/3). In this case the best
response is πA, just as in Example 4, but note that it has
an estimated value pA · Φ · p3 = 5/6 · 2/3 − 1/6 · 2/3 =
4/9, instead of ϕ(πA, π̃AAB )=7/54 if pπ̃AAB were directly
observed.

The following theorem proves that observing only realiza-
tions of pπn does not prevent the convergence of (pn)n∈N
to the distribution of an SSB-optimal policy.

Theorem 1. In Algorithm 2, L(pn) tends to 0 as n→∞.

Proof. Assume an optimal policy πn with respect to Rpn

is played during the (n+1)-th episode. At the end of the
episode, a final state fi is reached and pn+1 is defined by:

pn+1 =
n · pn
n+ 1

+
1i

n+ 1
= pn +

1

n+ 1
(1i − pn)

We rewrite this equation in the following way :

pn+1 = pn +
1

n+ 1
(pπn − pn +Mn+1) (3)

where Mn+1 = 1i − pπn is a square integrable martin-
gale difference sequence. Equation 3 is a standard single
timescale process with continuous differential inclusion:

.
p(t) ∈ {pπ − p(t) : π ∈ Π(p(t))} (4)

where Π(p) denotes the set of optimal policies with respect
to reward Rp. A similar differential inclusion can be ob-
tained for the standard fictitious play. However, here, as pn
is a distribution over final states (not over strategies) and as
only a realization of pπ is observed, we need to invoke a
stochastic approximation argument.

Indeed, the best response correspondence is upper-
semicontinuous, with closed and convex values. Hence the
existence of at least one solution p(t) through each initial
value p(0), which is Lipschitz continuous and defined for
all positive times, is guaranteed [Hofbauer, 1995]. Let p(t)
be a solution of inclusion 4 and ζ(t)=p(t)+

.
p(t)=pπ for

a best response π ∈ Π(p(t)). By definition of L, we have
L(p(t))=ϕ(ζ(t),p(t)), and by the envelope theorem:

d

dt
L(p(t)) =

∂ϕ(ζ(t),p(t))

∂ζ

.

ζ(t) +
∂ϕ(ζ(t),p(t))

∂p

.
p(t)

As ζ(t) maximizes ϕ(.,p(t)), the first term is null [Mas-
Colell et al., 1995, pp. 964–965], and by linearity:

d

dt
L(p(t)) = ϕ(ζ(t),

.
p(t))

= ϕ(p(t),
.
p(t)) + ϕ(

.
p(t),

.
p(t))

=0

= ϕ(p(t),
.
p(t)) + ϕ(p(t),p(t))

=0

= ϕ(p(t), ζ(t)) = −ϕ(ζ(t),p(t))

as Φ is skew-symmetric (hence ϕ(p(t),p(t)) =
ϕ(

.
p(t),

.
p(t)) = 0, and ϕ(p(t), ζ(t)) = −ϕ(ζ(t),p(t))).

Thus, d
dtL(p(t)) = −L(p(t)), L(p(t)) = L(p(0))e−t,

and hence L(p(t)) tends to 0 with t → ∞. Thus, the set
of final state distributions of the optimal strategies is glob-
ally attracting for the best response dynamic, which implies
the convergence of the discrete stochastic approximation
(3) [Benaı̈m et al., 2006, Properties 1, 2].

If the model was known, one could use Algorithm 2.
At each iteration of the while loop, the corresponding
MDP would be solved using dynamic or linear program-
ming to find the best response policy πn+1. Unfortu-
nately, as the model is unknown, this policy can not be
computed directly and has to be learned. The “πn+1 =
BestResponseTo(pn+1)” line should therefore be re-
placed by, say, aQ-learning phase which converges asymp-
totically to the desired policy.

Recall that an agent using Q-learning (in a standard MDP)
maintains an estimate of Q-values Q(s, a) using:

Qn+1(sn, an) = Qn(sn, an)

+ αn(sn, an)(rn+1 + max
b
{Qn(sn+1, b)} −Qn(sn, an))

after taking action an in state sn, ending up in state sn+1,
and observing the (numerical) reward rn+1, and where
αn(sn, an) is the value of the learning rate for (sn, an)
at timestep n. Note that from now on, for simplicity, we
use n to denote the number of time steps (while previously
it denoted the number of episodes). Exploitation is real-
ized by choosing an = arg maxaQn(sn, a) at state sn. Q-
learning is known to converge to an optimal policy in the
limit, provided the reward function is stationary [Watkins
and Dayan, 1992].

Hence the idea is to adapt Algorithm 2 to run Q-learning
while keeping its target reward function fixed to Rpn as
when it started, and when it has converged (to an approx-
imate best response to pn), to update pn using what has
been observed in this phase and start a new Q-learning
phase. Unfortunately, the number of learning episodes re-
quired to learn an optimal or ε-optimal policy is unknown.
Therefore, we want to avoid alternating the Q-learning
phase and the reward update phase by using a technique
from Borkar [1997] which interleaves both phases success-
fully using a two-timescale approach. In this approach, the



following iterative equations are used concurrently:

pn+1 = pn + βn(1i − pn) when fi ∈ F is reached (5)
Qn+1(sn, an) = Qn(sn, an) + αn(sn, an)∆n+1 (6)
∆n+1 = Rpn(sn+1) + max

b
{Qn(sn+1, b)} −Qn(sn, an)

∀s, a,



∞∑
n=0

αn(s, a) =∞ and
∞∑
n=0

βn =∞

βn/αn(s, a)→ 0

∞∑
n=0

αn(s, a)2 + β2
n <∞


(7)

The intuition is thatQn evolves more quickly than pn, giv-
ing time for Qn, and hence the best response, to adapt to
changes in the target rewardRpn .

Write ηp (resp. ηs,a) for the number of times vector pn
(resp. state action-pair (s, a)) has been updated (resp. ex-
perienced). In our case, βn is 1/(ηp + 1) since Equation 5
tracks the final state distribution so far, so we can set αn to
1/(ηs,a + 1)2/3 for instance. Note that this example works
because pn is updated after at most Tmax steps, bounding
the number of updates of αn (for any (s, a)) between two
consecutive updates of βn. With these conditions, the two
recursive equations on pn and Qn form a two-timescale
stochastic approximation iteration, where pn is on a slower
timescale than Qn. The following example gives the intu-
ition behind the two time-scale technique; the convergence
proof under Condition (7) is given in Theorem 2.

Example 7. Suppose that at some point the Q-values of
aA and aBC in s0 are 0.1 and 0.2, respectively, and
that those of aB ,aC in sBC are 0.3,−0.7. Assume more-
over pn=(1/5, 0, 1/5, 1/5, 1/5, 1/5), n = 80 (with 20
episodes of length 1 and 30 of length 2, hence ηp ' 0.02)
ηs0,aBC

= 30 (αn(s0, aBC ) ' 0.1) and ηsBC ,aB = 20
(αn(sBC , aB) ' 0.13).

Hence the agent will choose aBC in s0, reach sBC and
update Q(s0, aBC ) to ' 0.2 + 0.1 · (0 + 0.3 − 0.2) =
0.21. In sBC she will choose aB and, if she rolls 3, up-
date Q(sBC , aB) to ' 0.3 + 0.13 · (13 · Φ · pn + 0 −
0.3) = 0.3 + 0.13 · (−2/5 − 0.3) ' 0.2, and pn to
(10/51, 0, 11/51, 10/51, 10/51, 10/51).

Note that Q-values have evolved significantly more than pn
(and hence than the target numerical rewardRpn ).

3.4 HANDLING EXPLORATION

In order for Q-learning to converge, one needs to ensure
that all state-action pairs are performed infinitely often.
Usually, this exploration is guaranteed through some ran-
domization, using an ε-greedy strategy, for instance. We
present in this subsection an exploration strategy called
Episodic-ε-Greedy (EG for short) that guarantees that we
converge to an ε-optimal SSB strategy using the algo-
rithm described by Equations 5 and 6. During learning, an

Algorithm 3: SSB Q-learning
Data: MDPM, SSB function ϕ

1 while True do
2 Choose an using the EG exploration strategy
3 Play an, observe sn+1, and let rn+1 = Rpn(sn+1)
4 Qn+1(sn, an) = Qn(sn, an) + αn(sn, an)(rn+1 +

maxb{Qn(sn+1, b)} −Qn(sn, an))
5 if sn+1 = fi ∈ F and exploration is off then
6 pn+1 = pn + 1

ηp+1 (1i − pn)

episode will be generated using either the current best pol-
icy (defined by the Q-values), with probability (1 − ε), or
the uniformly random policy, which we denote by πU , with
probability ε. If an episode is generated using πU (i.e., the
agent is exploring), then the update of Equation 5 is not per-
formed at the end of the episode. This guarantees that the
convergence of pn is not biased by the exploration strategy.
The final proposed algorithm is presented in Algorithm 3.

We are now ready to prove the convergence of SSB Q-
learning to an ε-optimal policy through two theorems.
Theorem 2. Under Conditions (7) with βn = 1/(ηp + 1),
in Algorithm 3, L(pn) tends to 0 almost surely as n→∞.

Proof. The idea is that pn can be viewed as quasi-static
compared to Qn. Indeed, let πn be the greedy policy given
by Qn. We can rewrite the equations as:

pn+1 = pn + αn(εn + M′n) (8)
Qn+1(sn, an) = Qn(sn, an) + αn(sn, an)(T (Qn)(sn, an)

−Qn(sn, an) + M′′n+1)

where εn= βn
αn

(pπn − pn) and M′n = βn
αn

(1i − pπn)

T (Qn)(s, a)=
∑
s′

P(s′|s, a)(Rpn(s′)+max
b
{Qn(s′, b)})

M′′n+1 =Rpn(sn+1) + max
b
{Qn(sn+1, b)}

− T (Qn)(sn, an)

Clearly εn → 0 almost surely (||pπn || and ||pn|| are
bounded). Then (pn, Qn) will converge to the internally
chain transitive invariant set of the ODE [Borkar, 2008]:

.
p(t) = 0

.

Q(t) = T (Q(t))−Q(t)

LetQ∗(pn) denote the optimal Q-value function for reward
functionRpn . ThereforeQn−Q∗(pn)→ 0 almost surely,
which entails that (pn, πn) converges to the set (p, π∗(p))
with π∗(p) a best response to p. We then rewrite (5) to:

pn+1 =pn + βn(pπ
∗(pn) − pn

+ (pπn − pπ
∗(pn)) + (1i − pπn))

As pπn − pπ
∗(pn) → 0 almost surely, the asymptotic be-

havior is the same as in Theorem 1. Thus the loss of pn
converges to 0 with n→∞.



The result of Theorem 2 uses the fact that with the EG ex-
ploration strategy, exploration has no impact on pn. The
drawback of this strategy is that pn does not truly repre-
sent the frequencies with which each final state has been
obtained. If we let prealn represent the vector of true fre-
quencies with which each final state has been obtained,
then following theorem proves that prealn converges to the
final state frequencies of an ε- optimal SSB-policy.

Theorem 3. Under Conditions (7) with βn = 1/(ηp + 1),
when Algorithm 3 is run, prealn converges to the final state
distribution of an ε-optimal SSB-policy almost surely.

Proof. Let ε′ denote the parameter of EG exploration and
let preal = limn→∞ prealn . Then asymptotically we have

preal = (1− ε′)p∗ + ε′pπU

where p∗ is the final state distribution of an optimal SSB-
policy. Thus for any policy π:

ϕ(preal,pπ) = (1− ε′)ϕ(p∗,pπ)
≥0

+ ε′ϕ(pπU ,pπ)
≥−ϕmax

≥ −ε′ϕmax

with ϕmax = maxf,f ′ ϕ(f, f ′). Hence, with ε′ = ε/ϕmax,
Algorithm 3 converges to an ε-optimal SSB strategy.

4 PROOF OF CONCEPT

Although SSB encompasses many different criteria, we fo-
cus here on the probabilistic dominance criterion as it is
an important case for which no model-free algorithm that
is provably correct has been proposed. We plot here the
results of four experiments: “sequential Gardner dice”,
“who wants to be a millionaire”, “intransitive grid” and
“race against the clock” using the probabilistic dominance
criterion (hence values are all in [−1, 1]). For all runs,
10, 000, 000 steps were performed in the MDP, ε was set
to 0.1, and αn was set to 1/(ηs,a + 1)11/20.

Gardner Dice. We first present the results on Gardner’s
dice problem as formalized in Example 1. Figure 1(a)
shows the evolution of the frequencies (fA, fB , fC) with
which each die has been played for a representative run.
The optimal frequency vector p∗ = (3/13, 3/13, 7/13) is
shown as a green dot and the same vector biased by ex-
ploration p∗ε = (1 − ε) ∗ p∗ + ε ∗ pπU by a red dot; the
vector (fA, fB , fC) tends towards p∗ε , drawing triangles of
decreasing surface around p∗ε . Figure 1(b) presents the evo-
lution of the Q-values of the three actions, aA, aB and aC .
One can see that the best die alternates between the three
dice and that max{QA, QB , QC} tends towards 0. (The
best response is always deterministic and so must be one of
πA, πB , πC . However at convergence its value has to be 0.)

Who wants to be a millionaire. In this popular television
game show, a contestant answers 15 multiple-choice ques-
tions (with four possible answers) of increasing difficulty,

for increasingly large sums, roughly doubling the pot each
question. At each time step, the contestant may decide to
walk away with the money currently won. If she answers
incorrectly, then all winnings are lost except what has been
earned at a “guarantee point” (questions 5 and 10). The
player is allowed 3 lifelines (50:50, removing two of the
choices, ask the audience and call a friend for suggestions);
each can only be used once. We used the first model of the
Spanish 2003 version of the game presented by Perea and
Puerto [2007]. The probability of answering correctly is
a function of the question’s number and increased by the
lifelines used (if any).

Intransitive grid. In this domain we study an episodic
grid MDP containing 9 states. The agent always starts an
episode in the bottom-right corner of the grid. Three termi-
nal states, f1, f2 and f3 can be attained at the three other
corners of the grid. The agent can only go left and up. With
a probability of 0.2, the agent makes a mistake and goes in
the wrong direction. The preference relation between the
final states is the following: f1 � f2 � f3 � f1.

Race against the clock. Lastly, we discuss the domain
discussed in Example 3.5 The racing circuit is represented
by 6 physical positions {p1, . . . , p6} plus one, pel, repre-
senting elimination. A state of the MDP is a triple (p, s, t)
giving the current position p ∈ {p1, . . . , p6, pel}, the cur-
rent speed of the car s ∈ {Slow,Medium,Fast} and the
current time t ∈ N. In each state the agent can decide be-
tween 3 actions: accelerating, decelerating or keeping the
same speed. At each time step t, the probability of running
off the track is a function of st, pt and at, taking into ac-
count both the speed of the car and the difficulty of the cur-
rent part of the circuit. Finally, the time spent between two
positions decreases stochastically with the current speed.

Results. Figure 1(c)-(f) shows the evolution of L(prealn )
and L(pn) (i.e., the values of the optimal policies regard-
ing reward functions defined by Φprealn , Φpn) for each do-
main. The results are averaged over 20 runs. As expected
the value of L(pn) tends towards 0 as the number of learn-
ing steps increase. The value of L(prealn ) decreases and is
much lower than ε (= 0.1 in the experiments) on all figures.

Finally, in Table 2, we compare the “race against the clock”
results obtained by our SSB Q-learning algorithm to the re-
sults obtained by a standard Q-learning algorithm launched
with three different reward functions R1, R2 and R3. For
each reward function, a penalty of value −t is received by
the agent each time the circuit is completed in time t. For
reward function Ri, an elimination results in a penalty of
value rielem ∈ {−10,−25,−40}. For each algorithm we
give the frequency of elimination felem and the average
time Tcc of circuit completion. The final columns show the
probabilities with which the SSB Q-learning agent would

5The complete description is given as supplementary material
at hugogilbert.pythonanywhere.com.



(a) (b) (c)

(d) (e) (f)

Figure 1: For the Gardner dice domain, (a) convergence of the policy in the space of die frequencies, (b) evolution of Q-values, (c)
evolution of loss; For (d) Who wants to be a millionnaire, (e) Intransitive grid and (f) Race against the clock, evolution of loss.

beat (P�) and at least tie with (P�) each Q-learning agent.
As expected, felem decreases and Tcc increases with the
penalty value of an elimination. For a Q-learning agent,
this penalty would have to be tuned to give the best compro-
mise. The SSB Q-learning agent does not face this problem
and the last two columns show that this agent is more likely
to produce a preferred episode.

5 Conclusion

Skew-Symmetric Bilinear (SSB) utility is a useful general
decision model that encompasses many decision criteria
(e.g., EU, threshold probability, probabilistic dominance,
etc.). We designed a model-free reinforcement learning
algorithm to compute an epsilon SSB-optimal policy and
provided experimental results.

Table 2: Comparisons of SSB Q-Learning with Three Q-
Learning Algorithms (Results Averaged Over 20 Runs).

felem Tcc P� P�
SSB Q-learning 0.41 5.29 − −

Q-learning with R1 0.48 4.34 0.37 0.64
Q-learning with R2 0.31 7.14 0.48 0.66
Q-learning with R3 0.26 9.09 0.54 0.66

Our current work can be extended in several natural ways.
For instance, it would be interesting to tackle non-episodic
problems. Another direction is to use more elaborate RL
algorithms than Q-learning for computing best responses.

Our work is currently being applied in an industrial con-
text with good results. An automated information extrac-
tion (IE) treatment chain is modelled as an MDP, and im-
proved using a reward function balancing extraction quality
and treatment time. SSB utility theory is used to formalise
qualitative preferences expressed by human operators on
the output of the treatments.
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E. Hüllermeier. Interactive Q-Learning with Ordinal
Rewards and Unreliable Tutor. In ECML/PKDD
Workshop Reinforcement Learning with Generalized
Feedback, 2013.

[Wilson et al., 2012] A. Wilson, A. Fern, and P. Tadepalli.
A Bayesian approach for policy learning from trajectory
preference queries. In F. Pereira, C. Burges, L. Bottou,
and K. Weinberger, editors, Advances in Neural Infor-
mation Processing Systems 25, pages 1133–1141. Cur-
ran Associates, Inc., 2012.

[Wirth and Fürnkranz, 2013] C. Wirth and J. Fürnkranz.
EPMC: every visit preference Monte Carlo for re-
inforcement learning. In Asian Conference on Ma-
chine Learning, ACML 2013, Canberra, ACT, Australia,
November 13-15, 2013, pages 483–497, 2013.

[Wirth and Neumann, 2015] C. Wirth and G. Neumann.
Model-free preference-based reinforcement learning. In
EWRL, 2015.

[Yu et al., 1998] S. Yu, Y. Lin, and P. Yan. Optimization
models for the first arrival target distribution function
in discrete time. Journal of Mathematical Analysis and
Applications, 225(1):193–223, 1998.


