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Abstract

Margin-based structured prediction commonly

uses a maximum loss over all possible structured

outputs (Altun & Hofmann, 2003; Collins, 2004;

Taskar et al., 2003). In natural language pro-

cessing, recent work (Zhang et al., 2014; Zhang

et al., 2015) has proposed the use of the maxi-

mum loss over random structured outputs sam-

pled independently from some proposal distribu-

tion. This method is linear-time in the number

of random structured outputs and trivially par-

allelizable. We study this family of loss func-

tions in the PAC-Bayes framework under Gaus-

sian perturbations (McAllester, 2007). Under

some technical conditions and up to statistical

accuracy, we show that this family of loss func-

tions produces a tighter upper bound of the Gibbs

decoder distortion than commonly used meth-

ods. Thus, using the maximum loss over random

structured outputs is a principled way of learn-

ing the parameter of structured prediction mod-

els. Besides explaining the experimental success

of (Zhang et al., 2014; Zhang et al., 2015), our

theoretical results show that more general tech-

niques are possible.

1 INTRODUCTION

Structured prediction has been shown to be useful in

many diverse domains. Application areas include natu-

ral language processing (e.g., named entity recognition,

part-of-speech tagging, dependency parsing), computer vi-

sion (e.g., image segmentation, multiple object tracking),

speech (e.g., text-to-speech mapping) and computational

biology (e.g., protein structure prediction).

In dependency parsing, for instance, the observed input is

a sentence and the desired structured output is a parse tree

for the given sentence.

In general, structured prediction can be viewed as a kind of

decoding. A decoder is a machine for predicting the struc-

tured output y given the observed input x. Such a decoder,

depends on a parameter w. Given a fixed w, the task per-

formed by the decoder is called inference. In this paper, we

focus on the problem of learning the parameter w. Next,

we introduce the problem and our main contributions.

We assume a distribution D on pairs (x, y) where x ∈ X is

the observed input and y ∈ Y is the latent structured output,

i.e., (x, y) ∼ D. We also assume that we have a training set

S of n i.i.d. samples drawn from the distribution D, i.e.,

S ∼ Dn, and thus |S| = n.

We let Y(x) �= ∅ denote the countable set of feasible de-
codings of x. In general, |Y(x)| is exponential with respect

to the input size.

We assume a fixed mapping φ from pairs to feature vec-

tors, i.e., for any pair (x, y) we have the feature vector

φ(x, y) ∈ R
k \ {0}. For a parameter w ∈ W ⊆ R

k \ {0},
we consider linear decoders of the form:

fw(x) ≡ argmax
y∈Y(x)

φ(x, y) · w (1)

In practice, very few cases of the above general inference
problem are tractable, while most are NP-hard and also

hard to approximate within a fixed factor. (We defer the

details in theory of computation to Section 6.)

We also introduce the distortion function

d : Y × Y → [0, 1]. The value d(y, y′) measures the

amount of difference between two structured outputs y and

y′. Disregarding the computational and statistical aspects,

the ultimate goal is to set the parameter w in order to

minimize the decoder distortion. That is:

min
w∈W

E
(x,y)∼D

[d(y, fw(x))] (2)

Computationally speaking, the above procedure is ineffi-

cient since d(y, fw(x)) is a discontinuous function with re-

spect to w and thus, it is in general an exponential-time op-

timization problem. Statistically speaking, the problem in



eq.(2) requires access to the data distribution D and thus,

in general it would require an infinite amount of data. In

practice, we only have access to a small amount of training

data.

Additionally, eq.(2) would potentially favor parameters w
with low distortion, but that could be in a neighborhood

of parameters with high distortion. In order to avoid this

issue, we could optimize a more “robust” objective under

Gaussian perturbations. More formally, let α > 0 and let

Q(w) be a unit-variance Gaussian distribution centered at

wα of parameters w′ ∈ W . The Gibbs decoder distortion

of the perturbation distribution Q(w) and data distribution

D, is defined as:

L(Q(w), D) = E
(x,y)∼D

[
E

w′∼Q(w)
[d(y, fw′(x))]

]
(3)

The minimization of the Gibbs decoder distortion can be

expressed as:

min
w∈W

L(Q(w), D)

The focus of our analysis will be to propose upper bounds

of the Gibbs decoder distortion, with good computational

and statistical properties. That is, we will propose upper

bounds that can be computed in polynomial-time, and that

require a small amount of training data.

For our analysis, we follow the same set of assumptions as

in (McAllester, 2007). We define the margin m(x, y, y′, w)
as the amount by which y is preferable to y′ under the pa-

rameter w. More formally:

m(x, y, y′, w) ≡ φ(x, y) · w − φ(x, y′) · w
Let c(p, x, y) be a nonnegative integer that gives the num-

ber of times that the part p ∈ P appears in the pair (x, y).
For a part p ∈ P , we define the feature p as follows:

φp(x, y) ≡ c(p, x, y)

We letP(x) �= ∅ denote the set of p ∈ P such that there ex-

ists y ∈ Y(x) with c(p, x, y) > 0. We define the Hamming

distance H as follows:

H(x, y, y′) ≡
∑

p∈P(x)

|c(p, x, y)− c(p, x, y′)|

The commonly applied margin-based approach to learning

w uses the maximum loss over all possible structured out-

puts (Altun & Hofmann, 2003; Collins, 2004; Taskar et al.,

2003). That is:1

min
w∈W

1

n

∑
(x,y)∈S

max
ŷ∈Y(x)

d(y, ŷ) 1

(
H(x, y, ŷ)
−m(x, y, ŷ, w) ≥ 0

)
+ λ‖w‖22 (4)

1For computational convenience, the convex hinge loss
max (0, 1 + z) is used in practice instead of the discontinuous
0/1 loss 1 (z ≥ 0).

In Section 2, we reproduce the results in (McAllester, 2007)

and show that the above objective is related to an upper

bound of the Gibbs decoder distortion in eq.(3). Note that

evaluating the objective function in eq.(4) is as hard as the

inference problem in eq.(1), since both perform maximiza-

tion over the set Y(x).
Our main contributions are presented in Sections 3 and

4. Inspired by recent work in natural language process-

ing (Zhang et al., 2014; Zhang et al., 2015), we show

a tighter upper bound of the Gibbs decoder distortion in

eq.(3), which is related to the following objective:1

min
w∈W

1

n

∑
(x,y)∈S

max
ŷ∈T (w,x)

d(y, ŷ) 1

(
H(x, y, ŷ)
−m(x, y, ŷ, w) ≥ 0

)
+ λ‖w‖22 (5)

where T (w, x) is a set of random structured outputs sam-

pled i.i.d. from some proposal distribution with support on

Y(x). Note that evaluating the objective function in eq.(5)

is linear-time in the number of random structured outputs

in T (w, x).

2 FROM PAC-BAYES TO THE
MAXIMUM LOSS OVER ALL
POSSIBLE STRUCTURED OUTPUTS

In this section, we show the relationship between PAC-

Bayes bounds and the commonly used maximum loss over

all possible structured outputs.

As reported in (McAllester, 2007), by using the PAC-Bayes

framework under Gaussian perturbations, we show that the

commonly used maximum loss over all possible structured

outputs is an upper bound of the Gibbs decoder distortion

up to statistical accuracy (O(
√

logn/n) for n training sam-

ples).

Theorem 1 (McAllester, 2007). Assume that there exists
a finite integer value � such that | ∪(x,y)∈S P(x)| ≤ �. Fix
δ ∈ (0, 1). With probability at least 1− δ/2 over the choice
of n training samples, simultaneously for all parameters
w ∈ W and unit-variance Gaussian perturbation distribu-

tions Q(w) centered at w
√
2 log (2n�/‖w‖22), we have:

L(Q(w), D)

≤ 1

n

∑
(x,y)∈S

max
ŷ∈Y(x)

d(y, ŷ) 1

(
H(x, y, ŷ)
−m(x, y, ŷ, w) ≥ 0

)

+
‖w‖22
n

+

√
‖w‖22 log (2n�/‖w‖22) + log (2n/δ)

2(n− 1)

(See Appendix A for detailed proofs.)

The proof of the above is based on the PAC-Bayes theo-

rem and well-known Gaussian concentration inequalities.



As it is customary in generalization results, a determinis-
tic expectation with respect to the data distribution D is

upper-bounded by a stochastic quantity with respect to the

training set S. This takes into account the statistical aspects

of the problem.

Note that the upper bound uses maximization with respect

to Y(x) and that in general, |Y(x)| is exponential with re-

spect to the input size. Thus, the computational aspects of

the problem have not been fully addressed yet. In the next

section, we solve this issue by introducing randomness.

3 FROM PAC-BAYES TO THE
MAXIMUM LOSS OVER RANDOM
STRUCTURED OUTPUTS

In this section, we analyze the relationship between PAC-

Bayes bounds and the maximum loss over random struc-

tured outputs sampled independently from some proposal

distribution.

First, we will focus on the computational aspects. Instead

of using maximization with respect to Y(x), we will per-

form maximization with respect to a set T (w, x) of random

structured outputs sampled i.i.d. from some proposal distri-

bution R(w, x) with support on Y(x). In order for this ap-

proach to be computationally appealing, |T (w, x)| should

be polynomial, even when |Y(x)| is exponential with re-

spect to the input size.

Assumptions A and B will allow us to attain

|T (w, x)| = O
(
max

(
1

log (1/β) , ‖w‖22
))

. The con-

stant β ∈ [0, 1) is properly introduced on Assumption A.

It can be easily observed that β plays an important role

in the number of random structured outputs that we need

to draw from the proposal distribution R(w, x). Next, we

present our first assumption.

Assumption A (Maximal distortion). The proposal distri-
bution R(w, x) fulfills the following condition. There exists
a value β ∈ [0, 1) such that for all (x, y) ∈ S and w ∈ W:

P
y′∼R(w,x)

[d(y, y′) = 1] ≥ 1− β

In Section 4 we show examples that fulfill the above as-

sumption, which include a binary distortion function for

any type of structured output, as well as a distortion func-

tion that returns the number of different edges/elements

for directed spanning trees, directed acyclic graphs and

cardinality-constrained sets.

Next, we present our second assumption that allows obtain-

ing |T (w, x)| = O
(
max

(
1

log (1/β) , ‖w‖22
))

. While As-

sumption A contributes with the term 1
log (1/β) in |T (w, x)|,

the following assumption contributes with the term ‖w‖22 in

|T (w, x)|.

Assumption B (Low norm). For any vector z ∈ R
k, de-

fine:

µ(z) =

{
z/‖z‖1 if z �= 0

0 if z = 0

The proposal distribution R(w, x) fulfills the following
condition for all (x, y) ∈ S and w ∈ W:2∥∥∥∥ E

y′∼R(w,x)
[µ(φ(x, y)− φ(x, y′))]

∥∥∥∥
2

≤ 1

2
√
n
≤ 1

2‖w‖2

It is natural to ask whether there are instances that fulfill

the above assumption. In Section 4 we provide two ex-

treme cases: one example of a sparse mapping and a uni-

form proposal, and one example of a dense mapping and an

arbitrary proposal distribution.

We will now focus on the statistical aspects. Note that

randomness does not only stem from data, but also from

sampling structured outputs. That is, in Theorem 1, ran-

domness only stems from the training set S. We now need

to produce generalization results that hold for all the sets

T (w, x) of random structured outputs. In addition, the uni-

form convergence of Theorem 1 holds for all parameters

w. We now need to produce a generalization result that

also holds for all possible proposal distributions R(w, x).
Therefore, we need a method for upper-bounding the num-

ber of possible proposal distributions R(w, x). Assumption

C will allow us to upper-bound this number.

Assumption C (Linearly inducible ordering). The
proposal distribution R(w, x) depends solely on
the linear ordering induced by the parameter
w ∈ W and the mapping φ(x, ·). More formally, let
r(x) ≡ |Y(x)| and thus Y(x) ≡ {y1 . . . yr(x)}. Let
w,w′ ∈ W be any two arbitrary parameters. Let
π(x) = (π1 . . . πr(x)) be a permutation of {1 . . . r(x)}
such that φ(x, yπ1

) · w < · · · < φ(x, yπr(x)
) · w. Let

π′(x) = (π′
1 . . . π

′
r(x)) be a permutation of {1 . . . r(x)}

such that φ(x, yπ′
1
) · w′ < · · · < φ(x, yπ′

r(x)
) · w′.

For all w,w′ ∈ W and x ∈ X , if π(x) = π′(x) then
KL(R(w, x)‖R(w′, x)) = 0. In this case, we say that the
proposal distribution fulfills R(π(x), x) ≡ R(w, x).

Assumption C states that two proposal distribu-

tions R(w, x) and R(w′, x) are the same pro-

vided that for the same permutation π(x) we

have φ(x, yπ1) · w < · · · < φ(x, yπr(x)
) · w and

φ(x, yπ1
) · w′ < · · · < φ(x, yπr(x)

) · w′. Geometri-

cally speaking, for a fixed x we first project the feature

vectors φ(x, y) of all the structured outputs y ∈ Y(x) onto

2The second inequality follows from an implicit assumption

made in Theorem 1, i.e., ‖w‖22/n ≤ 1. Note that if ‖w‖22/n > 1
then Theorem 1 provides an upper bound greater than 1, which is
meaningless since the distortion function d is at most 1.



the lines w and w′. Let π(x) and π′(x) be the resulting or-

dering of the structured outputs after projecting them onto

w and w′ respectively. Two proposal distributions R(w, x)
and R(w′, x) are the same provided that π(x) = π′(x).
That is, the specific values of φ(x, y) · w and φ(x, y) · w′

are irrelevant, and only their ordering matters.

In Section 4 we show examples that fulfill the above as-

sumption, which include the algorithm proposed in (Zhang

et al., 2014; Zhang et al., 2015) for directed spanning trees,

and our proposed generalization to any type of data struc-

ture with computationally efficient local changes.

In what follows, by using the PAC-Bayes framework un-

der Gaussian perturbations, we show that the maximum

loss over random structured outputs sampled independently

from some proposal distribution provides an upper bound

of the Gibbs decoder distortion up to statistical accuracy

(O( log3/2 n/
√
n) for n training samples).

Theorem 2. Assume that there exist finite integer values
� and r such that | ∪(x,y)∈S P(x)| ≤ � and |Y(x)| ≤ r
for all (x, y) ∈ S. Assume that the proposal distribution
R(w, x) with support on Y(x) fulfills Assumption A with
value β, as well as Assumptions B and C. Fix δ ∈ (0, 1)
and an integer s such that 3 ≤ s ≤ 9

20

√
�+ 1. With prob-

ability at least 1− δ over the choice of both n training
samples and n sets of random structured outputs, simul-
taneously for all parameters w ∈ W with ‖w‖0 ≤ s, unit-
variance Gaussian perturbation distributions Q(w) cen-

tered at w
√
2 log (2n�/‖w‖22), and for sets of random

structured outputs T (w, x) sampled i.i.d. from the proposal
distribution R(w, x) for each training sample (x, y) ∈ S,

such that |T (w, x)| =
⌈
1
2 max

(
1

log (1/β) , 32‖w‖22
)
log n

⌉
,

we have:

L(Q(w), D)

≤ 1

n

∑
(x,y)∈S

max
ŷ∈T (w,x)

d(y, ŷ) 1

(
H(x, y, ŷ)
−m(x, y, ŷ, w) ≥ 0

)

+
‖w‖22
n

+

√
‖w‖22 log (2n�/‖w‖22) + log (2n/δ)

2(n− 1)
+

√
1

n

+max
(

1
log (1/β) , 32‖w‖22

)√s log (�+1) log3(n+1)

n

+ 3

√
s(log �+ 2 log (nr)) + log (4/δ)

n

(See Appendix A for detailed proofs.)

The proof of the above is based on Theorem 1 as a starting

point. In order to account for the computational aspect of

requiring sets T (w, x) of polynomial size, we use Assump-

tions A and B for bounding a deterministic expectation. In

order to account for the statistical aspects, we use Assump-

tion C and Rademacher complexity arguments for bound-

ing a stochastic quantity for all sets T (w, x) of random

structured outputs and all possible proposal distributions

R(w, x). The assumption of sparsity (i.e., ‖w‖0 ≤ s) is

pivotal for obtaining terms of order O(
√

s log �/n)). With-

out sparsity, the terms would be of order O(
√

�/n) which

is not suited for high-dimensional settings.

3.1 Inference on Test Data

Note that the upper bound in Theorem 2 holds simultane-

ously for all parameters w ∈ W . Therefore, our result im-

plies that after learning the optimal parameter ŵ ∈ W in

eq.(5) from training data, we can bound the decoder distor-

tion when performing exact inference on test data. More

formally, Theorem 2 can be additionally invoked for a test
set S′, also with probability at least 1− δ. Thus, under the

same setting as of Theorem 2, the Gibbs decoder distortion

is upper-bounded with probability at least 1− 2δ over the

choice of S and S′. In this paper, we focus on learning the

parameter of structured prediction models. We leave the

analysis of approximate inference on test data for future

work.

4 EXAMPLES

In this section, we provide several examples that fulfill the

three main assumptions of our theoretical result.

4.1 Examples for the Maximal Distortion Assumption

In what follows, we present some examples that fulfill our

Assumption A. For a binary distortion function, we show

that any type of structured output fulfills the above assump-

tion. For a distortion function that returns the number of

different edges/elements, we show that directed spanning

trees, directed acyclic graphs and cardinality-constrained

sets, fulfill the assumption as well.

For simplicity of analysis, most proofs in this part will as-

sume a uniform proposal distribution R(w, x) = R(x) with

support on Y(x). In the following claim, we argue that we

can perform a change of measure between different pro-

posal distributions. Thus, allowing us to focus on uniform

proposals afterwards.

Claim i (Change of measure). Let R(w, x) and R′(w, x)
two proposal distributions, both with support on Y(x).
Assume that the proposal distribution R(w, x) fulfills As-
sumption A with value β1. Let rw,x(·) and r′

w,x(·) be the
probability mass functions of R(w, x) and R′(w, x) re-
spectively. Assume that the total variation distance be-
tween R(w, x) and R′(w, x) is bounded as follows for all
(x, y) ∈ S and w ∈ W:

TV (R(w, x)‖R′(w, x)) ≡ 1

2

∑
y∈Y(x)

|rw,x(y)− r′
w,x(y)|

≤ β2



The proposal distribution R′(w, x) fulfills Assumption A
with β = β1 + β2 provided that β1 + β2 ∈ [0, 1).

Next, we provide a result for any type of structured output,

but for a binary distortion function.

Claim ii (Any type of structured output). Let Y(x) be an
arbitrary countable set of feasible decodings of x, such that
|Y(x)| ≥ 2 for all (x, y) ∈ S. Let d(y, y′) = 1 (y �= y′).
The uniform proposal distribution R(w, x) = R(x) with
support on Y(x) fulfills Assumption A with β = 1/2.

The following claim pertains to directed spanning trees and

for a distortion function that returns the number of different

edges.

Claim iii (Directed spanning trees). Let Y(x) be the
set of directed spanning trees of v nodes. Let
A(y) be the adjacency matrix of y ∈ Y(x). Let
d(y, y′) = 1

2(v−1)

∑
ij |A(y)ij −A(y′)ij |. The uniform

proposal distribution R(w, x) = R(x) with support on
Y(x) fulfills Assumption A with β = v−2

v−1 .

The next result is for directed acyclic graphs and for a dis-

tortion function that returns the number of different edges.

Claim iv (Directed acyclic graphs). Let Y(x) be
the set of directed acyclic graphs of v nodes and
b parents per node, such that 2 ≤ b ≤ v − 2. Let
A(y) be the adjacency matrix of y ∈ Y(x). Let
d(y, y′) = 1

b(2v−b−1)

∑
ij |A(y)ij −A(y′)ij |. The uni-

form proposal distribution R(w, x) = R(x) with support
on Y(x) fulfills Assumption A with β = b2+2b+2

b2+3b+2 .

The final example is for cardinality-constrained sets and for

a distortion function that returns the number of different

elements.

Claim v (Cardinality-constrained sets). Let Y(x) be the set
of sets of b elements chosen from v possible elements, such
that b ≤ v/2. Let d(y, y′) = 1

2b (|y − y′|+ |y′ − y|). The
uniform proposal distribution R(w, x) = R(x) with sup-
port on Y(x) fulfills Assumption A with β = 1/2.

4.2 Examples for the Low Norm Assumption

Next, we present some examples that fulfill our Assump-

tion B. We provide two extreme cases: one example for

sparse mappings, and one example for dense mappings.

Next, we provide a result for a particular instance of a

sparse mapping and a uniform proposal distribution.

Claim vi (Sparse mapping). Let b > 0 be an arbitrary in-
teger value. For all (x, y) ∈ S, let Y(x) = ∪p∈P(x)Yp(x),
where the partition Yp(x) is defined as follows:

(∀p ∈ P(x)) Yp(x) ≡ {y′ | |φp(x, y)− φp(x, y
′)| = b ∧

(∀q �= p) φq(x, y) = φq(x, y
′)}

If n ≤ |P(x)|/4 for all (x, y) ∈ S, then the uniform pro-
posal distribution R(w, x) = R(x) with support on Y(x)
fulfills Assumption B.

The following claim pertains to a particular instance of a

dense mapping and an arbitrary proposal distribution.

Claim vii (Dense mapping). Let b > 0 be an arbi-
trary integer value. Let |φp(x, y)− φp(x, y

′)| = b for all
(x, y) ∈ S, y′ ∈ Y(x) and p ∈ P(x). If n ≤ |P(x)|/4 for
all (x, y) ∈ S, then any arbitrary proposal distribution
R(w, x) fulfills Assumption B.

4.3 Examples for the Linearly Inducible Ordering
Assumption

In what follows, we present some examples that fulfill our

Assumption C. We show that the algorithm proposed in

(Zhang et al., 2014; Zhang et al., 2015) for directed span-

ning trees, fulfills the above assumption. We also general-

ize the algorithm in (Zhang et al., 2014; Zhang et al., 2015)

to any type of data structure with computationally efficient

local changes, and show that this generalization fulfills the

assumption as well.

Next, we present the algorithm proposed in (Zhang et al.,

2014; Zhang et al., 2015) for dependency parsing in natural

language processing. Here, x is a sentence of v words and

Y(x) is the set of directed spanning trees of v nodes.

Algorithm 1 Procedure for sampling a directed spanning

tree y′ ∈ Y(x) from a greedy local proposal distribution

R(w, x)

Input: parameter w ∈ W , sentence x ∈ X
Draw uniformly at random a directed spanning tree

ŷ ∈ Y(x)
repeat

s← post-order traversal of ŷ
for each node t in the list s do

for each node u before t in the list s do
y ← change the parent of node t to u in ŷ
if φ(x, y) · w > φ(x, ŷ) · w then

ŷ ← y
end if

end for
end for

until no refinement in last iteration

Output: directed spanning tree y′ ← ŷ

The above algorithm has the following property:

Claim viii (Sampling for directed spanning trees). Algo-
rithm 1 fulfills Assumption C.

Note that Algorithm 1 proposed in (Zhang et al., 2014;

Zhang et al., 2015) uses the fact that we can perform local



changes to a directed spanning tree in a computationally ef-

ficient manner. That is, changing parents of nodes in a post-

order traversal will produce directed spanning trees. We

can extend the above algorithm to any type of data struc-

ture where we can perform computationally efficient local

changes. For instance, we can easily extend the method for

directed acyclic graphs (traversed in post-order as well) and

for sets with up to some prespecified number of elements.

Next, we generalize Algorithm 1 to any type of structured

output.

Algorithm 2 Procedure for sampling a structured out-

put y′ ∈ Y(x) from a greedy local proposal distribution

R(w, x)

Input: parameter w ∈ W , observed input x ∈ X
Draw uniformly at random a structured output ŷ ∈ Y(x)
repeat

Make a local change to ŷ in order to increase

φ(x, ŷ) · w
until no refinement in last iteration

Output: structured output y′ ← ŷ

The above algorithm has the following property:

Claim ix (Sampling for any type of structured output). Al-
gorithm 2 fulfills Assumption C.

5 EXPERIMENTAL RESULTS

In this section, we provide experimental evidence on syn-

thetic data. Note that the work of (Zhang et al., 2014;

Zhang et al., 2015) has provided extensive experimental

evidence on real-world datasets, for part-of-speech tagging

and dependency parsing in the context of natural language

processing. Our experimental results are not only for di-

rected spanning trees (Zhang et al., 2014; Zhang et al.,

2015) but also for directed acyclic graphs and cardinality-

constrained sets.

We performed 30 repetitions of the following procedure.

We generated a ground truth parameter w∗ with indepen-

dent zero-mean and unit-variance Gaussian entries. Then,

we generated a training set S of n = 100 samples. The

fixed mapping φ from pairs (x, y) to feature vectors φ(x, y)
is as follows. For every pair of possible edges/elements i
and j, we define φij(x, y) = 1 (xij = 1 ∧ i ∈ y ∧ j ∈ y).
For instance, for directed spanning trees of v nodes, we

have x ∈ {0, 1}(v2) and φ(x, y) ∈ R
(v2). In order to gen-

erate each training sample (x, y) ∈ S, we generated a ran-

dom vector x with independent Bernoulli entries, each with

equal probability of being 1 or 0. After generating x, we

set y = fw∗(x). That is, we solved eq.(1) in order to pro-

duce the latent structured output y from the observed input

x and the parameter w∗.

We compared two training methods: the maximum loss

over all possible structured outputs as in eq.(4), and the

maximum loss over random structured outputs as in eq.(5).

For both minimization problems, we replaced the dis-
continuous 0/1 loss 1 (z ≥ 0) with the convex hinge loss

max (0, 1 + z), as it is customary. For both problems, we

used λ = 1/n as suggested by Theorems 1 and 2, and we

performed 20 iterations of the subgradient descent method

with a decaying step size 1/
√
t for iteration t. For sam-

pling random structured outputs in eq.(5), we implemented

Algorithm 2 for directed spanning trees, directed acyclic

graphs and cardinality-constrained sets. We considered di-

rected spanning trees of 6 nodes, directed acyclic graphs

of 5 nodes and 2 parents per node, and sets of 4 elements

chosen from 15 possible elements. We used β = 0.8 for di-

rected spanning trees, β = 0.85 for directed acyclic graphs,

and β = 0.5 for cardinality-constrained sets, as prescribed

by Claims iii, iv and v. After training, for inference on an

independent test set, we used eq.(1) for the maximum loss

over all possible structured outputs. For the maximum loss

over random structured outputs, we use the following ap-
proximate inference approach:

f̃w(x) ≡ argmax
y∈T (w,x)

φ(x, y) · w (6)

Table 1 shows the average over 30 repetitions, and the

standard error at 95% confidence level of the following

measurements. We report the runtime, the training dis-

tortion as well as the test distortion in an independently

generated set of 100 samples. We also report the nor-

malized distance of the learnt ŵ to the ground truth w∗,

i.e., ‖ŵ − w∗‖2/
√
�. Additionally, we report the an-

gle of the learnt ŵ with respect to the ground truth w∗,

i.e. arccos(ŵ · w∗/(‖ŵ‖2‖w∗‖2)). In the different study

cases (directed spanning trees, directed acyclic graphs and

cardinality-constrained sets), the maximum loss over ran-

dom structured outputs outperforms the maximum loss

over all possible structured outputs.

6 DISCUSSION

In this section, we provide more details regarding the com-

putational complexity of the inference problem. We also

present a brief review of the previous work and provide

ideas for extending our theoretical result.

6.1 Computational Complexity of the Inference
Problem

Very few cases of the general inference problem in eq.(1)

are tractable. For instance, if Y(x) is the set of directed

spanning trees, and w is a vector of edge weights (i.e., lin-

ear with respect to y), then eq.(1) is equivalent to the maxi-

mum directed spanning tree problem, which is polynomial-

time. In general, the inference problem in eq.(1) is not



Table 1: Average over 30 repetitions, and standard error at 95% confidence level of several methods and measurements.

For the maximum loss over all possible structured outputs (All) we used eq.(4) for training, and eq.(1) for inference on

a test set. For the maximum loss over random structured outputs (Random and Random/All) we used eq.(5) for training.

For inference, Random used eq.(6) while Random/All used eq.(1). Random outperforms All in the different study cases

(directed spanning trees, directed acyclic graphs and cardinality-constrained sets). The difference between Random and

Random/All is not statistically significant.

Problem Method Training Training Test Test Distance to Angle with
runtime distortion runtime distortion ground truth ground truth

Directed All 1000 52% ± 1.1% 12.4 ± 0.4 61% ± 1.8% 0.56 ± 0.004 74◦ ± 0.3◦

spanning trees Random 104 ± 3 38% ± 2.1% 2.4 ± 0.1 56% ± 1.9% 0.51 ± 0.005 49◦ ± 0.6◦

Random/All 12.4 ± 0.3 56% ± 1.9%

Directed All 1000 41% ± 1.2% 10.8 ± 0.2 45% ± 1.5% 0.60 ± 0.020 61◦ ± 1.0◦

acyclic graphs Random 386 ± 21 30% ± 1.3% 8.5 ± 0.2 39% ± 1.6% 0.40 ± 0.008 37◦ ± 1.0◦

Random/All 10.8 ± 0.2 39% ± 1.6%

Cardinality All 1000 42% ± 1.4% 11.1 ± 0.4 45% ± 1.8% 0.58 ± 0.011 65◦ ± 0.6◦

constrained sets Random 272 ± 9 21% ± 1.2% 6.0 ± 0.2 30% ± 1.9% 0.44 ± 0.008 30◦ ± 0.8◦

Random/All 10.9 ± 0.3 29% ± 2.1%

only NP-hard but also hard to approximate. For instance,

if Y(x) is the set of directed acyclic graphs, and w is a

vector of edge weights (i.e., linear with respect to y), then

eq.(1) is equivalent to the maximum acyclic subgraph prob-

lem, which approximating within a factor better than 1/2
is unique-games hard (Guruswami et al., 2008). As an ad-

ditional example, consider the case where Y(x) is the set

of sets with up to some prespecified number of elements

(i.e., Y(x) is a cardinality constraint), and the objective

φ(x, y) · w is submodular with respect to y. In this case,

eq.(1) cannot be approximated within a factor better than

1− 1/e unless P=NP (Nemhauser et al., 1978).

These negative results made us to avoid interpreting the

maximum loss over random structured outputs in eq.(5) as

an approximate optimization algorithm for the maximum

loss over all possible structured outputs in eq.(4).

6.2 Previous Work

Approximate inference was proposed in (Kulesza &

Pereira, 2007), with an adaptation of the proof tech-

niques in (McAllester, 2007). More specifically, (Kulesza

& Pereira, 2007) performs maximization of the loss

over a superset of feasible decodings of x, i.e., over

y ∈ Y ′(x) ⊇ Y(x). Note that our upper bound of the

Gibbs decoder distortion dominates the maximum loss over

y ∈ Y(x), and the latter dominates the upper bound of

(Kulesza & Pereira, 2007). One could potentially use a

similar argument with respect to a subset of feasible de-

codings of x, i.e., with respect to y ∈ Y ′(x) ⊆ Y(x). Un-

fortunately, this approach does not obtain an upper bound

of the Gibbs decoder distortion.

Tangential to our work, previous analyses have exclusively

focused either on sample complexity or convergence. Sam-

ple complexity analyses include margin bounds (Taskar

et al., 2003), Rademacher complexity (London et al., 2013)

and PAC-Bayes bounds (McAllester, 2007; McAllester &

Keshet, 2011). Convergence have been analyzed for spe-

cific algorithms for the separable (Collins & Roark, 2004)

and nonseparable (Crammer et al., 2006) cases.

6.3 Concluding Remarks

The work of (Zhang et al., 2014; Zhang et al., 2015) has

shown extensive experimental evidence for part-of-speech

tagging and dependency parsing in the context of natural

language processing. In this paper, we present a theo-

retical analysis that explains the experimental success of

(Zhang et al., 2014; Zhang et al., 2015) for directed span-

ning trees. Our analysis was provided for a far more general

setup, which allowed proposing algorithms for other types

of structured outputs, such as directed acyclic graphs and

cardinality-constrained sets. We hope that our theoretical

work will motivate experimental validation on many other

real-world structured prediction problems.

There are several ways of extending this research. While

we focused on Gaussian perturbations, it would be interest-

ing to analyze other distributions from the computational as

well as statistical viewpoints. We analyzed a general class

of proposal distributions that depend on the induced linear

orderings. Algorithms that make greedy local changes, tra-

verse the set of feasible decodings in a constrained fash-

ion, by following allowed moves defined by some pre-

specified graph. The addition of these graph-theoretical

constraints would enable obtaining tighter upper bounds.

From a broader perspective, extensions of our work to la-

tent models (Ping et al., 2014; Yu & Joachims, 2009) as

well as maximum a-posteriori perturbation models (Gane

et al., 2014; Papandreou & Yuille, 2011) would be of great



interest. Finally, while we focused on learning the parame-

ter of structured prediction models, it would be interesting

to analyze approximate inference for prediction on an in-

dependent test set.
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