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Abstract

Real-world data often includes rich relational in-
formation, which can be leveraged to help pre-
dict unknown variables using a small amount of
observed variables via a propagation effect. We
consider the problem of selecting the best subset
of variables to observe to maximize the overall
prediction accuracy. Under the Bayesian frame-
work, the optimal subset should be chosen to
minimize the Bayesian optimal error rate, which,
unfortunately, is critically challenging to calcu-
late when the variables follow complex and high
dimensional probabilistic distributions such as
graphical models. In this paper, we propose to
use a class of Bayesian lower bounds, includ-
ing Bayesian Cramér Rao bounds as well as a
novel extension of it to discrete graphical mod-
els, as surrogate criteria for optimal subset selec-
tion, providing a set of computationally efficient
algorithms. Extensive experiments are presented
to demonstrate our algorithm on both simulated
and real-world datasets.

1 INTRODUCTION

We consider the following optimal label selection problem:
Given an unknown θ = [θ1, . . . , θn] with posterior distribu-
tion p(θ | X) conditioning on observation X , select a best
subset C ⊂ [n] of size no larger than k on which the true
values of θC are revealed, such that the prediction accuracy
of θ¬C on the remaining set ¬C = [n] \ C is maximized.
We assume p(θ | X) to be a multivariate distribution with
rich correlation structures, such as graphical models, so that
the prediction of θ¬C can largely benefit from knowing θC
via a “propagation effect”.

Problems of this type appear widely in many important
areas, including semi-supervised learning, experiment de-
sign, active learning, as well as application domains such as

optimal sensor placement, and optimal budget allocation in
crowdsourcing (e.g., Zhu et al., 2003; Krause & Guestrin,
2009; Settles, 2010; Bilgic et al., 2010; Liu et al., 2015).

The optimal subset C should be chosen to minimize cer-
tain uncertainty measures of the conditional model p(θ¬C |
θC ; X), and a natural choice is the conditional variance,

R∗(C) = Eθ|X(
∑
i∈¬C

var(θi | θC ; X)),

which equals the mean squared error of the optimal
Bayesian estimator of θ¬C given θC and X . Unfortu-
nately, this objective is notoriously difficult to calculate in
practice; Krause & Guestrin (2009) showed that it is #P-
complete to calculate R∗(C) for general discrete graph-
ical models, even for simple tree structured models in
many cases. Although practical approximations can be
constructed using (approximate) posterior sampling via
Markov chain Monte Carlo (MCMC), the estimation ac-
curacy of the conditional variance can be poor when the
size of C is large because each conditioning case only re-
ceives a small number of samples. Computationally, evalu-
ating R∗(C) requires both unconditioning sampling from
θ ∼ p(θ | X), as well as conditional sampling from
θ¬C ∼ p(θ¬C | θC , X) for each value of θC that appears in
the unconditioning sample; this makes it extremely difficult
to optimize the conditional variance objective in practice,
even when simple greedy search methods are used. Similar
computational difficulty also appears in other uncertainty
measures, such as conditional entropy and mutual infor-
mation (Krause & Guestrin, 2009); what is worse, these
information-theoretic objectives have the additional diffi-
culty of depending on the normalization constant (known
as the partition function) of p(θ | X), which is very chal-
lenging to calculate.

A special case when the computation can be largely simpli-
fied is when p(θ | X) is a multivariate Gaussian distribu-
tion; in this case, the conditional variance reduces a simple
trace function of the inverse of the sub-matrix on ¬C, that
is, R∗(C) = tr(Q[¬C]−1), where Q is the inverse covari-
ance (or the Fisher information) matrix of p(θ | X), and



Q[¬C] represents the sub-matrix of Q formed by the rows
and columns in ¬C. This objective can be evaluated and
optimized much more efficiently, because Q can be pre-
calculated and the block-wise inversion can be calculated
recursively using the block-wise matrix inversion formula
(Horn & Johnson, 2012).

Contribution In this paper, we propose to solve the sub-
set selection problem using information criteria of form
tr(Q[¬C]−1) for generic, non-Gaussian distribution p(θ |
X), where Q is a generalized “information matrix” of
p(θ | X) that we will define later; this is motivated by
lower bounds of Bayesian risks of form

Eθ|X(‖θ̂¬C − θ¬C‖22) ≥ tr(Q[¬C]−1),

where θ̂¬C = θ̂¬C(θC , X) is any (deterministic or ran-
domized) estimator of θ¬C . Results of this type are the
Bayesian version of the classical frequentist Cramér Rao
bound, which, however, only works for unbiased estima-
tors. For continuous θ with smooth densities, this bound
is based on the van Trees inequality, or known as Bayesian
Cramér Rao bound (Van Trees & Bell, 2007) and Q is a
Bayesian version of the typical frequentist Fisher informa-
tion matrix. For θ with discrete values, we derive a new
form of Q based a new extension of van Trees inequality;
our result appears to be the first bound of this type for dis-
crete graphical models to the best of our knowledge.

Minimizing these Bayesian lower bounds provides new
computationally efficient approaches for observation selec-
tion with complex p(θ | X). We provide extensive empiri-
cal results to demonstrate the advantage of our methods in
two practical application settings, including selecting con-
trol questions in crowdsourcing and label propagation for
graph-based semi-supervised learning.

Related Work Bayesian CR bounds have been widely
used in signal processing and information fusion, but seem
to be less well known in machine learning; we refer to
Van Trees (2004); Van Trees & Bell (2007) for an overview
of its theory and applications. Related to our work,
Williams (2007) used the log-determinant (instead of the
trace) of Bayesian Fisher information as the selection cri-
terion, and studied its sub-modularity.

Outline This paper is organized as follows. Section 2
introduces backgrounds on the observation selection prob-
lem and Bayesian Cramér Rao (CR) bounds. We apply
Bayesian CR bounds to solve the observation selection
problem in Section 3 and propose the extension to discrete
models in Section 4. We then discuss two examples of ap-
plications of our methods in Section 5, and present empir-
ical results in Section 6. The paper is concluded in Sec-
tion 7.

2 BACKGROUND

We introduce backgrounds on the observation selection
problem in Section 2.1, and Bayesian Cramér-Rao bounds
in Section 2.2. We restrict to the case when θ is a contin-
uous variable in this section, and discuss the extension to
discrete variables in Section 4.

2.1 OBSERVATION SELECTION

Assume θ = [θ1, . . . , θn] ∈ Rn is a continuous random pa-
rameter of interest with posterior distribution p(θ | X) ∝
p(X | θ)p(θ) conditioning on observed data X . We are in-
terested in the setting when we have the option of revealing
the true value θC of a subset C ⊂ [n] of size no larger than
k, such that we can get the best estimation on the unknown
parameter θ¬C in the remaining set ¬C = [n] \ C. To be
concrete, let θ̂¬C = θ̂¬C(θC , X) be an estimator of θ¬C
based on θC andX , the optimal C should ideally minimize
the mean squared Bayesian risk:

min
C : |C|≤k

{
Rθ̂(C) ≡ Eθ|X(‖θ̂¬C − θ¬C‖22)

}
.

However, this objective depends on the choice of the es-
timator θ̂¬C and is not easy to estimate in practice. Con-
sider the Bayesian estimator θ̂¬C = E(θ¬C | θC , X), then
Rθ̂(C) reduces to the trace of the conditional variance:

R∗(C) = tr(Eθ|X(cov(θ¬C | θC , X))), (1)

which is also the minimum Bayesian risk one can possibly
achieve. This objective function is called the A-optimality
(“average” or trace) in the experiment design literature
(e.g., Chaloner & Verdinelli, 1995).

There also exist other similar objective functions, but with
less direct connection to the mean squared Bayesian risk;
this includes the information-theoretic quantities such as
the conditional entropy H(θ¬C | θC , X) and the mutual
information I(θ¬C , θC | X). The negative of these ob-
jective functions are often shown to be submodular and
monotonic under certain conditions, for which an (1−1/e)
optimality approximation can be obtained using a simple
greedy algorithm, that is, starting with an empty set C = ∅,
and sequentially add the best item i so that R(C ∪ {i}) is
minimized (Nemhauser et al., 1978).

The major challenge in implementing the greedy algorithm
for objectives like (1) is the computational cost of the ob-
jective. Although it is possible to draw approximate sample
from p(θ | X) using MCMC, the estimation quality of the
conditional variance var(θ¬C | θC) can be poor, especially
when the size of C is large, because it requires samples
from θ¬C ∼ p(θ¬C | θC , X) for each value of θC that
appears in the unconditioning sample of p(θ | X). Further,
the Monte Carlo estimates are required for every candidate
C considered, making the optimization algorithm very time
consuming.



The information-theoretic objective functions, such as con-
ditional entropy and mutual information, also suffer from
the similar difficulty due to the need for estimating the
conditional distribution log p(θ¬C | θC , X); in addition,
they also involve calculating the normalization constant
Z =

∫
p(X | θ)p(θ)dθ, which is known to be critically

difficult (e.g., Chen et al., 2012).

The computation can be largely simplified when p(θ | X)
is a multivariate normal distribution, e.g., N (µ,Σ), in
which case the objective (1) reduces to a matrix function
tr(Q[¬C]−1), where Q = Σ−1 is the inverse covariance
matrix, and the greedy selection can be implemented effi-
ciently based on the recursive relation,

R∗(C ∪ {i}) = R∗(C) +
∑
j∈¬C

σ2
ij

σii
,

where Q[¬C]−1 = {σij} and can also be calculated recur-
sively using the block-wise matrix inversion formula (Horn
& Johnson, 2012).

2.2 BAYESIAN CRAMÉR RAO LOWER BOUND

Bayesian Cramér Rao bounds (Van Trees, 2004), also
known as van Trees inequalities, are lower bounds of
Bayesian risks for any estimator θ̂ in terms of Fisher in-
formation matrix; it is the Bayesian version of the classical
Cramér Rao bound, but does not restrict to unbiased esti-
mators.

Let θ̂ = θ̂(X) be any (randomized or deterministic) es-
timator, then under mild regularity conditions (Van Trees
& Bell, 2007, page 35), the Bayesian Cramér Rao bound
guarantees

Eθ|X [‖θ̂ − θ‖2] ≥ tr(H−1), (2)

where H = −Eθ|X
[
∇2
θ log p(θ | X)

]
and is called the

Bayesian Fisher information matrix; compared to the clas-
sical Fisher information, Bayesian Fisher information takes
expectation on the parameter θ and does not require a true
value θ∗. We note that H can be rewritten into

H = −Eθ[∇2
θ log p(X | θ)]− Eθ[∇2

θ log p(θ)],

where the first term represents the information brought by
the observed data, and the second term is the information
from the prior knowledge.

Nuisance Parameter In many practical cases, there ex-
ist additional nuisance parameters η , {η1, · · · , ηn′} of
no direct interest. Ideally, this can be handled by apply-
ing Bayesian CR bound on the marginalized probability
p(θ | X) =

∫
p(θ, η | X)dη. This, however, can be

difficult to calculate because ∇2
θ log p(θ | X) may have no

closed form and require another Monte Carlo approxima-
tion. A weaker, but more computationally efficient, lower

bound (Van Trees & Bell, 2007, Section 1.2.6) can be

Eθ|X [‖θ̂ − θ‖2] ≥ tr([H−1]θθ), (3)

where [H−1]θθ = (Hθθ − HθηH
−1
ηη Hηθ)

−1 is the θθ-
submatrix of H−1, with H being the joint Bayesian Fisher
information matrix of [θ, η]:

H =

[
Hθθ Hθη

Hηθ Hηη

]
= Eθ,η|X

[
∇θθ` ∇θη`
∇ηθ` ∇ηη`

]
, (4)

where ` = − log p(θ, η | X).

3 BAYESIAN CR BOUND FOR LABEL
SELECTION

We apply Bayesian CR bounds to define an objective func-
tion of form tr(Q[¬C]−1) for the observation selection
problems, allowing more efficient computation.
Proposition 1. For any subset C ⊆ [n] and estimator
θ̂¬C = θ̂¬C(θC , X), assume the conditions for Bayesian
Cramér Rao bound holds, we have

Eθ|X [‖θ̂¬C − θ¬C‖2] ≥ tr(Q[¬C]−1),

where Q[¬C] is the submatrix of a matrix Q with rows
and columns in ¬C and Q can be one of the following two
cases:

1. With no nuisance parameter, Q is the Bayesian Fisher
information of θ, that is, Q = −Eθ|X [∇2

θ log p(θ | X)].

2. With a nuisance parameter η, we have Q = Hθθ −
HθηH

−1
ηη Hηθ and H is the joint Bayesian Fisher informa-

tion of [θ, η] as defined in (4).

Proof. Apply (2) and (3) by treating [θC , X] as the fixed
observation and θ¬C as the random parameter to be esti-
mated.

Remark Because the conditional variance in (1) is the
Bayesian risk obtained by the Bayesian estimator θ̂¬C =
E(θ¬C | θC ; X), it should also be lower bounded by the
Bayesian CR bound, that is,

tr(Eθ|X(cov(θ¬C | θC ; X))) ≥ tr(Q[¬C]−1).

The above result suggests a method for finding the opti-
mal subset C by minimizing the lower bound in Proposi-
tion 1, reducing to the observation selection problem to a
sub-matrix selection problem:

max
C : |C|≤k

{
fQ(C) ≡ −tr(Q[¬C]−1)

}
, (5)

where k is the maximum size of C that defines our budget.

We now introduce conditions under which the objective
function fQ(C) is a monotonically non-increasing and sub-
modular function, so that the simple greedy selection algo-
rithm yields an (1−1/e)-approximation. See Algorithm 1.



Proposition 2. (i). Assume Q is positive definite. For any
i /∈ C, we have

fQ(C ∪ {i}) = fQ(C) +

∑
j∈¬C σ

2
ij

σii
.

where σij is the ij-element ofQ[¬C]−1, and hence we have
fQ(C) ≥ fQ(C ′) for any C ′ ⊆ C.

(ii). If Q is positive definite and also satisfies Qij ≤ 0 for
i 6= j (i.e.,it is a Stieltjes matrix, equivalently a symmetric
M-matrix), then Σ = Q−1 is element-wise nonnegative,
and fQ(C) is a sub-modular function.

Proof. (1) is an elementary fact, and (2) is a special case of
Friedland & Gaubert (2013, Theorem 3).

Since Σ = Q−1 corresponds to the covariance matrix in the
Gaussian case, Proposition 2(ii) suggests that we need Σ to
be element-wise nonnegative, that is, θi are positive related
to each other (in a rough sense), to make fQ(C) a submod-
ular function. We remark that this element-wise positive
condition is necessary; see Friedland & Gaubert (2013, Ex-
ample 18) for a counter example. Similar “suppressor-free”
conditions also appear when considering the submodularity
of conditional variance functions in other settings (e.g., Das
& Kempe, 2008; Ma et al., 2013).

The greedy algorithm for optimizing (5) is shown in Al-
gorithm 1, in which we use Proposition 2(i) to reduce the
greedy update i∗ = arg maxi fQ(C ∪ {i}) to a simpler
form:

i∗ = arg max
i

{
σii +

∑
j∈¬C,j 6=i σ

2
ij

σii

}
. (6)

Intuitively, the first term of the above selection criterion
corresponds to a local effect, representing the uncertainty
σii of θi itself, while the second term corresponds to a
global effect, representing how much knowing the true
value of θi can help in estimating the remaining parame-
ters. Note that Algorithm 1 also updatesQ[¬C]−1 = {σij}
recursively using the sub-matrix inverse formula (Line 9).

We should point out that evaluating the expectation in
Q = −E[∇2

θ log p(θ | X)] still requires drawing sam-
ples from p(θ | X) (or p(θ, η | X)), but this can be
pre-calculated before the greedy search starts, and is much
more efficient than optimizing the exact conditional vari-
ance objective function, which requires expensive Monte
Carlo or MCMC sampling for each candidate C evaluated
during the optimization process.

4 EXTENSION TO DISCRETE
VARIABLES

The Bayesian CR bound above works only for continuous
random parameters, since it requires to calculate the deriva-
tives and Hessian matrices. In this section, we introduce a

Algorithm 1 Greedy Subset Selection based on Bayesian
CR bound

1: Input: Posterior distribution p(θ, η | X); budget size
k.

2: Denote H(θ, η) = −∇2
[θ,η] log p(θ, η | X).

3: Draw sample [θ`, η`]m`=1 ∼ p(θ, η | X).
4: H = 1

m

∑
`H(θ`, η`) and Q = Hθθ −HθηH

−1
ηη Hηθ.

5: Initialize C = ∅. Σ = Q−1.
6: while |C| < k do
7: i∗ ← arg maxi∈¬C

∑
j∈¬C σ

2
ij/σii .

8: C ← C ∪ {i∗}.
9: σij ← σij − σii∗σi∗j/σi∗i∗ , ∀i, j ∈ ¬C.

10: end while

new class of lower bounds that apply to general discrete
probabilistic graphical models.

Proposition 3. (i). Assume θ = [θ1, . . . , θn] takes values
in a discrete set θ ∈ {a1, . . . , ad}n, and p(θ|X) > 0 for
any θ. Let a∗ be the solution of

∑d
k=1

1
ak−a∗ = 0. Define

si(θ, X) =
1

d(θi − a∗)p(θi | θ¬i ; X)
,

and Q = Eθ|X [ss>], then for any estimator θ̂(X), we have

Eθ|X [‖θ̂(X)− θ‖2] ≥ tr(Q−1).

(ii). For any subset C ⊆ [n] and conditional estimator
θ̂¬C = θ̂¬C(θC , X), we have

Eθ|X [‖θ̂¬C − θ¬C‖2] ≥ tr(Q[¬C]−1),

where Q[¬C] is the submatrix of Q with rows and columns
in ¬C = [n] \ C.

Proof. (i). Denote by δ = θ − θ̂, we have by Cauchy’s
inequality,

Eθ|X [δδ>] � Eθ|X [δs>] · [Eθ|X(ss>)]−1 · Eθ|X [sδ>].

Since ‖θ̂(X) − θ‖2 = tr(δδ>), we just need to show that
Eθ|X [δs>] = Eθ|X [(θ − θ̂)s>] = I where I is the identity
matrix. To see this, note that

Eθ|X [si] =
∑
θ

p(θ¬i | X)

d(θi − a∗)

=
∑
θi

1

d(θi − a∗)
∑
θ¬i

p(θ¬i | X) = 0,

where the last step is because
∑
θi

1
θi−a∗ = 0 by the def-

inition of a∗. Therefore, we have Eθ|X [s] = 0, and hence
Eθ|X [δs>] = Eθ|X [θs>]. Further, note that

Eθ|X [θisi] = Eθ|X [(θi − a∗)si] =
1

d

∑
θ

p(θ¬i | X) = 1,



Eθ|X [θjsi] =
∑
θ

θj − a∗

d(θi − a∗)
p(θ¬i | X)

=
∑
θi

1

d(θi − a∗)
∑
θ¬i

(θj − a∗)p(θ¬i | X)

= 0 ∀i 6= j.

This gives Eθ|X [θs>] = I and the result follows.

(ii). Apply the result in (ii) by treating θ¬C as the random
parameter and (θC , X) as the observed data.

Note that si depends on p(θ | X) only through the condi-
tional distribution p(θi | θ¬i, X), which is often compu-
tationally tractable since it does not depend on the trouble-
some normalization constant Z =

∑
θ p(X|θ)p(θ).

Example Consider the case of binary parameter θ ∈
{0, 1}n, then solving 1

0−a∗ + 1
1−a∗ = 0 gives a∗ = 1/2.

Therefore, we have si(θ, X) = 1
(2θi−1)p(θi|θ¬i, X) in this

case.

We remark that there exist variants of Bayesian CR bounds
that use finite differences to replace the derivatives, includ-
ing Borrovsky-Zakai bound (Bobrovsky & Zakai, 1975)
and Weiss-Weinstein bound (Weiss & Weinstein, 1985);
these bounds can be naturally applied when θ takes val-
ues in the integer lattice Zn, but does not work well when
θ takes values a finite set due to the boundary problem.

5 APPLICATIONS

The subset selection problem has wide applications in
many important areas. In this section, we describe two
examples of applications that involve continuous and dis-
crete random variables, respectively; empirical results on
real datasets are presented in Section 6.

5.1 CONTINUOUS LABEL SELECTION FOR
CROWDSOURCING

Crowdsourcing has been widely used in data-driven appli-
cations for collecting large amounts of labeled data (Howe,
2006). A major challenge, however, is that the (often
anonymous) crowd labelers tend to give unreliable, even
strongly biased, answers. Probabilistic modeling has been
widely used to estimate the workers’ reliabilities and down-
weight or eliminate the unreliable workers (e.g., Raykar
et al., 2010; Karger et al., 2011; Zhou et al., 2012; Liu et al.,
2012). However, to correct the biases, it is often necessary
to reveal a certain amount of true labels, raising the prob-
lem of deciding which questions should be chosen to reveal
the true labels (e.g., Liu et al., 2013, 2015).

To set up the problem, we follow the setting in Liu et al.
(2013, 2015). Assume we have a set of questions {i}, each
relates to an unknown continuous quantity θi that we want

to estimate (e.g., price, point spreads, GDP). Let {j} be
a set of crowd workers that we hire to estimate {θi}, and
each worker j is characterized by a parameter ηj = [bj , vj ],
where bj and vj represent the bias and variance of worker j,
respectively; we assume the crowd label {xij} of question
i given by worker j is generated by

xij = θi + bj +
√
vjξij , ξij ∼ N (0, 1). (7)

Using a Bayesian approach, we assume Gaussian priors
p(θi) = N (0, σ2

θ), p(bj) = N (0, σ2
b ) on θi and bj , and

an inverse Gamma prior p(vj) = Inv-Gamma(α, β) on vj .
The posterior distribution of θ and η can be written as

p(θ, η | X) ∝
∏
j

exp

[
−
b2j

2σ2
b

]∏
j

v
−α−

dj
2 +1

j exp

[
− β
vj

]
∏
i,j

exp

[
− (Xij − θi − bj)2

2vj

]∏
i

exp

[
− θ2i

2σ2
θ

]
.

However, the crowd labels X may not carry enough infor-
mation for predicting θ, and we hence consider the option
of acquiring the ground truth labels of a subset C of ques-
tions (called the control questions), which can be incorpo-
rated into Bayesian inference to help evaluate the bias and
variance of the workers, and hence improve the prediction
of the remaining questions.

We can use Algorithm 1 to select the optimal subset C,
where the greedy update (6) strikes a balance between se-
lecting the most uncertain questions to myopically improve
the overall MSE, and the most “influential” questions (e.g.,
these labeled by a lot of workers) whose ground truth la-
bels can significantly improve the estimation of the work-
ers’ bias and variance, and hence improve the prediction of
the unlabeled questions via a propagation effect.

5.2 DISCRETE LABEL SELECTION ON GRAPHS

Numerous real-world applications produce networked data
with rich relational structures, such as web data and com-
munication networks, and these relational information can
be used to improve the prediction accuracy of unlabeled
data using a small amount of labeled data. Various meth-
ods have been developed to exploit this effect, includ-
ing graph-based semi-supervised learning (e.g., Zhu et al.,
2003; Zhou et al., 2004) and collective, or graph-based,
classification (e.g., Lu & Getoor, 2003). A related impor-
tant question is how to select the best labeling subset to
enable the best prediction on the remaining data.

We set up the problem using undirected graphical models.
Assume G = (V,E) is an undirected graph, and θi is a
discrete label associated with node i ∈ V . It is common to
model the posterior distribution using a pairwise graphical
model,

p(θ) ∝ exp
[ ∑
(i,j)∈E

Jijθiθj +
∑
i∈V

hiθi
]
, (8)



where Jij represents the correlation between θi and θj and
hi the local information of θi. We are interested in the
problem of selecting the best subset C ⊆ V so that the
prediction accuracy based p(θ¬C | θC) is maximized. In
the semi-supervised learning settings, θi is often assumed
to be a continuous variable, and p(θ) reduces to a simple
Gaussian Markov random field. We instead assume θ to be
discrete labels (e.g., θ ∈ {−1,+1}) which is much more
challenging to deal with. Our bound in Section 4 and Al-
gorithm 1 (but with Q defined in Proposition 3) provide a
novel tool for solving this problem efficiently.

6 EXPERIMENTS

We present experiments to better understand the perfor-
mance of our proposed observation selection methods
based on Bayesian lower bounds. To achieve this, we first
illustrate our method using a toy example based on Gaus-
sian mixture, and then apply our method to the two applica-
tion areas described in Section 5, including selecting opti-
mal control questions in crowdsourcing, as well as discrete
label selection in graph-based classification.

6.1 CONTINUOUS VARIABLES

We test our method in the case when θ is a continuous vari-
able, first on a toy Gaussian mixture model, and then on
the model for selecting control questions in crowdsourc-
ing. We implement our method BayesianCRB(Gibbs)
as shown in Algorithm 1 with the sample [θ`, η`]m`=1 gener-
ated using Gibbs sampler. In addition, the following base-
line selection methods are compared:

Random, in which a random set C of size k is selected
uniformly.

BayesianOpt(Gibbs), which greedily minimizes the
trace of the conditional variance in (1); to estimate the con-
ditional variance we draw [θ`, η`]m`=1 ∼ p(θ, η, |X) using
Gibbs sampler, and then for each candidate set C evaluated
during the greedy search, we further draw [θ`,r¬C , η

`,r]m
′

r=1 ∼
p(θ¬C , η, |θ`C , X) using another Gibbs sampler, and esti-
mate the objective in (1) by

1

m(m′ − 1)

m∑
`=1

m′∑
r=1

∑
i∈¬C

(θ`,ri − θ̄
`
i )

2,

where θ̄`i = 1
m′

∑m′

r=1 θ
`,r
i . This method aims to minimize

the Bayesian optimal risk, but is obviously much more
expensive than our BayesianCRB(Gibbs) because it
needs a large size m′ of MCMC sample to get a good ap-
proximation for evaluating each candidate C, while it tends
to degenerate significantly when m′ is small.

MaxVar(Gibbs), which greedily finds a subset C
with the largest uncertainty in the sense of maximiz-

ing the variance
∑
i∈C var(θi|X), instead of minimiz-

ing the conditional variance. The variance is estimated
by the empirical variance using the MCMC samples
[θ`, η`]m`=1. This algorithm is computationally as fast as
our BayesianCRB(Gibbs), but does not consider the
“propagation effect” that the information in θC can help
improve the inference on θ¬C .

Laplacian, which uses a Laplacian approximation to ap-
proximate the posterior p(θ, η | X) with a multivariate
normal distribution (Liu et al., 2015), under which the ob-
jective (1) reduces to the matrix form in (5). This algo-
rithm is the same as our Algorithm 1, except that the H
in Line 4 is instead estimated by H = H(θ∗, η∗), where
[θ∗, η∗] is the mode of the posterior distribution p(θ, η |
X). Obviously, Laplacian would perform similarly to
BayesianCRB(Gibbs) when the posterior p(θ, η|X) is
close to normal, but would otherwise perform poorly, espe-
cially when p(θ, η | X) is multimodal.

6.1.1 Gaussian Mixture Model

We start with the following toy example of Gaussian mix-
ture model,

p(θ) =

2∑
κ=1

ωκN (θ | µκ,Σκ),

where we ignore the dependence on observed data X . We
draw µκ randomly from a zero-mean normal distribution
with variance 0.1, and set Σκ = 0.1(αDκ−Wκ)−1, where
Wκ corresponds to an adjacency matrix of an undirected
graph and Dκ is a diagonal matrix where Dκ,ii =

∑
jWij

and α is a constant larger than one to enforce L to be pos-
itive definite (we set α = 1.1). We consider two different
graph structures: (1) both W1 and W2 are the 30 by 30
2D grid graph, in which case we set ω = [1, 1]/2; (2) W1

and W2 are scale-free networks of size 30 generated using
the Barabási-Albert (BA) model (Barabási & Albert, 1999),
with average degrees of 1 and 4, respectively, in which case
we set ω = [0.9, 0.1]. We simulate the ground truth of θ by
drawing samples from p(θ | X), and plot the relative MSE
of different algorithms compared to the random selection
baseline in Figure 1(a)-(b); the results are averaged over 50
random trials.

As shown in Figure 1 (a)-(b), BayesianOpt(Gibbs)
achieves the best performance, since it minimizes the con-
ditional variance objective, which is the Bayesian opti-
mal MSE. Laplacian performs the worst because p(θ)
has multiple modes and the Laplacian approximation can
only capture one of the mode. On the other hand,
our BayesianCRB(Gibbs), which takes the advan-
tage of minimizing Bayesian CR bound, and is closer to
BayesianOpt(Gibbs) than all the other methods.

It’s also worth studying the tightness of the Bayesian CR
bound. This is shown in Figure 1(c) where we plot the ratio
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Figure 1: (a-b) Results on the toy Gaussian mixture model; the y-axis are the MSE of different algorithms divided by the
MSE of the random selection algorithm. (c) The ratio between the Bayesian CR lower bound and Bayesian optimal MSE
(the trace of the conditional variance) on both the scale-free and grid graphs.

between the Bayesian optimal MSE (the trace of the condi-
tional variance) and the Bayesian CR lower bound for both
the scale-free and grid graphs; here the bounds are evalu-
ated using the subsets C with different size k, selected by
our BayesianCRB(Gibbs) method. We can see that
the ratios are very close to one (≥ 0.8), suggesting that the
bayesian CR bounds are very tight in these cases. In partic-
ular, we note that the bound is very tight for the grid graph
example (ratio ≈ 1), explaining the good performances of
BayesianCRB(Gibbs) in figure 1(b).

6.1.2 Application to Crowdsourcing

We further apply our method to the problem of selecting the
optimal control questions in crowdsourcing as described in
Section 5. We evaluate our selection algorithms on both
simulated datasets and real-world datasets.

Toy dataset: We first generate a simulated dataset accord-
ing to the Gaussian model described in (7), where θi and bj
are i.i.d drawn from normal distribution with standard de-
viation of 4, and the labelers’ variances vj are generated
from an inverse Gamma distribution Inv-Gamma(1, 1).
The dataset contains 30 questions and 30 labelers, and we
assume the i-th question is answered only by the first i la-
belers; in this way, the first question is answered only by
the first labeler and hence has the most uncertain result,
and the last question is answered by all the 30 workers, and
hence is the most influential, in that knowing its true value
can help evaluate the bias and variance of all the 30 workers
and hence improve the prediction on all the other items.

Figure 2(a) shows the average MSE given by the
different methods. In this case, we can see that
BayesianOpt(Gibbs), BayesianCRB(Gibbs)
and Laplacian tend to perform similarly, all of which
significantly outperform Random and MaxVar(Gibbs).
Note that MaxVar(Gibbs) is even worse than Random
at the beginning, since it myopically selects the most

uncertain questions (the first few questions labeled by
a small number of workers in this case), while much
more significant improvements could be obtained by
selecting the more influential items (these labeled by more
workers). We find that Laplacian performs as well as
BayesianCRB(Gibbs), probably because the posterior
distribution tends to be unimodal in this case. Figure 2
(b) shows the tightness of our lower bound as the size
k of subset C increases, evaluated on the C given by
BayesianCRB(Gibbs), and we can see that the lower
bound is again very tight in this case (ratio ≥ 0.93).

Real-world datasets: We also evaluate our approach on
three real-world datasets:

The PriceUCI dataset (Liu et al., 2013). It consists of 80
household items collected from Internet, and whose prices
are estimated by 155 UCI undergraduate students. As sug-
gested in Liu et al. (2013), a log transform is performed on
the prices before using the Gaussian models.

The national football league (NFL) forecasting dataset used
in Massey et al. (2011). It consists predictions of point dif-
ferences of 245 NFL games given by 386 participants; the
point spreads determined by additional professional book-
makers are used as the ground truth.

The GDP Growth dataset used in Budescu & Chen (2014).
It contains the forecasts of GDP growth nine months ahead
by professional forecasters surveyed by European Central
Bank (ECB). A total of 98 forecasters made forecasts for
50 quarters of GDP growth.

The results on these three real-world datasets are shown
in figure 3(a)-(c). BayesianOpt(Gibbs) is not eval-
uated because it is too slow on these real world datasets.
We can see that both BayesianCRB(Gibbs) and
Laplacian tend to outperform the other methods signif-
icantly. Again, Laplacian tends to perform as well as
BayesianCRB(Gibbs) because the posteriors are very
close to Gaussian distribution in these cases.
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Figure 2: Results on crowdsourcing with simulated data. (a) The MSE given by different selection algorithms as the budget
k increases. (b) The ratio between the Bayesian lower bound and Bayesian optimal MSE. We can see that the lower bound
is very close to the Bayesian optimal MSE (ratio ≥ 0.93), and the tightness tends to increase as the size k of C increases.
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Figure 3: (a)-(c) Results on three real datasets, PriceUCI, NFL and GDP Growth, respectively. The y-axes are the average
MSE on the remaining items as the size of the subset C increases. The error bars show the standard deviation over the
random trials.

6.2 DISCRETE VARIABLES

In this section, we use our algorithm to select optimal sub-
sets on binary Ising graphical models defined in (8) with
θ ∈ {−1,+1}. We use DiscreteLB(Gibbs) to denote
the greedy optimization algorithm on our discrete Bayesian
lower bound (it is the same as Algorithm 1, except with Q
defined in Proposition 3). We again compare our algorithm
with several baselines, including:

CondEnt(LBP), which greedily selects a subset C to
minimum the conditional entropy H(θ¬C | θC , X); it is
equivalent to maximizing the marginal entropy H(θC |
X). The entropy is approximated using loopy belief
propagation (LBP). This algorithm is similar to MaxVar
(Gibbs) for continuous variables, in that both myopi-
cally find the subset with the largest uncertainty, ignoring
the propagation effect that the added true labels can help
predict the remaining unlabeled items (Krause et al., 2008).

MutualInfo(LBP), which maximizes the mutual infor-
mation I(θC ; θ¬C | X); this was proposed by Krause et al.

(2008) to avoid the myopic property of the entropy objec-
tive. The mutual information is again approximated using
loopy belief propagation (LBP).

MinCondVar(Gaussian), which minimizes tr(L−1¬C)
where L = Λ − J , where Λ is a diagonal matrix chosen
to make L positive definite. This method is equivalent to
treating θ as a continuous variable, and hence (8) a multi-
variate Gaussian distribution.

Comparisons are made on both simulated and real-world
datasets:

Simulated data: We set p(θ | X) to be the binary graph-
ical model in (8) (there is no actual observed data X in
this case), with both J and h in (8) drawn from Gaussian
distributions: we draw each element of h from N (0, 0.2),
and set J = 0.1W , where W is an adjacency matrix of an
undirected graph with values drawn from standard normal
distribution. The graph structure is defined to be either a
30 × 30 2D grid, or a scale free network of size 30 gen-
erated using the Barabási-Albert (BA) model (Barabási &
Albert, 1999) with the preferential attachment mechanism.
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Figure 4: Results on binary Ising models with simulated data. (a)-(b) The Relative MSE of different algorithms on
the synthetic datasets simulated from the scale-free and the grid graph, respectively. (c) The ratio between our discrete
Bayesian lower bound and the Bayesian optimal MSE on the simulated dataset; the bounds are evaluated on the subsets C
selected by our DiscreteLB(Gibbs) method.
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Figure 5: Comparison of the relative MSE of different
methods on the PubMed Diabetes dataset. Our algo-
rithm DiscreteLB(Gibbs) achieves similar results as
BayesianOpt(Gibbs), but with much lower computa-
tional cost.

We show the results of different algorithms in Figure 4,
where we find that our DiscreteLB(Gibbs) is compa-
rable with BayesianOpt(Gibbs) which minimizes the
Bayesian optimal error rate, and outperforms all the other
baselines. Both MaxVar(Gibbs) and CondEnt(LBP)
tend to myopically select the most uncertain items first
and hence have similar performance. Figure 4(c) shows
the tightness of our Bayesian lower bound compared to
the Bayesian optimal error; we can see that it is less tight
(ratio ≥ 0.56) compared with the Bayesian CR bound
for continuous variables, but the good performance of
DiscreteLB(Gibbs) seems to suggest that the lower
bound still represents a good surrogate for the Bayesian op-
timal error.

PubMed Diabetes:1 This is a citation graph of scientific
papers from the PubMed database (Sen et al., 2008), in
which each paper is classified into one of three classes:

1 http://linqs.umiacs.umd.edu/projects//projects/lbc/

“Diabetes Mellitus, Experimental”, “Diabetes Mellitus
Type 1”, “Diabetes Mellitus Type 2”. For our experiment,
we select the top 100 nodes with the highest degrees from
class Diabetes Mellitus Type 1 and Type 2, and then took
the largest connected component, with 93 nodes in total
and 376 edges; this gives 43 nodes from class Type 1 and
50 nodes from class Type 2, and a graph with an average
degree of 4. In this case, since we don’t have any prior
knowledge, we set h to be a vector of small random num-
bers, and let J = 0.05W , where W denotes the adjacency
matrix. The results is shown in Figure 5, in which we ob-
serve a similar trend as that in the simulated data.

7 CONCLUSION

The Bayesian optimal risk is the ideal objective function
for optimal subset selection, which, however, is extremely
difficult to calculate and optimize in practice. In this paper,
we proposed to use Bayesian lower bounds as surrogate cri-
teria, and derived a class of computationally more efficient
algorithms for observation selection. We discussed both
continuous and discrete scenarios: for continuous models,
we based our bound on the classical Bayesian Cramér Rao
bound; for discrete models, we derived a new form based
on an novel extension of van Trees inequality. We pre-
sented a number of experiments for both continuous and
discrete models in various practical settings, and showed
that the selection algorithms based on the Bayesian lower
bounds tend to outperform most baseline algorithms, and
are comparable with the selection based on the Bayesian
optimal risk.
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