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Abstract

In this paper we propose a novel application of
Gaussian processes (GPs) to financial asset allo-
cation. Our approach is deeply rooted in Stochas-
tic Portfolio Theory (SPT), a stochastic analysis
framework introduced by Robert Fernholz that
aims at flexibly analysing the performance of cer-
tain investment strategies in stock markets rel-
ative to benchmark indices. In particular, SPT
has exhibited some investment strategies based
on company sizes that, under realistic assump-
tions, outperform benchmark indices with proba-
bility 1 over certain time horizons. Galvanised by
this result, we consider the inverse problem that
consists of learning (from historical data) an opti-
mal investment strategy based on any given set of
trading characteristics, and using a user-specified
optimality criterion that may go beyond outper-
forming a benchmark index. Although this in-
verse problem is of the utmost interest to invest-
ment management practitioners, it can hardly be
tackled using the SPT framework. We show that
our machine learning approach learns investment
strategies that considerably outperform existing
SPT strategies in the US stock market.

1 INTRODUCTION

Stochastic Portfolio Theory (SPT) is a relatively new
stream in financial mathematics, initiated and largely devel-
oped by Robert Fernholz [2002]. For surveys of the field,
see Fernholz and Karatzas [2009] and Vervuurt [2015].
Among many other things, SPT offers an alternative ap-
proach to portfolio selection, taking as its selection cri-
terion to outperform the market index (for instance, the
S&P 500 index) with probability one. Investment strate-
gies which achieve this are called relative arbitrages, and
have been constructed in certain classes of market models.
The almost-sure comparison between the performance of

certain portfolios and that of the market is facilitated by
Fernholz’s ‘master equation’, a pathwise decomposition of
this relative performance which is free from stochastic in-
tegrals. The foregoing master equation is the main strength
of SPT portfolio selection, as it allows one to circumvent
the challenges of explicit model postulation and calibra-
tion, as well as the (normative) no-arbitrage assumption,
that are encountered in the classical approaches to portfo-
lio optimisation. However, there remain several problems
in and limitations to the SPT framework as it stands.

First of all, the task of finding relative arbitrages under rea-
sonable assumptions on the market model is difficult, since
it is an inverse problem (this has also been noted by Wong
[2015]). Namely, given an investment strategy and market
assumptions, one can check whether this strategy is a rela-
tive arbitrage (although this quickly becomes very hard for
more complicated strategies), but the theory itself does not
suggest such strategies. As such, the number of relative ar-
bitrages that have been constructed explicitly remains very
small. In a practical setting it would be preferable to invert
the problem, and learn investment strategies from data us-
ing a user-specified performance criterion. In effect, most
established investment managers will likely have a strong
view on: i) what performance metric to use to evaluate their
strategies, and ii) what values for the chosen metric they re-
gard as being exceptional. The chosen performance metric
may depart from the excess return relative to the market
index, for instance by adjusting for the risk taken. Simi-
larly, outperforming the market index over a certain time
horizon [0, T ] with probability 1 might not be good enough
for some practitioners, as investors might pull out follow-
ing disappointing initial performances, leaving the invest-
ment manager unable to realise the long-term optimality.
Whence, ideally one should aim at learning from market
data what investment strategy is likely to perform excep-
tionally as per the user’s view.

Secondly, several market imperfections are ignored in SPT;
most notably, the possibility of bankruptcy is excluded.
Since the constructed investment strategies typically invest
heavily in small-capitalisation stocks, this poses a strong



limitation on the real-world implementability of these port-
folios. However, learning optimal investment strategies
from the data copes well with bankruptcies as strategies
investing in stocks that eventually fail will naturally be re-
jected as suboptimal. It also allows for the incorporation
of transaction costs, which is theoretically challenging and
has not yet been addressed in SPT.

Lastly, the SPT set-up has thus far been developed almost
exclusively for investment strategies that are driven only
by market capitalisations — there have not yet been any
constructions of relative arbitrages driven by other factors.
Although this simplification eases theoretical analysis, it is
a clear restriction as practitioners do consider many more
market characteristics in order to exploit market inefficien-
cies.

We address all of these issues by adopting a Bayesian non-
parametric approach. We consider a broad range of invest-
ment strategies driven by a function defined on an arbitrary
space of trading characteristics (such as the market cap-
italisation), on which we place a Gaussian process (GP)
prior. For a given strategy, the likelihood of it being ‘excep-
tional’ is derived from a user-defined performance metric
(e.g. excess return to the market index, Sharpe ratio, etc)
and values thereof that the practitioner considers ‘excep-
tional’. We then sample from the posterior of the GP driv-
ing the ‘exceptional’ strategy using Monte Carlo Markov
Chain (MCMC).

The rest of the paper is structured as follows. In section 2
we provide a background on SPT. In section 3 we present
our model, and we illustrate that our approach learns strate-
gies that outperform SPT alternatives in section 4. Finally,
we discuss our findings and make suggestions for future
research in section 5.

2 BACKGROUND

We give a brief introduction to SPT, defining the gen-
eral class of market models within which its results hold,
what the portfolio selection criterion is, and how strategies
achieving this criterion are constructed.

2.1 THE MODEL

In SPT, the stock capitalisations are modelled as Itô pro-
cesses.1 Namely, the dynamics of the n positive stock cap-
italisation processes Xi(·), i = 1, . . . , n are described by
the following system of SDEs:

dXi(t) = Xi(t)

(
bi(t) dt+

d∑
ν=1

σiν(t) dWν(t)

)
, (1)

1In the recent work Karatzas and Ruf [2016], it has been
shown that this can be weakened to a semimartingale model that
even allows for defaults.

for t ≥ 0 and i = 1, . . . , n. Here, W1(·), . . . ,Wd(·) are
independent standard Brownian motions with d ≥ n, and
Xi(0) > 0, i = 1, . . . , n are the initial capitalisations. We
assume all processes to be defined on a probability space
(Ω,F ,P), and adapted to a filtration F = {F(t)}0≤t<∞
that satisfies the usual conditions and contains the filtration
generated by the “driving” Brownian motions. We refer
the reader to Karatzas and Shreve [1988] for a reference on
stochastic calculus.

The rates of return bi(·), i = 1, . . . , n and volatilities
σ(·) = (σiν(·))1≤i≤n,1≤ν≤d , are some unspecified F-
progressively measurable processes and are assumed to sat-
isfy the integrability condition

n∑
i=1

∫ T

0

(
|bi(t)|+

d∑
ν=1

(σiν(t))2
)

dt <∞, P-a.s., (2)

for all T ∈ (0,∞), and the non-degeneracy condition

∃ ε > 0 : ξTσ(t)σT (t)ξ ≥ ε||ξ||2, (NDε)

for all ξ ∈ Rn and t ≥ 0, P-almost surely.

2.2 RELATIVE ARBITRAGE

In this context, one studies investments in the equity mar-
ket described by (1) using portfolios. These are Rn-
valued and F-progressively measurable processes π(·) =(
π1(·), · · · , πn(·)

)T
, where πi(t) stands for the proportion

of wealth invested in stock i at time t.

We restrict ourselves to long-only portfolios. These invest
solely in the stocks, namely, they take values in the closure
∆n

+ of the set

∆n
+ =

{
x ∈ Rn : x1 + . . .+ xn = 1,

0 < xi < 1, i = 1, . . . , n
}

; (3)

in particular, there is no money market. Assuming without
loss of generality that the number of outstanding shares of
each firm is 1, the corresponding wealth process V π(·) of
an investor implementing π(·) is seen to evolve as follows
(we normalise the initial wealth to 1):

dV π(t)

V π(t)
=

n∑
i=1

πi(t)
dXi(t)

Xi(t)
, V π(0) = 1. (4)

In SPT one measures performance, for the most part, with
respect to the market index. This is the wealth process
V µ(·) that results from a buy-and-hold portfolio, given by
the vector process µ(·) =

(
µ1(·), · · · , µn(·)

)T
of market

weights

µi(t) :=
Xi(t)

X1(t) + . . .+Xn(t)
. (5)



Definition 1. Let T > 0. A strong relative arbitrage with
respect to the market over the time-horizon [0, T ] is a port-
folio π(·) such that

P
(
V π(T ) > V µ(T )

)
= 1. (6)

An equivalent way to express this notion, is to say that
the portfolio π(·) strongly outperforms µ(·) over the time-
horizon [0, T ].

Contrast the SPT approach to portfolio selection with other
methods such as mean-variance optimisation (originally in-
troduced by Markowitz [1952]) and expected utility max-
imisation (see for instance Rogers [2013]), where the opti-
misation of a certain performance criterion determines the
portfolio. In SPT, any portfolio that outperforms the market
in the sense of (6) is a relative arbitrage, and the amount by
which it outperforms the market is theoretically irrelevant.

In practice, one clearly desires this relative outperformance
to be as large as possible. Attempts at optimisation over the
class of strategies that satisfy (6) have been made by Fern-
holz and Karatzas [2010], Fernholz and Karatzas [2011],
Ruf [2011], Ruf [2013], and Wong [2015]. However, these
results are highly theoretical and very difficult to imple-
ment. Our data-driven approach circumvents these theo-
retical complications by optimising a user-defined criterion
over the class of functionally-generated portfolios, which
we introduce below.

2.3 FUNCTIONALLY-GENERATED PORTFOLIOS

A particular class of portfolios, called functionally-
generated portfolios (or FGPs for short), was introduced
and studied by Fernholz [1999].

Consider a function G ∈ C2(U,R+), where U is an open
neighbourhood of ∆n

+ and such that x 7→ xiDi logG(x) is
bounded on ∆n

+ for i = 1, . . . , n. Then G is said to be the
generating function of the functionally-generated portfolio
π(·), given, for i = 1, . . . , n , by

πi(t)

µi(t)
=

DiG(µ(t))

G(µ(t))
+ 1−

n∑
j=1

µj(t)
DjG(µ(t))

G(µ(t))
. (7)

Here, we write Di for the partial derivative with respect to
the ith variable, and we will write D2

ij for the second partial
derivative with respect to the ith and jth variables. Theo-
rem 3.1 of Fernholz [1999] asserts that the performance of
the wealth process corresponding to π(·), when measured
relative to the market, satisfies the P-almost sure decompo-
sition (often referred to as “Fernholz’s master equation”)

log

(
V π(T )

V µ(T )

)
= log

(
G(µ(T ))

G(µ(0))

)
+

∫ T

0

g(t) dt , (8)

where the quantity

g(t) := −
n∑

i,j=1

D2
ijG(µ(t))

2G(µ(t))
µi(t)µj(t)τ

µ
ij(t) (9)

is called the drift process of the portfolio π(·). Here, we
have written τµij(·) for the relative covariances; denoting
by ei the ith unit vector in Rn, these are defined for 1 ≤
i, j ≤ n as

τµij(t) :=
(
µ(t)− ei

)T
σ(t)σT (t)

(
µ(t)− ej

)
. (10)

Under suitable conditions on the market model (1), the left
hand side of master equation (8) can be bounded away from
zero for sufficiently large T > 0, thus proving that π(·)
is an arbitrage relative to the market over [0, T ]. Several
FGPs have been shown to outperform the market this way
— see Fernholz [2002], Fernholz et al. [2005], Fernholz
and Karatzas [2005], Banner and Fernholz [2008], Fern-
holz and Karatzas [2009], Picková [2014], and Vervuurt
and Karatzas [2015]. In fact, Pal and Wong [2014] prove
that any relative arbitrage with respect to the market is nec-
essarily of the form (7), if one restricts π(·) to be a func-
tional of the current market weights only.

Strong [2014] proves a generalisation of (8) for portfo-
lios which are deterministic functions not only of the mar-
ket capitalisations, but also of other observable quantities.
Namely, let x(t) = (µ(t), F )T , with F a continuous, Rk-
valued, F-progressively measurable process of finite varia-
tion, and let H ∈ C2,1(Rn × Rk,R+). By an application
of Theorem 3.1 of Strong [2014], for any portfolio

πi(t)

µi(t)
=

DiH(x(t))

H(x(t))
+ 1−

n∑
j=1

µj(t)
DjH(x(t))

H(x(t))
, (11)

for i = 1, . . . , n, the following master equation holds:

log

(
V π(T )

V µ(T )

)
= log

(
H(x(T ))

H(x(0))

)
+

∫ T

0

g̃(t) dt (12)

−
∫ T

0

k∑
l=1

Dn+l logH(x(t)) dFl(t) .

Here (compare with (8) and (9))

g̃(t) := −
n∑

i,j=1

D2
ijH(x(t))

2H(x(t))
µi(t)µj(t)τ

µ
ij(t) . (13)

Although explicit in its decomposition, the modified master
equation (12) has so far not been applied in the literature.
It is very difficult and unclear how to postulate in what way
such ‘extended generating functions’ H should depend on
market information, and what additional covariates to use.
It is thus of interest to develop a methodology that makes
suggestions for what functions H to use, and extracts from
market data which signals are significant.

2.4 DIVERSITY-WEIGHTED PORTFOLIOS

One of the most-studied FGPs is the diversity-weighted
portfolio (DWP) with parameter p ∈ R, defined in (4.4)



of Fernholz et al. [2005] as

π
(p)
i (t) :=

(µi(t))
p∑n

j=1(µj(t))p
, i = 1, . . . , n. (14)

In Eq. (4.5) of Fernholz et al. [2005] it was shown that this
portfolio is a relative arbitrage with respect to µ(·) over
[0, T ] for any p ∈ (0, 1) and T > 2 log n/(εδp), under
the condition (NDε), and that of diversity (Dδ), introduced
below. The latter says that no single company’s capitalisa-
tion can take up more than a certain proportion of the entire
market, which can be observed to hold in real markets;

∃ δ ∈ (0, 1) : P
(

max
1≤i≤n
t∈[0,T ]

µi(t) < 1− δ
)

= 1 . (Dδ)

In Vervuurt and Karatzas [2015], this result was extended
to the DWP with negative parameter p, and several varia-
tions of this portfolio were shown to outperform the mar-
ket over sufficiently long time horizons and under suitable
market assumptions. A simulation using real market data
supported the claim that these portfolios have the potential
to outperform the market index, as well as their positive-
parameter counterparts. Our results strongly confirm this
finding, as well as computing the optimal parameter p —
see section 4.

3 SOLVING THE INVERSE PROBLEM

We consider solving the inverse problem of SPT: given
some investment objective, how to go about learning a suit-
able trading strategy from the data? In doing so, we aim for
a method that:

1. Learns from a large class of candidate investment
strategies to uncover possibly intricate strategies from
the data, typically by making use of non-parametric
generative models for the generating functions;

2. Leverages additional sources of information beyond
market capitalisations to uncover better investment
strategies;

3. Works irrespective of the practitioner’s investment ob-
jective (e.g. achieving a high Sharpe Ratio, outper-
forming alternative benchmark indices, etc).

3.1 MODEL SPECIFICATION

Let X ⊂ Rd be a set of trading characteristics, for some
d ≥ 1. We consider long-only portfolios of the form

πfi (t) =
f (xi(t))∑n
j=1 f (xj(t))

, i = 1 . . . , n, (15)

for some continuous function f : X → R+.

The idea behind this choice of investment portfolios is
grounded in the fact that in practice, an investment manager
will often have a predefined set of characteristics that he
uses to compare stocks, for instance company size, balance
sheet variables, credit ratings, sector, momentum, market
vs. book value, return on assets, management team, on-
line sentiment, technical indicators, ‘beta’, etc. The invest-
ment manager will typically choose trading characteristics
so that they are informative enough to unveil market ineffi-
ciencies. Moreover, two stocks that have ‘similar’ charac-
teristics will receive ‘similar’ weights.

This approach includes as special cases all functionally-
generated portfolios in the SPT framework, and in partic-
ular the diversity-, entropy- and equally-weighted, as well
as market, portfolios. Our more general setting allows for
any set of trading characteristics.

The trading opportunities in our framework are revealed
through the time evolving trading characteristics xi(t), and
the investment map f fully determines how to go about
seizing these opportunities. Whence, learning an invest-
ment strategy in our framework is equivalent to learning an
investment map f . To do so, we consider two families of
functions. Firstly, galvanised by the theoretical results of
SPT, we consider the case where X = R+ is the set of
market weights, and we take f to be of the parametric form

f : µ 7→ µp, (16)

for p ∈ R, which corresponds to the diversity-weighted
portfolio (DWP, see section 2.4). Secondly, in order to cap-
ture more intricate trading patterns, and to allow for a more
general set of trading characteristics X ⊂ Rd, we also con-
sider an alternative non-parametric approach in which we
take log f to be a path of a mean-zero Gaussian process
with covariance function k

log f ∼ GP(0, k(·, ·)). (17)

To learn ‘good’ investment maps, we need to introduce an
optimality criterion that encodes the user’s investment ob-
jective. To do so, we consider a performance functionalPD
that maps the logarithm of a candidate investment map to
the historical performance PD(log f) of the portfolio πf (·)
as in Eq. (15) over some finite time horizon, given his-
torical data D. An example performance functional is the
annualised Sharpe Ratio, defined as

SR(π) =
√
B

Ê ({r(1), . . . , r(T )})
Ŝ ({r(1), . . . , r(T )})

, (18)

where r(t) =
∑n
i=1 ri(t)π

f
i (t) is the return of our port-

folio between time t − 1 and time t, ri(t) is the return of
the i-th asset between time t − 1 and time t, B represents
the number of units of time in a business year (e.g. 252 if
the returns are daily), and Ê (resp. Ŝ) denote the sample



mean (resp. sample standard deviation). Another example
of a performance functional is the excess return relative to
a benchmark portfolio π∗

ER
(
πf |π∗

)
=

T∏
t=1

(
1 +

n∑
i=1

ri(t)π
f
i (t)

)

−
T∏
t=1

(
1 +

n∑
i=1

ri(t)π
∗
i (t)

)
. (19)

The nature of PD (Sharpe ratio, excess return, etc) depends
on the portfolio manager; we impose no theoretical restric-
tion.

In the parametric case (Eq. (16)), PD(log f) is effectively
a function of one single variable p, and we can easily learn
the optimal p using standard optimisation techniques.

In many cases, however, it might be preferable to reason
under uncertainty and be Bayesian. To do so, we express
the investment manager’s view as to what is a good perfor-
mance through a likelihood model p(D

∣∣ log f), which we
may choose to be a probability distribution on PD(log f)

L (PD(log f)) := p
(
D
∣∣ log f

)
. (20)

This is perhaps the most important step of the learning pro-
cess. Indeed, the Bayesian methods we will develop in the
next section aim at learning investment maps that provide
an appropriate trade-off between how likely the map is in
light of training data, and how consistent it is with prior
beliefs. This will only lead to a profitable investment map
if ‘likely’ maps satisfy the manager’s investment objective
in-sample and vice-versa. If one chooses the likelihood
model such that likely maps are strategies that lose money,
then our learning machines will learn strategies that lose
money!

Fortunately, it is very straightforward to express that likely
investment maps are the ones that match a desired invest-
ment objective. For instance, we may use as likelihood
model that, given a candidate investment map f , the ex-
tent to which it is good, or equivalently the extent to which
it is ‘likely’ to be the function driving the strategy we are
interested in learning, is the same as the extent to which the
Sharpe Ratio it generates in-sample comes from a Gamma
distribution with mean 2.0 and standard deviation 0.5. The
positive support of the Gamma distribution renders func-
tions leading to negative in-sample Sharpe ratios of no in-
terest, while the concentration of the distribution over the
Sharpe Ratio around 2.0 reflects both our target perfor-
mance and some tolerance around it. The choice of mean
(2.0) and standard deviation (0.5) of the Gamma reflects
the risk appetite of the investment manager, while the van-
ishing tails properly reflect the fact that too high a perfor-
mancePD(log f) would likely raise suspicions and too low
a performance would not be good enough.

To complete our Bayesian model specification, in the para-
metric case we place on p a uniform prior on [−8, 8].

3.2 INFERENCE

Throughout the rest of this paper we will use as perfor-
mance functional the total excess — transaction cost ad-
justed — return (as defined in (19)) relative to the equally
weighted portfolio (EWP), which has constant weights

πEWP
i (t) =

1

n
, i = 1, . . . , n , ∀ t ≥ 0. (21)

over the whole training period

PD(log f) = ER(πf |EWP). (22)

We assume a 10bps transaction cost upon rebalancing
(i.e. we incur a cost of 0.1% of the notional for each
transaction). It is well known to algorithmic (execution)
trading practitioners that a good rule of thumb is to ex-
pect to pay 10bps when executing an order whose size is
10% of the average daily traded volume (ADV) on liq-
uid stocks. Whence, this assumption is reasonable so long
as the wealth invested in each stock does not exceed 10%
ADV. When needed, we use as likelihood model

L (PD(log f)) = γ (PD(log f); a, b) , (23)

where we denote γ(.; a, b) the probability density function
of the Gamma distribution with mean a and standard devia-
tion b. As previously discussed, a and b need not be learned
as they reflect the investment manager’s risk appetite. In the
experiments of the following section, we use a = 7.0 and
b = 0.5. In other words, we postulate that the ideal invest-
ment strategy should be such that, starting with a unit of
wealth, the terminal wealth over the training period should
be on average 7.0 units of wealth higher than the terminal
wealth achieved by the equally weighted portfolio over the
same trading horizon — this is purposely greedy.

Frequentist parametric: The first method of inference we
consider consists of directly learning the optimal parameter
of the DWP by maximising PD(log f) for p ∈ [−8, 8]. As
a comparison, the typical range of p considered in the SPT
literature is [−1, 1]. To avoid any issue with local maxima,
we proceed with brute force maximisation on the uniform
grid with mesh size 0.05.2

Bayesian parametric: The second method of inference we
consider consists of using the Metropolis-Hastings algo-
rithm (Hastings [1970]) to sample from the posterior dis-
tribution over the exponent p in the DWP case,

p(p|D) ∝ L (PD(p))× 1 (p ∈ [−8, 8]) , (24)

where we have rewritten L (PD(log f)) as L (PD(p)) to
make the dependency in p explicit. We sample a proposal

2This took no longer than a couple of seconds in every exper-
iment that we ran.



update p∗ from a Gaussian centred at the current exponent
p and with standard deviation 0.5. The acceptance proba-
bility is easily found to be

r = min

(
1,
L (PD(p∗))

L (PD(p))
1 (p∗ ∈ [−8, 8])

)
. (25)

We note in particular that so long as p is initialised within
[−8, 8], the indicator function in Eq. (24) will not cause
problems to the Markov chain. We typically run 10, 000
MH iterations and discard the first 5, 000 as ‘burn-in’. We
use the posterior mean exponent learned on training data
to trade in our testing horizon following the corresponding
DWP

f̂(µ) = µE(p|D). (26)

Bayesian non-parametric: The third method of inference
we consider is Bayesian and non-parametric. We place a
Gaussian process prior on log f

log f ∼ GP(0, k(·, ·)). (27)

Given the sizes of datasets we consider in our experiments
(more than 3 million training inputs — 500 assets over a
25-year period), we approximate the latent function over
a Cartesian grid. This approximation fits nicely with the
quantised nature of financial data. We use as covariance
function a separable product of Rational Quadratic (RQ)
kernels

k(x, y) = k20

d∏
i=1

(
1 +

(x[i]− y[i])2

2αil2i

)−αi

, (28)

where the hyper-parameters k0, li, αi > 0, on which we
place independent log-normal priors are all to be inferred.
We found the RQ kernel to be a better choice than the Gaus-
sian kernel as it allows for ‘varying length scales’. Denot-
ing by f the values of the investment map over the input
grid, we prefer to work with the equivalent whitened repre-
sentation

log f = LX, X ∼ N (0, I), (29)

where I is the identity matrix, K = [k(xi,xj)]i,j≤N is
the Gram matrix over all N input points, K = UDUT

is the Singular Value Decomposition (SVD) of K and
L = UD

1
2 . We use a Blocked Gibbs sampler (Geman and

Geman [1984]) to sample from the posterior

p (logX, log k0, {log li, logαi}i≤d|D) ∝ L (PD(LX))

× p(logX)p(log k0)

d∏
i=1

p(log li)p(logαi) , (30)

where we have rewritten L (PD(log f)) as L (PD(LX)) to
emphasise that the likelihood is fully defined by f = LX.
The whitened representation has two primary advantages.

First, it is robust to ill conditioning as we may always com-
pute L, even when K is singular. Second, it creates a hard
link between function values and hyper-parameters, so that
updating the latter affects the likelihood L (PD(log f)),
and therefore directly contributes towards improving the
training performance PD(log f): we found this to improve
mixing of the Markov chain. Our Blocked Gibbs sampler
alternates between updating logX conditional on hyper-
parameters, and updating the hyper-parameters (and conse-
quently L) conditional on logX. For both steps we use the
elliptical slice sampling algorithm (Murray et al. [2010]).
The computational bottleneck of our sampler is the com-
putation of the SVD of K, which we may do very effi-
ciently by exploiting the separability of our kernel and the
grid structure of the input space using standard Kronecker
techniques (see for instance Saatchi [2011]).

4 EXPERIMENTS

The universe of stocks we consider in our experiments
are the constituents of the S&P 500 index, accounting for
changes in index constituents. We rebalance our portfolios
on a daily basis. At the end of each trading day, we deter-
mine our target portfolio for the next day, which is acquired
at the open of the next trading day. When the constituents
of the index are due to change on day t, our target portfolio
at the end of day t−1 relates to the constituents of the index
on day t (which would indeed be known to the market on
day t − 1). As previously discussed, we assume that each
transaction incurs a charge of 0.1% of its notional value.
The returns we use account for corporate events such as
dividends, defaults, M&A’s, etc. Our data sources are the
CRSP and Compustat databases, and we use data from 1
January 1992 to 31 December 2014.

In our first experiment, we aim to illustrate that the ap-
proaches we propose in this paper consistently and con-
siderably outperform SPT alternatives over a wide range
of market conditions. We consider learning optimal invest-
ment strategies as described in the previous section using
10 consecutive years worth of data and testing on the fol-
lowing 5 years. We begin on 1st January 1992 for the first
training dataset, and roll both training and testing datasets
by one year, which leads to a total of 9 pairs of training and
testing subsets. We compare the equally-weighted portfolio
(EWP), the market portfolio, the diversity-weighted port-
folio where the exponent p is learned by maximising the
evaluation functional (DWP*), the diversity-weighted port-
folio where the exponent p is learned with MCMC (DWP),
the Gaussian process approach using as trading character-
istic the logarithm of the market weights (CAP), and the
Gaussian process approach using as trading characteristics
both the logarithm of the market weights and the return-on-
assets (CAP+ROA). The return-on-assets (ROA) on day t
is defined as the ratio between the last net income reported
by the company and last total assets reported by the com-



pany known on day t — we note that this quantity may not
change on a daily basis but this does not affect our analysis.
The rationale behind using the ROA as additional charac-
teristics is to capture not only how big a company is, but
also how well it performs relative to its size.

Table 1 summarises the average over the 9 scenarios of the
yearly in-sample and out-of-sample returns plus-minus two
standard errors. It can be seen that all learned strategies do
indeed outperform the benchmark (EWP) in-sample and
out-of-sample. Moreover, the performance is greatly im-
proved by considering non-parametric models, even when
the only characteristic considered is the market weight.
Analysing such families of strategies within the SPT frame-
work would simply be mathematically intractable. Fi-
nally, it can be seen that adding more trading characteristics
does indeed add value. Crucially, the CAP+ROA portfolio
considerably and consistently outperforms the benchmark
(EWP), both in-sample and out-of-sample.

Table 1: Results of our first experiment on the consistency
of our learning algorithms to varying market conditions. IS
RET (resp. OOS RET) are in-sample (resp. out-of-sample)
average (over the 9 runs in the experiment) yearly returns
in % ± two standard errors.

PORTFOLIO IS RET (%) OOS RET (%)

MARKET 8.56±1.62 6.23±2.07
EWP 10.56±1.67 8.99±1.85
DWP* 11.94±2.01 12.51±1.12
DWP 11.91±1.99 12.50±1.11
CAP 26.54±2.38 22.05±2.89
CAP+ROA 56.18±7.35 25.14±2.58

In our second experiment, we aim to illustrate that our ap-
proaches are robust to financial crises. To do so, we train
our model using data from 1 January 1992 to 31 Decem-
ber 2005, and test the learned strategy between 1 January
2006 and 31 December 2014, which includes the 2008 fi-
nancial crisis. We compare the same investment strategies
as before. The posterior distribution over the exponent p
in the Bayesian parametric method is illustrated in Figure
1. The learned posterior mean investment maps are illus-
trated in Figure 3. In Table 2 we provide in-sample and out-
of-sample average yearly returns as well as out-of-sample
Sharpe ratios. Once again, it can be seen that: i) all learned
portfolios do indeed outperform the benchmark (EWP) in-
sample and out-of-sample, ii) non-parametric methods out-
perform parametric methods, and iii) adding the ROA as
an additional characteristic does indeed add value. These
conclusions hold true not only in absolute terms (returns)
but also after adjusting for risk (Sharpe Ratio). A more
granular illustration of how our method performs during
the 2008 financial crisis can be seen in the time series of
total wealth provided in Figure 2. It turns out that the ROA

does not only improve the return out-of-sample, but it also
has a ‘stabilising effect’ in that the volatility of the wealth
process is considerably reduced.

Finally, it is also worth stressing that the shape of the
learned investment map in the two-dimensional case (Fig-
ure 3) suggests that the investment strategy uncovered by
our Bayesian nonparametric approach can hardly be repli-
cated with a parametric model. Once again, it would be
near impossible to derive analytical results pertaining to
such a portfolio within the SPT framework.

Figure 1: Posterior distribution of the parameter p of the
diversity-weighted portfolio in our second experiment. The
model was trained with market data between 1st January
1992 to 31st December 2005.

Table 2: Results of our second experiment on the robust-
ness of the proposed approaches to financial crises. Re-
turns (RET) are yearly equivalents (in %) of the total re-
turns over the whole testing period. The annualised Sharpe
Ratio (SR) is as per Eq. (18). IS (resp. OOS) stands for
in-sample (resp. out-of-sample).

PORTFOLIO IS RET (%) OOS RET (%) OOS SR

MARKET 9.60 7.90 0.47
EWP 13.46 9.60 0.51
DWP* 14.62 11.74 0.56
DWP 14.62 11.38 0.55
CAP 16.49 18.01 0.60
CAP+ROA 37.54 18.33 0.72

5 CONCLUSION & DISCUSSION

The inverse problem of stochastic portfolio theory (SPT) is
the following problem: given a user-defined portfolio se-



Figure 2: Time series of out-of-sample wealth processes in
our second experiment. Models were trained with market
data between 1st January 1992 to 31st December 2005, and
tested from 1st January 2006 to 31st December 2014.

lection criterion, how does one go about constructing suit-
able investment strategies that meet the desired investment
objective? This problem is extremely challenging to solve
within the SPT framework. We propose the first solution to
the inverse SPT problem and we demonstrate empirically
that the proposed methods consistently and considerably
outperform standard benchmarks, and are robust to finan-
cial crises.

Unlike the SPT framework, our methods are based solely
on historical data rather than stochastic calculus. This al-
lows us to consider a very broad class of candidate invest-
ment strategies that includes all SPT strategies as special
cases, but crucially contains many investment strategies
that cannot be analysed in the SPT framework. Unlike the
SPT framework, which almost exclusively considers out-
performing the market portfolio using investment strate-
gies that are solely based on market weights, our proposed
approach can cope with virtually any user-defined invest-
ment objective and can exploit any arbitrary set of trading
characteristics. We empirically demonstrate that this added
flexibility allows us to uncover more subtle patterns in fi-
nancial markets, which results in greatly improved perfor-
mance.

Although the Gaussian process in our model was approxi-
mated to be piecewise constant on a grid, there is no the-
oretical or practical obstacle in using an alternative ap-
proximation such as sparse Gaussian processes (Quiñonero
Candela and Rasmussen [2005]) or string Gaussian pro-
cesses (Kom Samo and Roberts [2015b]). Our method
may be extended to learn even subtler patterns using the
non-stationary general purpose kernels of Kom Samo and
Roberts [2015a]. Our work may also be extended to al-

Figure 3: Learned logarithm investment maps of the CAP
portfolio (top) and the CAP+ROA portfolio (bottom) in our
second experiment. In the case of the CAP portfolio, the
credible band corresponds to ± 2 posterior standard devia-
tions.

low for long-short investment strategies (i.e. strategies that
allow short-selling). Finally, it would be interesting to de-
velop an online extension of our work that would capture
temporal changes in market dynamics.

Acknowledgements

Yves-Laurent is a Google Fellow in Machine Learning
and would like to acknowledge support from the Oxford-
Man Institute of Quantitative Finance. Alexander grate-
fully acknowledges PhD studentships from the Engineer-
ing and Physical Sciences Research Council, Nomura, and
the Oxford-Man Institute of Quantitative Finance. Whar-
ton Research Data Services (WRDS) was used in preparing
the data for this paper. This service and the data available
thereon constitute valuable intellectual property and trade
secrets of WRDS and/or its third-party suppliers.



References

Adrian D. Banner and Daniel Fernholz. Short-term relative
arbitrage in volatility-stabilized markets. Ann. Finance,
4:445–454, 2008.

Daniel Fernholz and Ioannis Karatzas. On optimal arbi-
trage. Ann. Appl. Probab., 20(4):1179–1204, 2010.

Daniel Fernholz and Ioannis Karatzas. Optimal arbitrage
under model uncertainty. Ann. Appl. Probab., 21(6):
2191–2225, 2011.

Robert Fernholz. Portfolio generating functions. Quan-
titative Analysis in Financial Markets, River Edge, NJ.
World Scientific, 1999.

Robert Fernholz. Stochastic Portfolio Theory. Springer,
2002.

Robert Fernholz and Ioannis Karatzas. Relative arbitrage in
volatility-stabilized markets. Ann. Finance, 1:149–177,
2005.

Robert Fernholz and Ioannis Karatzas. Stochastic portfo-
lio theory: A survey. In Alain Bensoussan and Qiang
Zhang, editors, Handbook of Numerical Analysis. Vol.
XV. Special volume: mathematical modeling and numer-
ical methods in finance, volume 15 of Handbook of Nu-
merical Analysis. Elsevier/North-Holland, Amsterdam,
2009.

Robert Fernholz, Ioannis Karatzas, and Constantinos Kar-
daras. Diversity and relative arbitrage in equity markets.
Finance Stoch., 9(1):1–27, 2005.

Stuart Geman and Donald Geman. Stochastic relaxation,
gibbs distributions, and the bayesian restoration of im-
ages. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 6:721–741, 1984.

W. K. Hastings. Monte carlo sampling methods using
markov chains and their applications. Biometrika, 24:
97–109, 1970.

Ioannis Karatzas and Johannes Ruf. Trading strate-
gies generated by Lyapunov functions. arXiv preprint
arXiv:1603.08245, 2016.

Ioannis Karatzas and Steven Shreve. Brownian Motion and
Stochastic Calculus. Volume 113 in the series Proba-
bility and its Applications (New York). Springer-Verlag,
New York, 1988.

Yves-Laurent Kom Samo and Stephen Roberts. General-
ized spectral kernels. arXiv preprint arXiv:1506.02236,
2015a.

Yves-Laurent Kom Samo and Stephen Roberts. String
Gaussian processes. arXiv preprint arXiv:1507.06977,
2015b.

Harry Markowitz. Portfolio selection. The journal of fi-
nance, 7(1):77–91, 1952.

Iain Murray, Ryan Prescott Adams, and David J. C.
MacKay. Elliptical slice sampling. JMLR: W&CP, 9:
541–548, 2010.

Soumik Pal and Ting-Kam Leonard Wong. The geometry
of relative arbitrage. Mathematics and Financial Eco-
nomics, pages 1–31, 2014.

Radka Picková. Generalized volatility-stabilized processes.
Ann. Finance, 10(1):101–125, 2014.
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