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Abstract

We give a novel algorithm for finding a parsimo-
nious context tree (PCT) that best fits a given data
set. PCTs extend traditional context trees by al-
lowing context-specific grouping of the states of a
context variable, also enabling skipping the vari-
able. However, they gain statistical efficiency
at the cost of computational efficiency, as the
search space of PCTs is of tremendous size. We
propose pruning rules based on efficiently com-
putable score upper bounds with the aim of reduc-
ing this search space significantly. While our con-
crete bounds exploit properties of the BIC score,
the ideas apply also to other scoring functions.
Empirical results show that our algorithm is typi-
cally an order-of-magnitude faster than a recently
proposed memory-intensive algorithm, or alterna-
tively, about equally fast but using dramatically
less memory.

1 INTRODUCTION

The conditional distribution of a response variable y, given
some explanatory variables x1, x2, . . . , xd, is a key ingredi-
ent in common probabilistic models. Often the modeler’s in-
terest is in distributions that admit a compact, structured rep-
resentation, thereby facilitating statistically efficient learn-
ing and computationally efficient inference, as well as easy
human interpretation.

Examples of general-purpose model classes include decision
trees (Breiman et al., 1984; Friedman & Goldszmidt, 1996),
decision graphs (Oliver, 1993; Chickering et al., 1997),
multi-linear functions (Chavira & Darwiche, 2005), and
conditional independence trees (Su & Zhang, 2005). These
models allow for representing context-specific independence
(Boutilier et al., 1996): given a context, i.e., an assignment
for a subset of the explanatory variables xi, the response y
becomes independent of the rest.

When the explanatory variables are equipped with a natural
linear ordering, more specialized models of context-specific
independence are justified. In particular, context trees (CTs)
of depth d over an alphabet Ω (Rissanen, 1983; Bühlmann
& Wyner, 1999) model the distribution of the next symbol y
after a sequence xdxd−1 · · ·x1 assuming each context is an
assignment a` · · · a1 for the ` ≤ d immediate predecessors
x` · · ·x1 of y, where the length ` may vary with the context.
While context trees excel in computational efficiency, their
statistical efficiency decays when there are long-range de-
pendencies (requiring long contexts) and when the alphabet
is non-binary.

To address the shortcoming of CTs, Bourguignon & Ro-
belin (2004) proposed parsimonious context trees (PCTs),
in which a context is a sequenceC` · · ·C1 of sets of symbols
Ci ⊆ Ω. The idea is that the conditional distribution of y is
the same of all assignments ad · · · a1 that match the context,
that is, ai ∈ Ci for i = 1, . . . , `. In effect, PCTs allow for
a compact representation and statistically efficient learning
even in the presence of long-range dependencies. PCTs
have found applications particularly within computational
biology (Seifert et al., 2012; Eggeling et al., 2015b), where
modeling sequential data over discrete alphabets constitutes
a recurring challenge.

From a computational point of view, learning PCTs (i.e.,
maximizing a given scoring function) is, however, very
challenging for larger depth d and alphabet size |Ω|. The
dynamic programming (DP) algorithm of Bourguignon &
Robelin (2004) avoids explicit enumeration of all PCTs. Yet,
it has to explore all possible contexts C` · · ·C1, with ∅ ⊂
Ci ⊆ Ω, each of which is a potential node of an optimal PCT
and corresponds to a subproblem of optimizing the subtree
rooted at it. Recently, Eggeling et al. (2015a) enhanced the
DP algorithm by observing that two contexts of the same
length are equivalent (i.e., have identical optimal subtrees)
if they are matched by exactly the same set of data points;
thus the respective subproblem needs to be solved only once.
While this memoization variant is effective in reducing the
time requirement of PCT optimization in practice, it has the
disadvantage of increased memory consumption.



Here, we investigate a new idea to expedite PCT optimiza-
tion in practice. We present pruning rules, which allow us
to ignore subproblems that are guaranteed to not contribute
to an optimal PCT. To obtain such guarantees, we derive
upper bounds specifically for the BIC score, similar in spirit
to the bounds on local scores by Tian (2000) and de Cam-
pos & Ji (2011) for structure learning in Bayesian networks.
While for Bayesian networks also global bounds, useful
in branch-and-bound search, can be derived by structural
relaxations (de Campos & Ji, 2011; Yuan & Malone, 2013),
with no assumptions on local scores, for PCTs a separate
global view is absent and utilizing concrete properties of a
particular score seems necessary.

As our subproblems form a so-called AND/OR search
space (Dechter & Mateescu, 2007; Nilsson, 1980), we can-
not prune a subproblem based solely on the associated
bound, but we need to combine the bounds of a multitude of
subproblems; in essence, we have to consider all alternative
partitions of a subproblem into smaller subproblems, all of
which need to be solved. To this end, we propose an efficient
treatment, which resembles a simple pruning rule popular in
structure learning in Bayesian networks (Teyssier & Koller,
2005); however, while the latter concerns the “is subset
of” relation, our rule concerns the “refines” relation on set
partitions. We note that our algorithm is an instantiation of
so-called General Branch and Bound (Nau et al., 1984), but
not of the more special A* algorithm for OR spaces.

Our pruning technique is orthogonal to the memoization
technique of Eggeling et al. (2015a). In particular, our
technique can be employed with or without memoization,
resulting in high or low memory consumption, respectively.
Because the effectiveness of our ideas is data-dependent,
we evaluate the proposed algorithms empirically on a wide
selection of real-world data sets.

2 PRELIMINARIES

In this section, we revisit the definition of PCTs, the ba-
sic structure learning algorithm, and a recently proposed
memoization technique for improving it.

2.1 PARSIMONIOUS CONTEXT TREES

A parsimonious context tree (PCT) T of depth d over an
alphabet Ω is a rooted, balanced, node-labeled tree of depth
d with the following additional property: For each node of
depth ` < d the labels of its children partition Ω, i.e., the
labels of the children are pairwise disjoint nonempty subsets
of Ω whose union is Ω.

We identify each node with the sequence of labels V` · · ·V1

of the nodes on the unique path from the node up to the
root, denoted by V for short. We can also interpret the
node V as the set of all sequences it represents. We say
that a sequence xd · · ·x1 matches node V, and denote it by

xd · · ·x1 ∈ V, if xi ∈ Vi for all positions i = `, . . . , 1 (the
remaining positions are ignored).

Given a PCT T and its node V, we denote by T (V) the
subtree of T rooted at V. We say the subtree is minimal if
it consists of a single chain of nodes down to a single leaf,
thus all nodes labeled by Ω, and maximal if it consists only
of nodes labeled with single symbols a ∈ Ω, thus having
|Ω|d−`(V) leaves. Here, `(V) denotes the depth of node V.

To model the conditional distribution of the response vari-
able y given a sequence x, we equip each leaf V of a PCT
with |Ω| parameters θVa, one parameter for each a ∈ Ω.
We interpret θVa as the probability that y takes the value a
given that x matches V. In a data set z = (xt, yt)Nt=1 we
assume that, given xt, the response yt is independent of the
remainder of the data. Writing ΘT for the parameters of a
PCT T , we obtain the likelihood function

LT (ΘT ) :=
∏

leaf V of T

∏
a∈Ω

θNVa

Va , (1)

where NVa denotes the count of the response a in data
points where the explanatory variables match V:

NVa := |{t : xt ∈ V and yt = a}| . (2)

We will further denote NV :=
∑

a∈ΩNVa.

2.2 BASIC STRUCTURE LEARNING

We consider a score-and-search approach to learn a PCT
from a given data set. Suppose we are given a scoring
function S that associates each PCT T with a real-valued
score ST . The task is to find an optimal PCT,

T̂ ∈ argmax
T

ST . (3)

Aside from the fact that multiple PCTs may achieve the
optimum, this task is practically equivalent to the task of
finding the optimal score ST̂ . For convenience, we focus on
the latter problem for the rest of the paper. An optimal tree
T̂ can be constructed via, e.g., standard backtracking (see
Section 2.3 for details).

Bourguignon & Robelin (2004) presented a dynamic pro-
gramming algorithm for finding ST̂ . It relies on the mild
assumption that the scoring function decomposes into a sum
of leaf scores:

ST =
∑

leaf V of T

S(V) . (4)

This property is fulfilled by the log-likelihood function
(Eq. 1) and thus also by scoring functions that can be written
as penalized maximum log-likelihood with a decomposable
penalty term, such as AIC (Akaike, 1974), BIC (Schwarz,
1978), and the Bayesian marginal likelihood with a decom-
posable prior.
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Figure 1: Basic PCT optimization. We show the bottom-up reduction of the extended PCT for a toy example of d = 2 and
Ω = {A,B,C}. (a) Initially only the leaf scores of the extended PCT have an exact, optimal score assigned to them. (b) For
each set of sibling leaves, the optimal valid selection of children is computed, the non-contributing siblings are discarded,
and the winning score is propagated upwards to become the score of the parent. (c) The same principle is applied on the
higher layer in order to select the optimal children of the root, obtaining a valid PCT with optimal score.

To describe the algorithm, we denote by ST (V)(V) the sum
of the leaf scores in the subtree T (V) rooted at an inner
node V of T ; for a leaf V, we put ST (V)(V) := S(V).
We have the recurrence

ST (V)(V) =
∑

child C of V

ST (C)(C) , (5)

and, in particular, ST = ST (Λ), where Λ is the root node of
T . Exploiting this recurrence, the algorithm of Bourguignon
& Robelin (2004) optimizes the score over the subtrees
rooted at C, independently for each possible child node
C, and then selects a set of children that form an optimal
partition of the parent node V. For the base case of each leaf,
the algorithm sets the optimal score S∗(V) := S(V), and
for each inner node it computes the optimal score defined
by

S∗(V) := max
{C1,...,Cr}
partition of Ω

{
S∗(C1V) + · · ·+ S∗(CrV)

}
. (6)

It follows that the maximum score over all PCTs of depth d
is obtained as

max
T

ST = S∗(Λ) . (7)

The algorithm computes the leaf scores of (2|Ω| − 1)d pos-
sible leaves and, in addition, finds an optimal set of children
in O(3|Ω|) time for each of slightly more than (2|Ω|−1)d−1

inner nodes. Since the complexitity is a product of two terms
which are both exponential in |Ω|, PCTs are to date limited
to applications of small to moderate alphabet size (Eggeling
et al., 2015a).

2.3 INTERPRETATION AS REDUCTION OF
EXTENDED PCT

The inner workings of the algorithm of Bourguignon & Ro-
belin (2004) and the construction of the optimal PCT itself

can be viewed as bottom-up reduction of a data structure
called extended PCT, as illustrated in Figure 1. In contrast to
a PCT, the sibling nodes in an extended PCT do not partition
their parent node, but are labeled by all nonempty subsets
of Ω. An extended PCT thus contains all possible PCTs as
subtrees, as illustrated in Figure 1a. We denote the set of all
nodes of an extended PCT by V , and treat a PCT T as its
proper subset, i.e., T ⊂ V .

Given an extended PCT, the base case of the algorithm
requires the computation of leaf scores, and the task is now
to reduce the extended PCT so that a PCT with maximal
score remains. For each inner node it then (i) computes an
optimal selection of children with the constraint that the
node labels must form a partition of Ω, and (ii) removes
all children and subtrees below that do not belong to this
optimal partition.

Since an inner node can be optimized only if all of its chil-
dren have already a score attached to them and are thus
roots of valid PCT subtrees, the recursion leads essentially
to a bottom-up reduction of the extended PCT beginning at
the deepest layer, which comprises all nodes of the same
depth, as displayed in Figure 1b. The optimization termi-
nates once an optimal selection of children of the root node
are computed; a possible final result is shown in Figure 1c.

2.4 MEMOIZATION

Eggeling et al. (2015a) proposed a memoization technique
for speeding up PCT learning by exploiting regularities in
the observed explanatory variables.

The core idea is to implement the algorithm of Bourguignon
& Robelin (2004) in a top-down fashion and to store the
result of subtree optimization for node V with the depth



`(V) and the index set I(V) := {t : xt ∈ V} as key,
e.g., in a hash table. When the algorithm needs an optimal
subtree (or its score) for another node V′, the algorithm
checks whether the key (`(V′), I(V′)) exists in the storage
already and the associated result can be re-used. To work
correctly, memoization requires that the score S∗(V) de-
pends on V only through I(V) and `(V). This property
holds for many relevant scoring functions such as penalized
maximum log-likelihood scores, but not for the Bayesian
marginal likelihood with context-dependent pseudo-counts.

While memoization has shown to be rather effective partic-
ularly on highly structured data sets, it increases memory
consumption. The original DP algorithm of Bourguignon
& Robelin (2004) is relatively memory-efficient as only a
small fraction of nodes of the extended PCT needs to be
stored in memory at a given time, provided that the extended
PCT is constructed, traversed, and reduced top-down in a
depth-first manner. Memoization, in contrast, requires stor-
ing the scores and the associated data subset indices for all
visited inner nodes of the extended PCT.

3 PRUNING RULES

We derive pruning rules, which utilize score upper bounds to
decide at any given node whether we can avoid the explicit
optimization over possible subtrees.

3.1 SCORING FUNCTION: BIC

In order to obtain effective upper bounds, we focus on the
BIC score, derived from be Bayesian Information Crite-
rion (Schwarz, 1978). It is an approximation of the Bayesian
marginal likelihood and has been empirically shown to be
suitable for PCT learning on real-world data due to its harsh
penalty term, which favors sparse trees (Eggeling et al.,
2014). The score can also be given a two-part-MDL inter-
pretation (Rissanen, 1978). For a PCT T , the BIC score is
given by

SBIC
T = lnLT (Θ̂T (z))− k

2
lnN , (8)

where Θ̂T (z) denotes the maximum-likelihood parameter
estimate on z and k denotes the number of free parameters.
Since k is proportional to the number of leaves and since
the likelihood (Eq. 1) is a product of leaf terms, the BIC
score decomposes into a sum of

SBIC(V) :=

L(V)︷ ︸︸ ︷∑
a

NVa ln
NVa

NV
−

K︷ ︸︸ ︷
1

2

(
|Ω| − 1

)
lnN . (9)

Here, L(V) is the maximized log-likelihood of leaf V and
K is the BIC penalty contribution of a single leaf, involving
|Ω| − 1 free parameters and a global sample size of N . We
observe that the score of a leaf V does actually not depend
on all data points in z, but only on those that match V.

3.2 UPPER BOUNDING THE BIC SCORE

Consider an inner node V ∈ V . To upper bound the BIC
score over all possible subtrees rooted at V, we upper bound
the largest possible gain in the maximum-likelihood term
on one hand, and lower bound the inevitable penalty due to
increased model complexity on the other hand.

Consider first the likelihood term. We make use of the
observation that every PCT is nested in the maximal PCT,
which has |Ω|d leaves, each representing a single realization
of the explanatory variables. The same holds also locally
for any PCT subtree below a particular node V. Hence, the
likelihood term is maximized by the maximal model, which
partitions all realizations perfectly. We obtain the upper
bound

L̃(V) :=
∑

a∈Ωd−`(V)

L(aV) , (10)

that is, we have L(V) ≤ L̃(V). Here, aV denotes the leaf
node obtained by extending the context of node V with a
single realization a of the remaining explanatory variables.
Note that L̃(V) can be computed fast by summing over the
sequences a that occur in the data points that match V. Now
we distinguish:

Case 1 The minimal subtree is optimal. In this case, we can
compute the exact score directly, without recursion.

Case 2 The minimal subtree is not optimal. Thus an opti-
mal subtree makes at least one split, and therefore has
at least two leaves. In this case, the likelihood term is
upper bounded by L̃(V) (Eq. 10), while the penalty
term is at least 2K.

Combining the two cases yields the following bound.

Proposition 1 (Score upper bound). For an arbitrary inner
node V ∈ V it holds that

SBIC
∗ (V) ≤ SBIC

0 (V) ,

with

SBIC
0 (V) := max{L(V)−K, L̃(V)− 2K} .

We will use this upper bound twice to device two pruning
rules in the next two sections.

3.3 STOPPING RULE

First, we consider a simple rule for pruning, which is an
immediate consequence of the aforementioned upper bound.
The idea can be phrased as follows:

Stop optimizing the subtree below a node when
context-specific independence can be declared
already without even entering the recursion.



A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AB CD

A A A
A A A
A B C
B B A
B B A
D B C
C C B
C C B
D D B
D D B

x1x2 y

-3.5 -6.2 -3.5 -3.5 -7.3 -6.2 -6.2 -6.9 -8.8 -3.5 -8.8 -10.7 -6.9 -8.8

... ... ... ............ ... ...... ... ... ... ...

-11.9

-11.9-7.3 -3.5 -11.9

AB CD ABCD

AD BC ABCD AB CD

Upper-bound
pruning

Recursive
computation
of optimal subtrees

First-layer
optimization

-7.6 -3.5 -11.1

AB CD

AD BC ABCD

S0(AB)+S0(CD) > S*(ABCD)AB and CD, because...

AB CD ABCD

? ? ? ? AB CD

Deletion rule applies?

✘
✔ AC, because...

✔ All remaining siblings

S0(AC)+S0(BD) < S*(ABCD)    and    S0(AC)+S0(B)+S0(D) < S*(ABCD) 

......

Figure 2: Example of the deletion rule. We consider a small data set of N = 10 for two explanatory variables over the
alphabet Ω = {A,B,C,D} (bottom-left box). The root of each subtree for which exact BIC scores have been computed
already is marked in green and corresponding score displayed in boldface below the subtree. The remaining other subtrees
are associated with an upper bound on the BIC score. The root of a subtree which contributes to an upper-bounded partition
score that is greater than the exact score of the maximal sibling node, and thus has to optimized explicitly, is displayed in
orange.

Formally, we have the following.

Proposition 2 (Stopping rule). Let V ∈ V with `(V) < d,
and let T ′ be the minimal subtree rooted at V. If

SBIC
0 (V) = L(V)−K ,

then SBIC
∗ (V) = SBIC

T ′ (V).

The correctness can be shown by contradiction. Assume
T ′ does not yield the optimal score. Then L(V) − K <
SBIC
∗ (V). But since SBIC

∗ (V) ≤ SBIC
0 (V), this violates the

premise.

3.4 DELETION RULE

The idea of our second rule is to identify a node with so low
a score that the node cannot appear in any optimal PCT. In
an idealized form, the rule reads:

Delete a child node if the best set of children it
belongs to is worse than some other set of children
(to which the node does not belong).

As we wish to delete as many potential child nodes as possi-
ble and not compute their optimal scores, we cannot assume
the optimal scores of the sibling nodes are available. Thus,
to make the rule concrete, we resort to upper bounds on the
scores. Likewise, we need to lower bound the optimal score
among the valid sets of children. While, in principle, vari-
ous lower bounding schemes would be possible, we have
chosen to use a particularly simple bound: the optimal score

of the Ω-labeled child. We next describe the bounds and the
rule more formally.

Consider a node V. To efficiently check whether a child
node CV can be deleted, we need an upper bound on the
score obtained by a partition of V that includes CV. To
this end, we associate any set function f : 2Ω → R with
another function f ′ : 2Ω → R defined by letting f ′(∅) := 0
and, for all ∅ ⊂ B ⊆ Ω,

f ′(B) := max
{C1,...,Cr}
partition of B

{
f(C1) + · · ·+ f(Cr)

}
. (11)

A folklore dynamic programming algorithm computes f ′

for a given f in O(3|Ω|) time, based on the recurrence

f ′(B) = max
∅⊂C⊆B

{
f(C) + f ′(B \ C)

}
. (12)

Eggeling et al. (2015a) made use of this observation to
compute the optimal score over all partitions of the alphabet,
given by f ′(Ω) with a suitable function f . Here, we apply
it to score upper bounds, and we also use several of the
values f ′(B) in order to stay within O(3|Ω|) for computing
all upper bounds required:

Proposition 3 (Deletion rule). Let V ∈ V with `(V) < d,
and let ∅ ⊂ C ⊂ Ω. Let f(C ′) := S0(C ′V) for all ∅ ⊂
C ′ ⊆ Ω. If

S0(CV) + f ′(Ω \ C) < S∗(ΩV) ,

then the node CV does not belong to any optimal PCT.



The correctness can be shown by contradiction. Suppose
CV did belong to an optimal PCT even though the premise
was fulfilled. Then S∗(CV) + f ′(Ω \ C) ≥ S∗(ΩV) ,
leading to S0(CV) < S∗(CV), which violates the property
of S0 being an an upper bound of S∗.

We illustrate the deletion rule by a small toy example in
Figure 2. Here, we focus on the first layer, where only
for the maximal node an optimal PCT subtree is computed
and thus an exact score is available already, whereas for
the other siblings only upper-bounded scores exist. Based
on those scores, we compute the upper-bounded scores of
every possible partition and observe and observe that only
one partition, consisting of the two child nodes AB and
CD, has an upper-bounded score that is greater than the
exact score of the maximal sibling node ABCD. All other
siblings can thus not contribute to an optimal partition of
child nodes, as even the best partition they contribute to
has an upper-bounded score smaller than what is already
achieved. Hence, the corresponding subtrees do not need to
be optimized explicitly and can be deleted.

The deletion rule does invest a certain amount of effort that
the obtained savings need to compensate before the rule
becomes effective: In the worst case, we need to compute
the optimal partition of children twice for each inner node,
once with the upper-bounded scores for excluding subtrees
from further optimization, and once with the exact scores.
As a positive side note, we observe that, while we focus
on BIC upper bounds in this work, the deletion rule is in
principle independent of the used scoring function, as long
as an effective upper bound S0 ≤ S∗ can be specified.

3.5 LOOKAHEAD

The upper bound of Section 3.2 can be computed directly
for a given node without entering the recursion. However,
we can tighten the bound, if we do enter the recursion for
one or more steps, in effect, performing a lookahead on
the data. To this end, for all nodes V and number of steps
q = 1, . . . , d− `(V), define

Sq(V) := max
{C1,...,Cr}
partition of Ω

r∑
i=1

Sq−1(CiV) , (13)

with S0(V) being the base case of a flat upper bound.

Proposition 4 (Lookahead bound). For all V ∈ V and
q = 1, . . . , d− `(V), it holds that

S∗(V) ≤ Sq(V) ≤ S0(V) . (14)

Using the lookahead bound with large q does constitute a
substantial computational effort. If q = d−`(V), the bound
matched the optimal score and, in essence, is obtained by
traversing through all possible PCT subtrees. Hence, the
choice of q is critical in order to obtain a trade-off between

gained savings and additional invested effort in relation to
the flat bound.

One possibility to cope with that issue is to dynamically
increase q, i.e., to first test whether pruning on flat upper
bounds S0 is possible. If this is not the case, q is increased
by one, up to the maximal value of d− `(V). However, in
this work we refrain from exploring this procedure in full,
as in our preliminary studies one-step lookahead (q = 1)
turned out to perform the best in the vast majority of cases.

3.6 FINAL ALGORITHM

We combine the presented ideas using pseudo code. Con-
sider first the task of computing, for all nonempty subsets
B ⊆ Ω, the maximum total score over all partitions of B,
in other words, the set function f ′ for a given set function
f , as defined in Eq. 11. The procedure MAX-PART given
below completes this task based on the recurrence in Eq. 12.

MAX-PART(f)

1 g [∅]← 0
2 for each ∅ ⊂ B ⊆ Ω in quasi-lexicographical order
3 do g [B]← −∞
4 for each ∅ ⊂ C ⊆ B
5 do g [B]←max{g [B], f [C]+g [B\C]}
6 return g

The main algorithm, given below as procedure MAX-PCT,
calls MAX-PART(f) both with exact scores and with up-
per bounds, as specified by the argument f . The call
MAX-PCT(V) returns the optimal score S∗(V). We thus
obtain the maximum score over all PCTs of depth d by
calling MAX-PCT(Λ).

MAX-PCT(V)

1 score ← L(V)−K
2 if `(V) < d and score < SBIC

0 (V)
3 then s[Ω]← MAX-PCT(ΩV)
4 for each ∅ ⊂ B ⊆ Ω
5 do u[C]← SBIC

q (CV)
6 u ′ ← MAX-PART(u)
7 for each ∅ ⊂ B ⊆ Ω
8 do s[C]← −∞
9 if u[C] + u ′[Ω \ C] > s[Ω]

10 then s[C]←MAX-PCT(CV)
11 s ′ ← MAX-PART(s)
12 score ← s ′[Ω]
13 return score

3.7 INCORPORATING MEMOIZATION

While we omitted it for the sake of simplicity in the
pseudocode, incorporating the memoization technique of
Eggeling et al. (2015a) into the proposed algorithm is
straightforward.



We can add a test that checks whether the index set I(V)
has already occurred with some other node at the same depth
directly when entering the function. If the test is positive,
the score is re-used and the rest of the function is skipped.
If the test is negative, the score is stored in a hash data
structure at the end of the function with the current data
subset (index set) and the depth of the node as key.

4 CASE STUDIES

In the empirical part of this work, we evaluate the ef-
fect of the proposed pruning techniques using a Java-
implemententation based on the Jstacs library (Grau et al.,
2012). We focus on the metric of visited nodes in the ex-
tended PCT, which includes all created nodes, included
those used only for look-ahead computations. In addition,
we also measure the elapsed running time. We consider
the problem of modeling DNA binding sites of regulatory
proteins such as transcription factors, which constitutes one
established application of PCTs.

4.1 DATA AND PREDICTION STUDY

A data set of DNA binding sites consists of short sequences
of the same length over the alphabet Ω = {A,C,G, T} that
are considered to be recognized by the same DNA-binding
protein. We use 25 data sets, which all show at least some
degree of statistical dependence among sequence positions,
from the publicly available data base JASPAR (Mathelier
et al., 2013). The data sets differ in sequence length L from
10 to 21 symbols, in the sample size N from 156 to 3629
sequences, and in the strength of the signal.

To exhibit the general properties of this data, we perform a
prediction experiment based on the model class and learn-
ing framework of Eggeling et al. (2014), which makes a
position-specific use of PCTs. We perform a leave-one-out
cross-validation for different PCT depths d ∈ {0, . . . , 6}
and compute the mean log predictive probability over the
test sequences from all iterations. We aggregate the result-
ing 7× 25 mean log predictive probabilities in two different
ways and visualize the results in Figure 3. First, we check
for each data set, which d yields the highest predictive prob-
ability, and in case that several depths share rank one (which
can happen if all subtrees below a certain depth are mini-
mal), we note the smallest d. Second, we average the mean
log predictive probabilities for each d over all 25 data sets.

We observe that all data sets contain indeed statistical depen-
dencies to some degree, since d = 0 is never the best choice,
and increasing d yields – on average – an increased predic-
tive performance, though the magnitude of improvement
decreases gradually. This indicates that (i) the used BIC
score for PCT optimization works reasonably well in order
to avoid overfitting, and (ii) the data sets have a non-trivial
structure so that the optimization problem is hard.
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Figure 3: Prediction study. We show the results of a leave-
one-out cross validation. Green bars indicate for how many
data sets a certain PCT depth d is the smallest depth that
yields an optimal prediction. The blue line shows the aver-
age predictive performance over all data sets as a function
of d.

4.2 ONE DATA SET IN DETAIL

Next, we consider a single data set and investigate the effec-
tiveness of the pruning rule in relation to the basic algorithm
and to the memoization technique of Eggeling et al. (2015a).
We focus on the DNA-binding protein CTCF (Kim et al.,
2007), where the corresponding JASPAR data set consists
of N = 908 sequences of length L = 19.

Figure 4a shows for this data set the sequence logo (Schnei-
der & Stephens, 1990), which is a common visualization
of the marginal distribution of the individual sequence posi-
tions. For each position, the four possible symbols are scaled
relative to the marginal probability p = (pA, pC, pG, pT) and
the height of the symbol stack is scaled by 2−H(p) (which
is often called information content), with H denoting the
Shannon entropy in bits. Figure 4b shows the fraction of the
visited nodes in the extended PCT of depth 5 for the pruning
technique, the memoization technique, and the combination
of both in relation to the basic algorithm.

We observe that pruning is effective in particular at positions
where the marginal distribution of the response variable is
far from uniform, with clear examples being position 10 and
position 13. In fact, the correlation coefficient between the
information content of the response variable and the com-
mon logarithm of fraction of visited nodes using the pruning
rule in relation to the basic algorithm amounts −0.821. For
memoization, a similar effect occurs, but here marginal
distributions of the explanatory variables are the deciding
factor: the largest saving occurs at position 14, where highly
informative positions 10 and 13 are in the context.
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Figure 4: Detailed result for CTCF data set. Subfigure (a)
shows the position-specific marginal nucleotide frequencies
for each position in the sequence. Subfigure (b) shows
the fraction of visited nodes required for PCT optimization
(d = 5) for every sequence position j = 6, . . . , 19, and
for the three algorithmic variants in relation to the basic
algorithm.

We summarize that the empirical performance does indeed
satisfy the theoretical expectations: While memoization ex-
ploits regularities in the realizations of the explanatory vari-
ables, the pruning rules exploit regularity in the response
variable, and the effect of the latter is often, though not
always, greater. Combining both techniques generally re-
sembles the sole application of pruning, albeit additional
savings due to memoization do occur.

4.3 BROADER STUDY

We now take a broader view by considering all data sets.
Given a PCT depth d, we (i) average the number of visited
nodes and the absolute running times for each data set over
all sequence positions, and (ii) take the median of average
visited nodes and average running times over all data sets.
The results are displayed for d = 3, . . . , 6 in Figure 5, and
confirm the observations made for a single data set in the
previous section: Pruning outperforms memoization, yet the
combination of both techniques yields the largest overall
effect.

However, we observe a striking divergence between savings
in terms of visited nodes in the extended PCT as displayed
in Figure 5a and the improvements in terms of running times
as displayed in Figure 5b. Whereas the savings in the first
case are up to two orders of magnitude, the absolute running
time yields a smaller improvement of roughly one order of
magnitude for PCTs of d = 5.
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Figure 5: Aggregated results for all four algorithmic
variants. For each data set, we average the visited nodes
and running times over all sequence positions. We then
plot (a) the median number of visited nodes and (b) median
running times over all data sets.
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Figure 6: Effect of sample size on savings ratio for prun-
ing algorithm. For all 25 data sets, for d = {4, 6}, we plot
Φ(d) of Eq. 15 against the sample size N .

In order to investigate this issue further, we measure how
strong the runtime reduction deviates from the reduction
in terms of visited nodes. Let VN(d) denote the number
of visited nodes in the extended PCT for finding an opti-
mal PCT of depth d using the pruning technique, and let
RT(d) denote the corresponding running time. Let further
VNbasic(d) and RTbasic(d) denote the same quantities for
the basic algorithm. We define

Φ(d) =
VN(d)× RTbasic(d)

VNbasic(d)× RT(d)
, (15)

which yields a value of 1, if the savings in visited nodes are
translated one-to-one into savings in running times, and a
value smaller than 1, if savings in terms of visited nodes
are larger. Next, we plot Φ(4) and Φ(6) for each data set
against the sample size (Figure 6).



We observe a correlation between Φ and sample size: for
small data sets the discrepancy between running time and
visited nodes is smaller than for larger data sets, which is
beneficial since the statistical efficiency of PCTs is relevant
in particular for small data settings. The one outlier in the
plot at sample size close to 1000 where the Φ(6) is clearly
off belongs to a highly-regular data set where pruning is so
effective that reading the data and initializing all data struc-
tures becomes the dominating factor, albeit requiring only
few milliseconds in absolute terms. Ignoring that outlier
and extrapolating Φ in Figure 6 to a hypothetical sample
size of zero, it appears that savings in running times and
visited nodes could match.

To explain this behavior, we have to reconsider the theoreti-
cal expectations of the running time of the basic algorithm
(Section 2.2). It assumes the work to be performed in each
inner node to be dominated by the alphabet partitioning
problem and thus constant for a fixed Ω. For small |Ω|,
however, data-management operations, such as determining
I(CV) given I(V), become a significant factor. Unlike
alphabet partitioning, data-management is not equally de-
manding within each node: Nodes close to the root match
on average more data points than nodes close to the leaves.
Moreover, assuming the siblings in the extended PCT are
ordered quasi-lexicographically as in the example of Fig-
ure 1a, we observe that the right half of the extended PCT
(or any subtree of it) matches on average more data points
than the left half. However, the subtrees of the extended
PCT not traversed explicitly due to the pruning or memo-
ization technique are predominantly the subtrees that match
comparably few data points, which explains why the sav-
ings in visited nodes do not directly translate into the same
saving factors for running times.

5 CONCLUDING REMARKS

We have investigated a bound-and-prune approach to finding
a maximum-score parsimonious context tree (PCT). Specifi-
cally, we derived local score upper bounds for the BIC score,
with an option for a few-step lookahead, and we presented
two pruning rules: a stopping rule and a deletion rule.

Empirical results on DNA binding site data showed that
pruning alone, which essentially exploits regularities in the
response variable, is slightly more effective than the memo-
ization technique of Eggeling et al. (2015a), which exploits
regularities in the explanatory variables. While the com-
bination of pruning and memoization runs an about order-
of-magnitude faster, it partially inherits the large memory
requirements of memoization; however, pruning does re-
duce the memory requirement, too, as a smaller number of
subproblems need to be solved explicitly. These finding
suggest that pruning should always be included, and memo-
ization can be added to gain further speedups provided that
memory consumption is not an issue.

While we have restricted our attention to learning PCTs and
to the BIC score, we believe many of the presented ideas
are applicable more generally. First, the BIC score can,
in principle, be replaced by any other scoring function for
which good upper bounds similar to Proposition 1 can be
established. Second, the techniques should easily extend to
learning decision trees with many categorical explanatory
variables. Third, the bound-and-prune approach might be
effective also in expediting other algorithms that are based
on recursive set partitioning, like the one by Kangas et al.
(2014) for learning chordal Markov networks.
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