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Abstract

We propose a new algorithmic framework for
sequential hypothesis testing with i.i.d. data,
which includes A/B testing, nonparametric
two-sample testing, and independence testing
as special cases. It is novel in several ways:
(a) it takes linear time and constant space to
compute on the fly, (b) it has the same power
guarantee (up to a small factor) as a non-
sequential version of the test with the same
computational constraints, and (c) it accesses
only as many samples as are required – its stop-
ping time adapts to the unknown difficulty of
the problem. All our test statistics are con-
structed to be zero-mean martingales under the
null hypothesis, and the rejection threshold is
governed by a uniform non-asymptotic law of
the iterated logarithm (LIL). For nonparamet-
ric two-sample mean testing, we also provide a
finite-sample power analysis, and the first non-
asymptotic stopping time analysis for this class
of problems. We verify our predictions for type
I and II errors and stopping times using simu-
lations.

1 INTRODUCTION

Nonparametric statistical decision theory poses the prob-
lem of making a decision between a null (H0) and alter-
nate (H1) hypothesis over a dataset with the aim of con-
trolling both false positives and false negatives (in statis-
tics terms, maximizing power while controlling type I er-
ror), all without making assumptions about the distribu-
tion of the data being analyzed. Such hypothesis testing
is based on a “stochastic proof by contradiction” – the
null hypothesis is thought of by default to be true, and
is rejected only if the observed data are statistically very
unlikely under the null.

There is increasing interest in solving such problems in
a “big data” regime, in which the sample size N can
be huge. We present a sequential testing framework for
these problems that is particularly suitable for two related
scenarios prevalent in many applications:

1) The dataset is extremely large and high-
dimensional, so even a single pass through it
is prohibitive.

2) The data is arriving as a stream, and decisions must
be made with minimal storage.

Sequential tests have long been considered strong in
such settings. Such a test accesses the data in an on-
line/streaming fashion, assessing after every new data-
point whether it then has enough evidence to reject the
null hypothesis. However, prior work tends to be univari-
ate or parametric or asymptotic, while we are the first to
provide non-asymptotic guarantees on multivariate non-
parametric problems.

To elaborate on our motivations, suppose we have a gi-
gantic amount of data from each of two unknown dis-
tributions, enough to detect even a minute difference in
their means µ1 − µ2 if it exists. Further suppose that,
unknown to us, deciding whether the means are equal is
actually statistically easy (|µ1 − µ2| is large), meaning
that one can conclude µ1 6= µ2 with high confidence by
just considering a tiny fraction of the dataset. Can we
take advantage of this, despite our ignorance of it?

A naive solution would be to discard most of the data
and run a batch (offline) test on a small subset. How-
ever, we do not know how hard the problem is, and hence
do not know how large a subset will suffice — sampling
too little data might lead to incorrectly not rejecting the
null, and sampling too much would unnecessarily waste
computational resources. If we somehow knew µ1 − µ2,
we would want to choose the fewest number of samples
(say n∗) to reject the null while controlling type I error
at some target level.



1.1 OVERVIEW OF OUR APPROACH

Our sequential test solves the problem by automatically
stopping after seeing about n∗ samples, while still con-
trolling type I and II errors almost as well as the equiv-
alent linear-time batch test. Without knowing the true
problem difficulty, we are able to detect it with virtually
no computational or statistical penalty. We devise and
formally analyze a sequential algorithm for a variety of
problems, starting with a basic test of the bias of a coin,
and developing this to nonparametric two-sample mean
testing, with further extensions to general nonparametric
two-sample and independence testing.

Our proposed procedure only keeps track of a single
scalar test statistic, which we construct to be a zero-mean
random walk under the null hypothesis. It is used to test
the null hypothesis each time a new data point is pro-
cessed. A major statistical issue is dealing with the ap-
parent multiple hypothesis testing problem – if our algo-
rithm observes its first rejection of the null at time t, it
might raise suspicions of being a false rejection, because
t − 1 hypothesis tests were already conducted and the
t-th may have been rejected purely by chance. Applying
some kind of multiple testing correction, like the Bonfer-
roni or Benjamini-Hochberg procedure, is exceedingly
conservative and produces very suboptimal results over
a large number of tests. However, since the random walk
moves only a relatively small amount every iteration, the
tests are far from independent.

Formalizing this intuition requires adapting a classical
probability result, the law of the iterated logarithm (LIL),
with which we control for type I error (when H0 is true).
The LIL can be described as follows. Imagine tossing
a fair coin, assigning +1 to heads and −1 to tails, and
keeping track of the sum St of t coin flips. The LIL
asserts that asymptotically, St always remains bounded
between ±

√
2t ln ln t (and this “envelope” is tight).

When H1 is true, we prove that the sequential algo-
rithm does not need the whole dataset as a batch algo-
rithm would, but automatically stops after processing just
“enough” data points to detect H1, depending on the un-
known difficulty of the problem being solved. The near-
optimal nature of this adaptive type II error control (when
H1 is true) is again due to the remarkable LIL.

As alluded to earlier, all of our test statistics can be
thought of as random walks, which behave like St un-
der H0. The LIL then characterizes how such a random
walk behaves under H0 – our algorithm will keep ob-
serving new data since the random walk values will sim-
ply bounce around within the LIL envelope. Under H1,
the random walk is designed to have nonzero mean, and
hence will eventually stray outside the LIL envelope, at

which point the process stops and rejects the null hypoth-
esis.

For practically applying this argument to finite samples
and reasoning about type II error and stopping times, we
cannot use the classical asymptotic form of the LIL typ-
ically stated in textbooks such as Feller (1950), instead
adapting a finite-time extension of the LIL by Balsubra-
mani (2015). As we will see, the technical contribution
is necessary to investigate the stopping time, and control
type I and II errors non-asymptotically and uniformly
over all t.

In summary, our sequential testing framework has the
following properties:

(A) UnderH0, it controls type I error, using a finite-time
LIL computable in terms of empirical variance.

(B) Under H1, and with type II error controlled at
a target level, it automatically stops after see-
ing the same number of points as the correspond-
ing computationally-constrained oracle batch algo-
rithm.

(C) Each update takes O(d) time and constant memory.

In later sections, we develop formal versions of these
statements. The statistical observations, particularly the
stopping time, follow from the finite-time LIL through
simple concentration of measure arguments that extend
to very general sequential testing settings, but have seem-
ingly remained unobserved in the literature for decades
because of the finite-time LIL necessary to make them.

We begin by describing a sequential test for the bias of
a coin in Section 2. We then provide a sequential test
for nonparametric two-sample mean testing in Section 3.
We run extensive simulations in Section 4 to bear out
predictions of our theory, followed by a comparison to
the extensive existing literature on the subject. We also
include extensions to general nonparametric two-sample
and independence testing problems, in the appendices.
All proofs (and code for experiments) are deferred to the
full version (Balsubramani and Ramdas (2015)).

2 DETECTING THE BIAS OF A COIN

This section will illustrate how a simple sequential test
can perform statistically as well as the best batch test
in hindsight, while automatically stopping essentially as
soon as possible. We will show that such early stopping
can be viewed as quite a general consequence of concen-
tration of measure. Just for this section, let K represent
a constant that may take different values on each appear-
ance, but is always absolute.

Consider observing i.i.d. binary flips A1, A2, · · · ∈
{−1,+1} of a coin, which may be fair or biased towards



1: Fix N and compute pN
2: if SN > pN then
3: Reject H0

4: else
5: Fail to reject H0

1: Fix N
2: for n = 1 to N do
3: Compute qn
4: if Sn > qn then
5: Reject H0 and return
6: Fail to reject H0

Figure 1: Batch (left) and sequential (right) tests.

+1, with P (Ai = +1) = ρ. We want to test for fairness,
detecting unfairness as soon as possible. Formulated as
a hypothesis test, we wish to test, for δ ∈ (0, 1

2 ]:

H0 : ρ =
1

2
vs. H1(δ) : ρ =

1

2
+ δ

For any sample size n, the natural test statistic for this
problem is Sn =

∑n
i=1Ai. Sn is a (scaled) simple

mean-zero random walk under H0. A standard hypothe-
sis testing approach to our problem is a basic batch test
involving SN , which tests for deviations from the null for
a fixed sample size N (Fig. 1, left). A basic Hoeffding
bound shows that

SN ≤
√
N

2
ln

1

α
=: pN

with probability ≥ 1 − α under the null, so type I error
is controlled at level α :

PH0(reject H0) = PH0(SN > pN ) ≤ e−2p2N/N = α.

2.1 A SEQUENTIAL TEST

The main test we propose will be a sequential test as in
Fig. 1. It sees examples as they arrive one at a time, up to
a large time N , the maximum sample size we can afford.
The sequential test is defined with a sequence of positive
thresholds {qn}n∈[N ]. We show how to set qn to justify
statements (A) and (B) in Section 1.1.

Type I Error. Just as the batch threshold pN is deter-
mined by controlling the type I error with a concentration
inequality, the sequential test also chooses q1, . . . , qN to
control the type I error at α:

PH0
(reject H0) = PH0

(∃n ≤ N : Sn > qn) ≤ α (1)

This inequality concerns the uniform concentration over
infinite tails of Sn, but what {qn}n∈[N ] satisfies it?
Asymptotically, the answer is governed by a founda-
tional result, the LIL:

Theorem 1 (Law of the iterated logarithm (Khinchin

(1924))). With probability 1, lim sup
n→∞

Sn√
n ln lnn

=
√

2.

The LIL says that qn should have a
√
n ln lnn asymp-

totic dependence on n, but does not specify its α depen-
dence.

Our sequential testing insights rely on a stronger non-
asymptotic LIL proved in (Balsubramani (2015), The-
orem 2): with probability at least 1 − α, we have

|Sn| ≤
√
Kn ln

(
lnn
α

)
=: qn simultaneously for all

n ≥ K ln( 4
α ) := n0. This choice of qn satisfies (1) for

n0 ≤ n ≤ N , and specifies the sequential test as in Fig.
1. (Choosing qn this way is unimprovable in all parame-
ters up to absolute constants (Balsubramani (2015))).

Type II Error. For practical purposes,
√

ln lnn ≤√
ln lnN can be treated as a small constant (even when

N = 1020,
√

ln lnN < 2). Hence, qN ≈ pN (more
discussion in the appendices), and the power is:

PH1(δ) (∃n ≤ N : Sn > qn) ≥ PH1(δ) (SN > qN ) (2)
≈ PH1(δ) (SN > pN ) (3)

So the sequential test is essentially as powerful as a batch
test with N samples (and similarly the nth round of the
sequential test is like an n-sample batch test).

Early Stopping. The standard motivation for using se-
quential tests is that they often require few samples to
reject statistically distant alternatives. To investigate this
with our working example, suppose N is large and the
coin is actually biased, with a fixed unknown δ > 0.
Then, if we somehow had full knowledge of δ when us-
ing the batch test and wanted to ensure a desired type II
error β < 1, we would use just enough samples n∗β(δ)
(written as n∗ in context):

n∗β(δ) = min
{
n : PH1(δ) (Sn ≤ pn) ≤ β

}
(4)

so that for all n ≥ n∗β(δ), since pn = o(n),

β ≥ PH1(δ) (Sn ≤ pn) = PH1(δ) (Sn − nδ ≤ pn − nδ)
≥ PH1(δ) (Sn − nδ ≤ −Knδ) (5)

Examining (5), note that Sn−nδ is a mean-zero random
walk. Therefore, standard lower bounds for the binomial
tail tell us that n∗β(δ) ≥ K ln(1/β)

δ2 suffices, and no test



can statistically use much less than n∗β(δ) samples under
H1(δ) to control type II error at β.

How many samples does the sequential test use? The
quantity of interest is the test’s stopping time τ , which is
< N when it rejects H0 and N otherwise. In fact, the
expected stopping time is close to n∗ under any alternate
hypothesis:

Theorem 2. For any δ and any β > 0, there exist abso-
lute constants K1,K2 such that

EH1 [τ ] ≤

(
1 +

K1β
K2

ln 1
β

)
n∗β(δ)

Theorem 2 shows that the sequential test stops roughly
as soon as we could hope for, under any alternative δ,
despite our ignorance of δ! We will revisit these ideas
when presenting our two-sample sequential test later in
Section 3.1.

2.2 DISCUSSION

Before moving to the two-sample testing setting, we note
the generality of these ideas. Theorem 2 is proved for
biased coin flips, but it uses only basic concentration
of measure ideas: upper and lower bounds on the tails
of a statistic that is a cumulative sum incremented each
timestep. Many natural test statistics follow this scheme,
particularly those that can be efficiently updated on the
fly. Our main sequential two-sample test in the next sec-
tion does also.

Theorem 2 is notable for its uniformity over δ and β.
Note that qn (and therefore the sequential test) are inde-
pendent of both of these – we need only to set a target
type I error bound α. Under any alternative δ > 0, the
theorem holds for all β simultaneously. As β decreases,
n∗β(δ) of course increases, but the leading multiplicative

factor
(

1 + K1β
K2

ln 1
β

)
decreases. In fact, with an increas-

ingly stringent β → 0, we see that
EH1

[τ ]

n∗
→ 1; so the

sequential test in fact stops closer to n∗, and hence τ is
almost deterministically best possible. Indeed, the proof
of Theorem 2 also shows that PH1

(τ ≥ n) ≤ e−Knδ
2

,
so the probability of lasting n steps falls off exponen-
tially in n, and is therefore quite sharply concentrated
near the optimum n∗β(δ).

We formalize this precise line of reasoning completely
non-asymptotically in an even stronger high-dimensional
setting, in the analysis of our main two-sample test in the
next section.

3 TWO-SAMPLE MEAN TESTING

In this section, we present our main sequential
two-sample test. Assume that we have samples
X1, . . . , Xn, · · · ∼ P and Y1, . . . , Yn, · · · ∼ Q, with
P,Q being unknown arbitrary continuous distributions
on Rd with means µ1 = EX∼P [X], µ2 = EY∼Q[Y ],
and we need to test

H0 : µ1 = µ2 vs. H1 : µ1 6= µ2 (6)

Denote covariances ofP,Q by Σ1,Σ2 and Σ := 1
2 (Σ1+

Σ2). Define δ := µ1 − µ2 so that δ = 0 under
H0. Let Φ(·) denote the standard Gaussian CDF, and
[ln ln]+(x) := ln ln[max(x, ee)].

3.1 A LINEAR-TIME SEQUENTIAL TEST

Our sequential test follows the scheme in Fig. 1, so we
only need to specify a sequence of rejection thresholds
qn. To do this, we denote

hi = (X2i−1 − Y2i−1)>(X2i − Y2i).

and define our sequential test statistic as the following
stochastic process evolving with n:

Tn =

n∑
i=1

hi.

Under H0, E [hi] = 0, and Tn is a zero-mean random
walk.

Proposition 1. E [Tn] = E [h] = n‖δ‖2, and

var(Tn) = n var(h) = n(4 tr(Σ2) + 4δ>Σδ) =: nV0.

We assume – for now – that our data are bounded, i.e.

‖X‖, ‖Y ‖ ≤ 1/2,

so that by the Cauchy-Schwarz inequality, w.p. 1,

|Tn − Tn−1| = |(X2n−1 − Y2n−1)>(X2n − Y2n)| ≤ 1

Since Tn has bounded differences, it exhibits Gaussian-
like concentration under the null. We examine the cumu-
lative variance process of Tn under H0,

n∑
i=1

E
[
(Ti − Ti−1)2 | h1:(i−1)

]
=

n∑
i=1

var(hi) = nV0

Using this, we can control the behavior of Tn under H0.

Theorem 3 (Balsubramani (2015)). Take any ξ > 0.
Then with probability ≥ 1− ξ, for all n simultaneously,

|Tn| < C0(ξ) +

√
2C1nV0[ln ln]+(nV0) + C1nV0 ln

(
4

ξ

)



where C0(ξ) = 3(e − 2)e2 + 2
(

1 +
√

1
3

)
ln
(

8
ξ

)
, and

C1 = 6(e− 2).

Unfortunately, we cannot use the theorem directly to get
computable deviation bounds for type I error control, be-
cause the covariance matrix Σ is unknown a priori. nV0

must instead be estimated on the fly as part of the sequen-
tial test, and its estimate must be concentrated tightly and
uniformly over time, so as not to present a statistical bot-
tleneck if the test runs for a long time. We prove such
a result, necessary for sequential testing, relating nV0 to
the empirical variance process V̂n =

∑
i h

2
i .

Lemma 4. With probability ≥ 1 − ξ, for all n simulta-
neously, there is an absolute constant C3 such that

nV0 ≤ C3(V̂n + C0(ξ))

Its proof uses a self-bounding argument and is in the Ap-
pendix. Now, we can combine these to prove a novel
uniform empirical Bernstein inequality to (practically)
establish concentration of Tn under H0.

Theorem 5 (Uniform Empirical Bernstein Inequality for
Random Walks). Take any ξ > 0. Then with probability
≥ 1− ξ, for all n simultaneously,

|Tn| < C0(ξ) +

√
2V̂ ∗n

(
[ln ln]+V̂ ∗n + ln

(
4

ξ

))
where V̂ ∗n := C3(V̂n + C0(ξ)), C0(ξ) = 3(e − 2)e2 +

2
(

1 +
√

1
3

)
ln
(

8
ξ

)
and C3 is an absolute constant.

Its proof follows immediately from a union bound on
Thm. 3 and Lem. 4. Thm. 5 depends on V̂n, which is
easily calculated by the algorithm on the fly in constant
time per iteration. Ignoring constants for clarity, Thm. 5
effectively implies that our sequential test from Figure 1
controls type I error at α by setting

qn ∝ ln

(
1

α

)
+

√√√√2V̂n ln

(
ln V̂n
α

)
(7)

Practically, we suggest using the above threshold with a
constant of 1.1 to guarantee type-I error approximately α
(this is all one often wants anyway, since any particular
choice of α = 0.05 is anyway arbitrary). This is what we
do in our experiments, with excellent success in simula-
tions. For exact or conservative control, consider using
a small constant multiple of the above threshold, such as
2.

The above sequential threshold is remarkable, because
within the practically useful and simple expression lies
a deep mathematical result – the uniform Bernstein LIL

effectively involves a union bound for the error proba-
bility over an infinite sequence of times. Any other naive
attempt to union bound the error probabilities for a possi-
bly infinite sequential testing procedure will be too loose
and hence too conservative. Furthermore, the classical
LIL is known to be asymptotically tight including con-
stants, and our non-asymptotic LIL is also tight up to
small constant factors.

This type-I error control with an implicit infinite union
bound surprisingly does not lead to a loss in power. In-
deed, our statistic possesses essentially the same power
as the corresponding linear-time batch two sample test,
and also stops early for easy problems. We make this
precise in the following two subsections.

3.2 A LINEAR-TIME BATCH TEST

Here we study a simple linear-time batch two-sample
mean test, following the template in Fig. 1. Consider

the linear-time statistic TN =

N∑
i=1

hi, where, as before,

hi = (x2i−1 − y2i−1)>(x2i − y2i). Note that the his are
also i.i.d., and TN relies on 2N data points from each
distribution.

Let VN0, VN1 be var(TN ) = N var(h) under H0, H1

respectively. Recalling Proposition 1:

VN0 := NV0 := 4N tr(Σ2),

VN1 := NV1 := N(4 tr(Σ2) + 4δ>Σδ).

Then since TN is a sum of i.i.d. variables, the central
limit theorem (CLT) implies that (where d−→ is conver-
gence in distribution)

TN√
VN0

d−→H0
N (0, 1) (8a)

TN −N‖δ‖2√
VN1

d−→H1 N (0, 1) (8b)

Based on this information, our test rejects the null hy-
pothesis whenever

TN >
√
VN0 zα, (9)

where zα is the 1 − α quantile of the standard normal
distribution. So Eq. (8a) ensures that

PH0

(
TN√
VN0

> zα

)
≤ α,

giving us type I error control under H0.

In practice, we may not know VN0, so we standardize
the statistic using the empirical variance – since we as-
sume N is large, these scalar variance estimates do not



change the effective power analysis. For non-asymptotic
type I error control, we can use an empirical Bernstein
inequality (Maurer and Pontil, 2009, Thm. 11), based
on an unbiased estimator of VN . Specifically, the empir-
ical variance of his (V̂N ) can be used to reject the null
whenever

TN >

√
2V̂N ln(2/α) +

7N ln(2/α)

3(N − 1)
. (10)

Ignoring constants for clarity, the empirical Bernstein in-
equality effectively suggests that the batch test from Fig-
ure 1 will have type I error control of α on setting thresh-
old

pN ∝ ln

(
1

α

)
+

√
2V̂N ln

(
1

α

)
(11)

For immediate comparison, we copy below the expres-
sion for qn from Eq. (7):

qn ∝ ln

(
1

α

)
+

√√√√2V̂n

(
ln

ln V̂n
α

)
.

This similarity explains the optimal power and stopping
time properties, detailed in the next subsection.

One might argue that if N is large, then V̂N ≈ VN , and
in this case we can simply derive the (asymptotic) power
of the batch test given in Eq.(9) as

PH1

(
TN√
VN0

> zα

)
(12)

= PH1

(
TN −N‖δ‖2√

VN1

> zα

√
VN0

VN1
− N‖δ‖2√

VN1

)

= Φ

( √
N‖δ‖2√

8 tr(Σ2) + 8δ>Σδ
− zα

√
tr(Σ2)

tr(Σ2) + δ>Σδ

)

Note that the second term is a constant less than zα. As
a concrete example, when Σ = σ2I , and we denote the
signal-to-noise ratio as Ψ := ‖δ‖

σ , then the power of the

linear-time batch test is at least Φ
( √

NΨ2
√

8d+8Ψ2
− zα

)
.

3.3 POWER AND STOPPING TIME OF
SEQUENTIAL TEST

The striking similarity of Eq. (11) and Eq. (7), mentioned
in the previous subsection, is not coincidental. Indeed,
both of these arise out of non-asymptotic versions of
CLT-like control and LIL-like control, and we know that
in the asymptotic regime for Bernoulli coin-flips, CLT
thresholds and LIL threshold differ by just ∝

√
ln lnn

factors. Hence, it is not surprising to see the empirical
Bernstein LIL match empirical Bernstein thresholds up

to ∝
√

ln ln V̂n factors. Since the power of the sequen-
tial test is at least the probability of rejection at the very
last step, and since

√
ln lnn < 2 even for n = 1020, the

power of the linear-time sequential and batch tests is es-
sentially the same. However, a sequential test that rejects
at the last step is of little practical interest, bringing us to
the issue of early stopping.

Early Stopping. The argument is again identical to
that Section 2, proving that EH1

[τ ] is nearly optimal,
and arbitrarily close to optimal as β tends to zero. Once
more note that the “optimal” above refers to the per-
formance of the oracle linear-time batch algorithm that
was informed about the right number of points to sub-
sample and use for the one-time batch test. Formally,
let n∗β(δ) denote this minimum sample size for the two-
sample mean testing batch problem to achieve a power
β, the ∗ indicating that this is an oracle value, unknown
to the user of the batch test. From Eq. (12), it is clear
that for N ≥ 8Tr(Σ2)+8δTΣδ

‖δ‖4 (zβ + zα)2, the power
becomes at least β. In other words,

n∗β(δ) ≤ Tr(Σ2) + δTΣδ

‖δ‖4
8(zβ + zα)2 (13)

Theorem 6. Under H1, the sequential algorithm of
Fig. 1 using qn from Eq. (7) has expected stopping time
∝ n∗β(δ).

For clarity, we simplify (7) and (11) by dropping the ini-
tial ln

(
1
α

)
additive term since it is soon dominated by

the second term and does not qualitatively affect the con-
clusion.

3.4 DISCUSSION

This section’s arguments have given an illustration of the
flexibility and great generality of the ideas we used to test
the bias of the coin. In the two-sample setting, we sim-
ply design the statistic TN =

∑n
i=1 hi to be a mean-zero

random walk under the null. As in the coin’s case, the
LIL controls type I error, and the remaining arguments
are identical because of the common concentration prop-
erties of all random walks.

Our test statistic TN is chosen with several considera-
tions in mind. First, the batch test is linear-time in the
sample complexity, so we are comparing algorithms with
the same computational budget, on a fair footing. There
exist batch tests using U-statistics that have higher power
than ours (Reddi et al. (2015)) for a given N , but they
use more computational resources (O(N2) rather than
O(N)).

Also, the batch statistic is a sum of random increments,
a common way to write many hypothesis tests, and one



that can be computed on the fly in the sequential setting.
Note that TN is a scalar, so our arguments do not change
with d, and we inherit the favorable high-dimensional
statistical performance of the statistic; Reddi et al. (2015)
has more relevant discussion. The statistic also has been
shown to have powerful generalizations in the recent
statistics literature, which we discuss in the appendices.

Though we assume data scaled to have norm 1
2 for con-

venience, this can be loosened. Any data with bounded
norm B > 1

2 can be rescaled by a factor 1
B just for

the analysis, and then our results can be used. This re-
sults in an empirical Bernstein bound like Thm. 5, but

of order O
(
C0(ξ) +

√
V̂n ln

(
ln(BV̂n)

ξ

))
. The depen-

dence on B is very weak, and is negligible even when
B = poly(d).

In fact, we only require control of the higher moments
(e.g. by Bernstein conditions, which generalize bound-
edness and sub-Gaussianity conditions) to prove the non-
asymptotic Bernstein LIL in Balsubramani (2015), ex-
actly as is the case for the usual Bernstein concentra-
tion inequalities for averages (Boucheron et al. (2013)).
Therefore, our basic arguments hold for unbounded in-
crements hi as well. In fact, the LIL itself, as well as
the non-asymptotic LIL bounds of Balsubramani (2015),
apply to martingales – much more general versions of
random walks capable of modeling dependence on the
past history. Our ideas could conceivably be extended to
this setting to devise more data-dependent tests, which
would be interesting future work.

4 EMPIRICAL EVALUATION

In this section, we evaluate our proposed sequential test
on synthetic data, to validate the predictions made by our
theory concerning its type I/II errors and the stopping
time.

We simulate data from two multivariate Gaussians (d =
10), motivated by our discussion at the end of Sec-
tion 3.2: each Gaussian has covariance matrix Σ =
σ2Id, one has mean µ1 = 0d and the other has µ2 =
(δ, 0, 0, . . . , 0) ∈ Rd for some δ ≥ 0. We keep σ = 1
here to keep the scale of the data roughly consistent with
the biased-coin example, though we find the scaling of
the data makes no practical difference, as we discussed.

4.1 RUNNING THE TEST AND TYPE I ERROR

Like typical hypothesis tests, ours is designed to con-
trol type I error. When implementing our algorithmic
ideas, it suffices to set qn as in (7), where the only un-
known parameters are proportionality constants C,C0:

qn ∝ C0 +

√
CV̂n

(
ln ln V̂n

α

)
. The theory suggests

that C,C0 are absolute constants, and prescribes upper
bounds for them, which can conceivably be loose be-
cause of the analytic techniques used (as Balsubramani
(2015) discusses). On the other hand, in the asymp-
totic limit the bounds become tight; the empirical V̂n
converges quickly to its mean Vn, and we know from
second-moment versions of the LIL that C =

√
2 and

C0 = 0 are correct. However, as we consider smaller
finite times, that bound must relax (at the extremely low
t = 1 or 2 when flipping a fair coin, for instance).

Nevertheless, we find that in practice, for even moderate
sample sizes like the ones we test here, the same reason-
able constants suffice in all our experiments: C =

√
2

and C0 = ln( 1
α ), with C0 following Thm. 5 and similar

fixed-sample Bennett bounds (Boucheron et al. (2013);
Balsubramani (2015); also see the appendices). The sit-
uation is exactly analogous to how the Gaussian approx-
imation is valid for even moderate sample sizes in batch
testing, making possible a huge variety of common tests
that are asymptotically and empirically correct with rea-
sonable constants to boot.

To be more specific, consider the null hypothesis for
the example of the coin bias testing given earlier; these
fair coin flips are the most anti-concentrated possible
bounded steps, and render our empirical Bernstein ma-
chinery ineffective, so they make a good test case. We
choose C and C0 as above, and plot the cumulative prob-
ability of type I violations PrH0

(τ ≤ n) up to time n for
different α (where τ is the stopping time of the test), with
the results in Fig. 2. To control type I error, the curves
need to be asymptotically upper-bounded by the desired
α levels (dotted lines). This does not appear true for our
recommended settings of C,C0, but the figure still indi-
cates that type I error is controlled even for very high n
with our settings. A slight further raise in C beyond

√
2

suffices to guarantee much stronger control.

Fig. 2 also seems to contain linear plots, which we can-
not fully explain. We conjecture it is related to the stan-
dard proof of the classical LIL, which divides time into
epochs of exponentially growing size (Feller (1950)).
For more on provable correctness with low C, see the
appendices.

4.2 TYPE II ERROR AND STOPPING TIME

Now we verify the results at the heart of the paper – uni-
formity over alternatives δ of the type II error and stop-
ping time properties.

Fig. 3 plots the power of the sequential test PH1(δ)(τ <
N) against the maximum runtime N using the Gaussian



Figure 2: PrH0
(τ ≤ n) for different α, on biased coin.

Dotted lines of corresponding colors are the target levels
α.

Figure 3: Power vs. ln(N) for different δ, on Gaussians.
Dashed lines represent power of batch test with N sam-
ples.

data, at a range of different alternatives δ; the solid and
dashed lines represent the power of the batch test (11)
with N samples, and the sequential test with maximum
runtimeN . As we might expect, the batch test has some-
what higher power for a given sample size, but the se-
quential test consistently performs well compared to it.
The role of N here is basically to set a desired tolerance
for error; increasing N does not change the intermediate
updates of the algorithm, but does increase the power by
potentially running the test for longer. So each curve in
Fig. 3 illustrates the statistical tradeoff inherent in hy-
pothesis testing against a fixed simple alternative, but the
great advantage of our sequential test is in achieving all
of them simultaneously with the same algorithm.

To highlight this point, we examine the stopping time
compared to the batch test for the Gaussian data, in Fig.
4. We see that the distributions of ln(τ) are all quite
concentrated, and that their medians (marked) fit well to

a slope-4 line, showing the predicted 1
δ4 dependence on

δ. Some more experiments are in the appendices.

Figure 4: Distribution of log1.25(τ) for δ ∈ {0.5(1.25)c :
c ∈ {7, 6, . . . , 0}}, so that the abscissa values
{log1.25( 1

δ )} are a unit length apart. Dashed line has
slope 4.

5 RELATED WORK

Parametric or asymptotic methods. Our statements
about the control of type I/II errors and stopping times
are very general, following up on early sequential anal-
ysis work. Most sequential tests operate in the Wald’s
framework expounded in Wald (1945). In a seminal line
of work, Robbins and colleagues delved into sequen-
tial hypothesis testing in an asymptotic sense Robbins
(1985). Apart from being asymptotic, their tests were
most often for simple hypotheses (point nulls and alter-
natives), were univariate, or parametric (assuming Gaus-
sianity or known density). That said, two of their most
relevant papers are Robbins (1970) and Darling and Rob-
bins (1967), which discuss statistical methods related to
the LIL. They give an asymptotic version of the argument
of Section 2, using it to design sequential Kolmogorov-
Smirnov tests with power one. Other classic works that
mention using the LIL for testing various simple or uni-
variate or parametric problems include Darling and Rob-
bins (1968a,b); Lai (1977); Lerche (1986). These all op-
erate in the asymptotic limit in which the classic LIL can
be used to set qN .

For testing a simple null against a simple alternative, the
sequential probability ratio test (SPRT) was proved to
be optimal by the seminal work of Wald and Wolfowitz
(1948), but this applies when both the null and alternative
have a known parametric form. The same authors also
suggested a univariate nonparametric two-sample test in
Wald and Wolfowitz (1940), but presumably found it un-
clear how to combine these two lines of work.



Bernstein-based methods. Finite-time uniform LIL-
type concentration tools from Balsubramani (2015) are
crucial to our analysis, and we adapt them in new ways;
but novelty in this respect is not our primary focus here,
because less recent concentration bounds can also be
used to yield similar results. It is always possible to use
a weighted union bound (allocating failure probability ξ
over time as ξn ∝ ξ

n2 ) over fixed-n Bernstein bounds,

resulting in a deviation bound of O
(√

Vn ln n
ξ

)
. A

more advanced “peeling” argument, dividing time n into
exponentially growing epochs, improves the bound to
O
(√

Vn ln lnn
ξ

)
(e.g. in Jamieson et al. (2014)). This

suffices in many simple situations, but in general is still
arbitrarily inferior to our bound of O

(√
Vn ln ln Vn

ξ

)
,

precisely in the case Vn � n in which we expect
the second-moment Bernstein bounds to be most use-
ful over Hoeffding bounds. A yet more intricate peel-
ing argument, demarcating the epochs by exponential
intervals in Vn rather than n, can be used to achieve
our iterated-logarithm rate, in conjunction with the well-
known second-order uniform martingale bound due to
Freedman (1975). This serves as a sanity check on
the non-asymptotic LIL bounds of Balsubramani (2015),
where it is also shown that these bounds have the best
possible dependence on all parameters. However, it can
be verified that even a suboptimal uniform concentration
rate like O

(√
Vn ln Vn

ξ

)
would suffice for the optimal

stopping time properties of the sequential test to hold,
with only a slight weakening of the power.

Bernstein inequalities that only depend on empirical vari-
ance have been used for stopping algorithms in Hoeffd-
ing races (Loh and Nowozin (2013)) and other even more
general contexts (Mnih et al. (2008)). This line of work
uses the empirical bounds very similarly to us, albeit in
the nominally different context of direct estimation of
a mean. As such, they too require uniform concentra-
tion over time, but achieve it with a crude union bound
(failure probability ξn ∝ ξ

n2 ), resulting in a deviation

bound of O
(√

V̂n ln n
ξ

)
. Applying the more advanced

techniques above, it may be possible to get our optimal
concentration rate, but to our knowledge ours is the first
work to derive and use uniform LIL-type empirical Bern-
stein bounds.

Practical Usage. To our knowledge, implementing se-
quential testing in practice has previously invariably re-
lied upon CLT-type results patched together with heuris-
tic adjustments of the CLT threshold (e.g. the widely-
used scheme for clinical trials of Peto et al. (1977) has
an arbitrary conservative choice of qn = 0.001 through
the sequential process and qN = 0.05 = α at the last

datapoint). These perform as loose functional versions
of our uniform finite-sample LIL upper bound, though
without theoretical guarantees. In general, it is unsound
to use an asymptotically normal distribution under the
null at stopping time τ – the central limit theorem (CLT)
applies to any fixed time t, but it may not apply to a
random stopping time τ (see the random-sum CLT of
Anscombe (1952), and Gut (2012) and references). This
has caused myriad practical complications in implement-
ing such tests (see Lai et al. (2008), Section 4). One of
our contributions is to rigorously derive a directly usable
finite-sample sequential test, in a way we believe can be
extended to a large variety of testing problems.

We emphasize that there are several advantages to our
proposed framework and analysis which, taken together,
are unique in the literature. We tackle the multivari-
ate nonparametric (possibly even high-dimensional) set-
ting, with composite hypotheses. Moreover, we not only
prove that the power is asymptotically one, but also de-
rive finite-sample rates that illuminate dependence of
other parameters on β, by considering non-asymptotic
uniform concentration over finite times. The fact that it
is not provable via purely asymptotic arguments is why
our optimal stopping property has gone unobserved for a
wide range of tests, even as basic as the biased coin. In
our more refined analysis, it can be verified (Thm. 2) that
the stopping time diverges to∞ when the required type
II error→ 0, i.e. power→ 1.

6 CONCLUSION

We have presented a sequential scheme for multivariate
nonparametric hypothesis testing against composite al-
ternatives, which comes with a full finite-sample anal-
ysis in terms of on-the-fly estimable quantities. Its de-
sirable properties include type I error control by con-
sidering finite-time LIL concentration; near-optimal type
II error compared to linear-time batch tests, due to the
iterated-logarithm term in the LIL; and most importantly,
essentially optimal early stopping, uniformly over a large
class of alternatives. We presented some simple applica-
tions in learning and statistics, but our design and anal-
ysis techniques are general, and their extensions to other
settings are of continuing future interest.
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