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Abstract

Bayesian optimization schemes often rely on
Gaussian processes (GP). GP models are very
flexible, but are known to scale poorly with the
number of training points. While several efficient
sparse GP models are known, they have limita-
tions when applied in optimization settings.
We propose a novel Bayesian optimization
framework that uses sparse online Gaussian pro-
cesses. We introduce a new updating scheme
for the online GP that accounts for our prefer-
ence during optimization for regions with bet-
ter performance. We apply this method to op-
timize the performance of a free-electron laser,
and demonstrate empirically that the weighted
updating scheme leads to substantial improve-
ments to performance in optimization.

1 Introduction

Bayesian nonparametric models have seen growing pop-
ularity due to their flexibility and modeling power. The
core strength of nonparametrics lies in their ability to scale
in complexity with the data, making them useful in cases
where parametric model selection is challenging. These
models have therefore been used successfully in a variety
of applications (Kulis & Jordan (2012); Tank et al. (2015);
Miller et al. (2015); Johnson & Willsky (2013)).

Gaussian processes (GPs) have emerged as an elegant non-
parametric approach to regression. GPs provide a full prob-
abilistic model of the data, and allow us to compute not
only the model’s prediction at input points but also to quan-
tify the uncertainty in the predictions. While powerful and
elegant, the application of GP regression is limited by the
poor scaling of GPs (Rasmussen & Williams (2005)). This
limitation has motivated the introduction of numerous effi-
cient approaches for approximating the exact GP solution,
e.g. Gal et al. (2014); Hensman et al. (2013); Ranganathan
et al. (2011).

A common approach to this approximation is to use sparse
GPs, which rely on lower-dimensional representations de-
fined by a smaller set of “inducing points” to represent the
full GP. Various types of sparse GPs have been introduced,
e.g. Snelson & Ghahramani (2006); Lawrence et al. (2003);
Titsias (2009); Csató & Opper (2002); Seeger et al. (2003).
These varieties tend to differ most in how they perform
the selection and management of inducing points; usually
a greedy method of some form is used to select points from
the data set that minimize an entropy or information loss
criterion. A notable exception is the method of Snelson &
Ghahramani (2006), who treat inducing point selection as
a continuous optimization problem.

Our focus here is on optimization when it is extremely
costly to evaluate the objective function. Bayesian opti-
mization is a natural choice in this setting (Jones et al.
(1998)). In Bayesian optimization, a probabilistic model of
the objective function is used to select sampling points by
maximizing an acquisition function based on e.g. the ex-
pected improvement in the target variable. Gaussian pro-
cesses are naturally applicable to Bayesian optimization
due to their full probabilistic formulation, which can effec-
tively model the observations of the optimization process;
see e.g. Osborne et al. (2009); Snoek et al. (2012) for recent
applications of Bayesian optimization using GPs. Other
approaches to Bayesian optimization include deep neural
networks, as in Snoek et al. (2015).

To date, applications of GPs to Bayesian optimization have
typically used full Gaussian process regression. In these
settings, it is either assumed that computation time is rela-
tively less important (as compared to e.g. function evalua-
tions), or that convergence will occur quickly enough that
the size of the full GP is not an issue. These assumptions
might not hold in large parameter spaces, however, partic-
ularly in settings with noisy observations that can signifi-
cantly slow the rate of convergence.

As a result, we consider the application of sparse GPs to
Bayesian optimization, as in Nickson et al. (2014). Since
sparse GPs have bounded size, the time taken to update dur-
ing optimization will not increase regardless of how long



the procedure takes to converge. Using sparse GPs for
Bayesian optimization presents a different set of challenges
than in a typical regression problem, however. In particu-
lar, existing sparse GP approaches seek to model the full
GP as accurately as possible given the limited size of their
representation. This goal is obviously desirable for regres-
sion, but has key shortcomings in optimization, namely that
the limited resources of the sparse GP may be allocated
to closely model regions of parameter space that perform
poorly and are therefore less important for optimization.

We propose weighted-update online Gaussian processes
(WOGP) as an alternative to typical sparse GP set selec-
tion that is better suited to optimization; rather than tailor-
ing the sparse GP for predictive accuracy, WOGPs use an
online update scheme that weights the feature space of the
GP according to which regions are promising from the op-
timization perspective. During Bayesian optimization over
a large parameter space, this ensures that the sparse model
does not waste resources by attempting to accurately model
regions that are clearly irrelevant to the optimization prob-
lem.

Our work is motivated by an application of Bayesian opti-
mization to improve the performance of the Linac Coherent
Light Source (LCLS) free-electron laser (FEL) at the SLAC
National Accelerator Laboratory (Emma et al. (2010)). The
operational costs of this machine are daunting, and cur-
rent tuning procedures consume hundreds of hours of ma-
chine (and machine operator) time annually that could be
better spent conducting the various scientific experiments
that rely on LCLS. In this setting, we demonstrate em-
pirically that WOGPs significantly outperform competing
techniques.

2 Background

In this section we describe Gaussian process regression and
the online sparse GP algorithm introduced in Csató (2002).
This algorithm uses online updates and a sparse represen-
tation to reduce the GP training complexity. This online
scheme is particularly useful for large scale and online re-
gression tasks, since it reduces the time taken to update the
GP in each iteration with efficient individual updates.

2.1 Review of Gaussian Process Regression

Formally, a Gaussian process is a collection of random vari-
ables X such that any finite subset (X1, · · · , Xn) ⊂ X
have a joint Gaussian distribution. For example, if we have
a GP over the interval [0, 1], then the joint distribution of
any finite set of points in [0, 1] is multivariate normal; the
mean and covariance of this distribution will be discussed
shortly. This GP can be thought of as a distribution over
functions f : [0, 1] → R, as every assignment of values to
this interval (or any domain on which a GP is defined) has

some probability associated with it via this joint distribu-
tion.

A Gaussian process prior is fully defined by its covariance
function K : X ×X → R and its prior mean µ0 : X → R.
To simplify the discussion, we will assume that the prior
mean function is zero, though this need not be the case. The
covariance function is required only to be a valid covari-
ance function in that the Gram matrixKi,j = K(xi,xj) of
values of any finite subset of X must be positive semidefi-
nite.

In Gaussian process regression, a GP prior is conditioned
on training data to obtain the posterior distribution over
the function space. Following the notation of Rasmussen
& Williams (2005), given training samples X with corre-
sponding observations f and test inputs X∗, distribution
of training observations and test outputs f∗ is multivariate
Gaussian; conditioning the latter on the former gives us

f∗|X,X∗,f ∼ N (K(X∗, X)K(X,X)−1f ,

K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗)) . (1)

The resulting posterior at the test locations is a multivariate
Gaussian distribution whose mean and covariance are then
used in regression. Incorporating the assumption of i.i.d.
Gaussian noise into this model is straightforward, involving
a simple change to the covariance function according to the
standard deviation σ of the assumed noise. This yields the
posterior distribution conditioned on noisy observations y:

f∗|X,X∗,y ∼ N (K(X∗, X)[K(X,X) + σ2I]−1y,

K(X∗, X∗)−K(X∗, X)[K(X,X)+σ2I]−1K(X,X∗)) .
(2)

See Rasmussen & Williams (2005) for a full treatment of
GP regression and Gaussian processes in general.

For a predictive distribution conditioned on n training in-
puts, the time complexity of Gaussian process regression
is O(n3). This is prohibitively expensive for applications
with more than a few thousand inputs (or fewer in set-
tings where runtime is an important consideration). Sev-
eral approaches have been introduced for approximating
full GP regression with more efficient algorithms. The
most common category for these approximations is the
sparse GP, several varieties of which are listed in Section
1. See Quionero-Candela & Rasmussen (2005) for a thor-
ough treatment of the variety and theory of sparse approxi-
mations to full Gaussian process regression.

The common thread among these methods is the attempt to
represent the full Gaussian process using a set ofm < n in-
ducing inputs, typically leading to a complexity ofO(m2n)
to train the sparse GP. These inducing inputs are often cho-
sen as a subset of the input data, leading to a difficult com-
binatorial problem that is typically solved using some form



Algorithm 1 Online GP Update

1: Input: data point x, output y
2: Persistent: Inducing variables XI , GP model param-

eters
3: Assess novelty γ of point x.
4: if γ < εtol then
5: Perform sparse update without expanding the model.
6: else
7: Perform full update, adding x to XI and extending

GP model parameters.
8: end if
9: if Model size exceeds m then

10: Score inducing inputs XI on impact of removal.
11: Remove the lowest-scoring element of XI ; update

the GP model to minimize the impact of removal.
12: end if

of greedy minimization of information loss. Snelson &
Ghahramani (2006) provide one alternative, in which in-
ducing variable selection is treated as a continuous opti-
mization problem. Our approach is most closely related to
the algorithm introduced in Csató (2002), which iteratively
trains the approximating GP by processing each input indi-
vidually. This method selects inducing points by continu-
ally comparing new data points to the existing set of induc-
ing variables in the model and keeping whichever subset
yields the best approximation. This method is described in
more detail below.

2.2 Online Sparse GPs

The online sparse GP algorithm of Csató & Opper (2002);
Csató (2002) handles the sparse selection problem by ob-
serving input data one point at a time. In each iteration,
the new data point is added to the sparse model (assum-
ing that the sample passes a geometric novelty threshold),
which may increase its size to m + 1 inducing variables.
A reduction step is then performed, which removes one of
these inducing variables to restore the sparse GP to size m.
Pseudocode for the online update is given in Algorithm 1.

Following Csató (2002), we represent a GP by its covari-
ance function K and its posterior parameterization after t
iterations in terms of the (m × 1) dimensional vector αt

of inducing point coefficients and the (m ×m) matrix Ct

which specifies the posterior covariance. We denote by XI
the set of inducing variables, giving us the posterior predic-
tive distribution at query points X∗ as

N (K(X∗, XI)αt,

K(X∗, X∗) +K(X∗, XI)CtK(XI , X
∗)) . (3)

The covariance function K corresponds to a (possibly
infinite-dimensional) feature space F . Specifically, if d
is the dimension of the data, there exists a function φ :

Rd → F such that K(xi, xj) = 〈φ(xi), φ(xj)〉F is the
inner product of xi, xj ∈ Rd in F . It is shown in Csató
(2002) that the Gaussian process can be viewed as a Gaus-
sian distribution in F . Let Φ be the feature space represen-
tation of XI , so KI ≡ K(XI , XI) = Φ>Φ. Then in the
feature space F we have

GPK(α, C) ∼ N (Φα, IF + ΦCΦ>) , (4)

where IF is the identity matrix in F and we use the nota-
tion GPK(α, C) to denote the GP with the corresponding
covariance function and parameters. Henceforth we will
omit the K in this notation, as it will be clear from context.

This allows for a straightforward computation of the
Kullback-Leibler (KL) divergence between two GPs that
have the same kernel function. The KL divergence between
distributions P and Q is defined as

DKL(P‖Q) =

∫
F
P (x) log

P (x)

Q(x)
dx . (5)

Note that we need never concern ourselves with the cases
P (x) = 0 or Q(x) = 0 since we deal exclusively with
normal distributions in this paper.

Suppose that in iteration t + 1 a new inducing variable is
added to the model, increasing its size to m + 1. In the
approach of Csató (2002), the optimal reduced parameters
α̂ and Ĉ are computed by minimizing the KL divergence
between GP ∼ GP(α,C), the over-sized GP that we are
reducing, and the approximation ĜP ∼ GP(α̂, Ĉ), sub-
ject to the constraint that α̂ and Ĉ have entries of zero cor-
responding to some inducing variable (i.e. there exists an
index i such that the ith element of α̂ and the ith row and
column of Ĉ are zero). We assume without loss of gener-
ality that it is the last inducing variable that is removed.

Csató (2002) minimizes DKL(ĜP‖GP ) with respect to
the parameters α̂ and Ĉ, resulting in the update equations
(3.19) and (3.22). With Q ≡ K−1I , these equations are

α̂ = α(r) − α∗

c∗ + q∗
(C∗ +Q∗)

Ĉ = C(r)+
1

q∗
Q∗Q∗>− 1

c∗ + q∗
(C∗+Q∗)(C∗+Q∗)> ,

(6)

where α(r) denotes the first m entries of α, C(r) is the
(m × m) matrix obtained by omitting the last row and
column of C, α∗, c∗, and q∗ are the last elements of α,
diag(C), and diag(Q) respectively, and the (m × 1) vec-
tors C∗ and Q∗ are the last columns of C and Q respec-
tively, excluding the last entry. Applying the block matrix
inversion formula, we can also compute the reduced inverse



Algorithm 2 Bayesian optimization

1: while Not converged do
2: Compute xt+1 = arg maxx(EI(x)).
3: Query objective function at xt+1 to get yt+1.
4:
5: Augment the data: Dt+1 = {Dt, (xt+1, yt+1)}
6: Update the model:Mt+1 =Mt ← (xt+1, yt+1)
7: t = t+ 1
8: end while

Gram matrix Q̂:

KI = Q−1 ⇒ K
(r)
I = (Q(r) − 1

q∗
Q∗Q∗>)−1

⇒ Q̂ = Q(r) − 1

q∗
Q∗Q∗> . (7)

Using the update equations (6), scores are computed for
each of them+1 inducing variables based on the minimum
KL divergence that can be achieved when omitting them.
The worst-scoring point is then removed, with updates (6)
performed to the appropriate coordinate.

2.3 Bayesian Optimization

Bayesian optimization is a probabilistic approach to opti-
mization that is generally used when queries to the function
being optimized are expensive. This method lessens the
number of evaluations needed, shifting the burden instead
to computation over probabilities by utilizing information
from all of the function evaluations to choose the next sam-
pling location. We deal here with Bayesian optimization
using Gaussian processes as probabilistic models.

Let Dt = {(xi, yi)
t
i=1} be the observed data of the first

t iterations of optimization, where yi is the observation of
the target variable at the location xi in parameter space.
Then we denote byMt the model trained onDt (where the
ordering of Dt may matter, e.g. if the model is an online
sparse GP). LetMt(x) = (µt(x), σt(x)), so that µ and σ
give the posterior mean function and variance of the model.

The central idea behind Bayesian optimization is to explore
according to an acquisition function which incorporates the
current set of observations. In this paper we use the ex-
pected improvement as our acquisition function. If x∗ is
the observed location that maximizes µt, the improvement
at a point x is defined1 as

It(x) = max(0, µt(x)− µt(x
∗)) . (8)

As seen in Jones et al. (1998) the expected improvement at

1We use µt(x
∗) rather than the best observation itself to ac-

count for the assumed noise in the observations.

a point x can be computed as

EI(x) ≡ E[It(x)] ={
(µt(x)− µt(x

∗))Φ(Z) + σt(x)φ(Z) σt(x) > 0

0 σt(x) = 0
,

Z =
µt(x)− µt(x

∗)

σt(x)
. (9)

Here Φ and φ respectively represent the CDF and PDF
of the standard normal distribution. Recently, Bull (2011)
showed that optimization using theEI criterion gives prov-
ably efficient convergence in many settings.

With EI defined and the method of updating the GP model
specified, Bayesian optimization is straightforward; pseu-
docode for this procedure is given in Algorithm 2. Note
that to maximize expected improvement we use numerical
optimization, since EI cannot be maximized analytically
but is extremely cheap to evaluate as compared with the
objective function. See Brochu et al. (2010) for a more
thorough introduction to Bayesian optimization.

3 Online Sparse Gaussian Processes for
Bayesian Optimization

In this section we apply online sparse GPs to Bayesian op-
timization. This is complicated by the limited size of the
sparse GP, which can reduce exploitation by preventing the
information gained in an iteration from being fully incor-
porated, as well as hinder exploration of promising areas
by dedicating resources to model regions of poor perfor-
mance. We therefore introduce the weighted-update on-
line GP (WOGP), our modified online sparse GP scheme,
and the resulting Bayesian optimization algorithm. Our
approach to online sparse GPs is similar to that of Csató
(2002); Csató & Opper (2002), but utilizes a weighted mea-
sure of divergence between the Gaussian processes’ predic-
tive distributions. This allows us to better allocate the lim-
ited modeling capacity of the sparse GP to further the goal
of optimization (rather than predictive accuracy).

For example, imagine that we are attempting to maxi-
mize performance over a large parameter space. The on-
line sparse GPs studied previously may devote multiple in-
ducing points to modeling a complex region of low per-
formance to minimize the divergence in this area. These
points may serve our goal of maximization better by im-
proving the model’s resolution in promising regions of pa-
rameter space while maintaining only a vague notion of
poor performance in other regions.

3.1 The Weighted KL Divergence

We now describe a weighted divergence measure between
distributions and compute this divergence for two GPs.



Definition 1. For probability distributions P and Q and
real-valued weighting function f , we define the weighted
KL divergence as

Df
KL(P‖Q) =

∫
F
P (x) log

(P (x)

Q(x)

)f(x)
dx

=

∫
F
f(x)P (x) log

P (x)

Q(x)
dx . (10)

We note that f should be non-negative to prevent rewarding
differences between the distributions; the goal of weighting
is to regard divergence in low-weighted areas not as good,
but as acceptable if accuracy in highly weighted regions
can be obtained in its place.

Proposition 1. For real-valued weighting function f , and
constant c ∈ R, the following hold:

Dcf
KL = cDf

KL, D
f+c
KL = Df

KL + cDKL . (11)

Proof. Easily computed from (5) and (10).

We can also see from Proposition 1 that scaling f by a con-
stant factor does not affect relative divergence.

We can write the prediction of GP at a point x in fea-
ture space as x>Φα, since x>Φ is the inner product in the
feature space corresponding to the evaluation of the kernel
function K (see Equation 3). Then we define f∗ in terms
of the proportional improvement expected at x:

f∗(x) = 1 +
x>Φα− y∗

|y∗|
=
x>Φα

|y∗|
, (12)

where y∗ is the best value observed thus far during opti-
mization.

This weighting function f∗ will cause promising regions
of feature space to be weighted more heavily in the diver-
gence computation. Of course, we immediately see that f∗

is negative wherever the GP’s posterior mean is negative.
In our motivating application this is not much of a concern,
as we deal with a non-negative target (laser pulse energy).
In other settings and with other weighting functions, ad-
justments may be necessary to prevent f being negative.

These adjustments may simply take the form of shifting
the observations to be positive; if the minimum observa-
tion is ymin and the minimum value attained by the GPs
prior mean function is pmin, then we can define y0 =
−min(ymin, pmin). Incrementing the prior mean and ob-
servations of the GP by y0 simply shifts its posterior mean
function above zero without changing the shape of the dis-
tribution. This can be seen from the linearity of the GP
formulation, for example in Equation 2.

Alternatively, f can be shifted directly to prevent it being
negative; from Proposition 1 we have Df+c

KL = Df
KL +

cDKL, so this has the effect of averaging the weighted and
unweighted divergences in order to ensure that differences
between the distributions P and Q where f < 0 are not
rewarded (since the rewards given byDf

KL in these regions
will be offset by the cDKL term).

Surprisingly, we can compute a closed form equation for
Df∗

KL(GP‖ĜP ) in terms of m- and (m + 1)-dimensional
GP parameters α̂, Ĉ, α, and C, despite its formulation
in the possible infinite dimensional feature space F . The
derivation of this equation can be found the full version of
this paper, available online (McIntire et al. (2016b)).

Proposition 2. Let GP = GP(α, C), ĜP = GP(α̂, Ĉ)
be GPs which share the same inducing inputs and covari-
ance function K. Let KI = K(XI , XI) ≡ Q−1 and de-
fine

Γ = I +
(I +KIC)>

α>KIα
, V̂ = (Ĉ +Q)−1,

w = Tr[(C +Q)V̂ − I]− log |(C +Q)V̂ | . (13)

Then the weighted KL divergence (10) between GP and
ĜP using weighting function f∗ (12) is given by

Df∗

KL(GP‖ĜP ) ∝ 2α>(Γ> − I)V̂ (α− α̂)+

(α− α̂)>V̂ (α− α̂) + w

= (2Γα− (α+ α̂))>V̂ (α− α̂) + w . (14)

We can obtain some intuition for this formula by separately
considering the cases α̂ = α and Ĉ = C. In the former
case, the first term of (14) vanishes, while if Ĉ = C the
second term vanishes; we can therefore infer roughly that
the first term encodes the loss due to reducing α, while w
measures loss from reducing C to Ĉ. For a noise-free, full
(non-sparse) GP, we have C = −K−1I ⇒ Γ = I . In this
case, (14) reduces to the unweighted KL divergence:

DKL(GP‖ĜP ) = (α− α̂)>V̂ (α− α̂) + w . (15)

Note that the full GP is used to weight the divergence
rather than the reduced approximating GP. The reduced
ĜP that minimizes (14) is therefore a moment projection
(or M-projection) of GP onto the space of reduced size-m
GPs. As shown by Koller & Friedman (2009), this type of
projection punishes ĜP (viewed as a normal distribution)
for failing to assign probability mass to regions which are
assigned non-negligible probability by GP . The reverse
direction Df

KL(ĜP‖GP ) corresponds to the I-projection,
which instead punishes ĜP for assigning probability to re-
gions that GP considers low-probability. Interpreting this
in terms of the function space defined by the GPs, we use
the M-projection, which ensures that all functions plausible
under GP are assigned some probability by ĜP , a highly
desirable property as contrasted with the I-projection.



3.2 WOGPs: Weighted Sparse GP Reduction

We now address the problem of reducing the full GP to
ĜP , which uses only m of the inducing variables. The
goal of this reduction is of course to minimize the impact
of removing an inducing variable; in our case, we attempt
to minimize Df∗

KL(GP‖ĜP ).

Note that the weighting function f∗ uses the full GP pre-
diction rather than the reduced GP. This is desirable for two
reasons. First, we expect the full GP to predict more accu-
rately than the reduced GP because it is fully utilizing the
information from the size-m model of the previous itera-
tion and the new point, while the reduced GP must approx-
imate this information. Second, using the reduced GP’s
predictions to weight the feature space confounds the opti-
mization problem, since the weighting of the feature space
is then malleable; for example, if f is the prediction of ĜP ,
it may be optimal to simply let α̂ = 0⇒ f = 0, but this is
not helpful in approximating the full GP.

Fix GP = GP(α, C) and KI . Let d∗(α̂, Ĉ) =

cDf∗

KL(GP‖ĜP ) be the weighted KL divergence (times
scaling constant c) between this GP and its approximation
ĜP = GP(α̂, Ĉ). Recall our definition of Q̂, the update
to the inverse Gram matrix, from Equation 7 (and note that
Q̂ is a function only of Q).

Formally we address the following problem:

minimize
α̂,Ĉ

d∗(α̂, Ĉ)

subject to α̂>em+1 = 0

Ĉem+1 = 0m+1

Ĉ = Ĉ>

(Ĉ + Q̂) � 0

|Ĉ +Q| > 0.

(16)

Here em+1 is the final standard basis vector and 0m+1 is
the zero vector in Rm+1.

Proposition 3. For fixed Ĉ, the optimization problem (16)
is convex with respect to α̂.

Proof. Differentiating (14) with respect to the nonzero en-
tries of α̂ yields

∂ d∗(α̂, Ĉ)

∂α̂
= −2[Im0m]V̂ (Γ− I)α

− 2[Im0m]V̂ (α− [Im0m]>α̂)

= −2[Im0m]V̂ (Γα− [Im0m]>α̂) , (17)

where α̂ is now assumed to be m-dimensional, Im repre-
sents the m-dimensional identity matrix, 0m is a column
vector of m zeros, and [Im0m] denotes the corresponding
(m× (m+ 1))-dimensional matrix.

Now let vi denote the ith column of V̂ , excluding the last
entry, and observe that

∂2 d∗(α̂, Ĉ)

∂α̂iα̂j
= 2

∂ (v>i α̂)

∂α̂j
= 2V̂i,j . (18)

Thus we have that the Hessian matrix of d∗(α̂, Ĉ) with re-
spect to α̂ is just twice the leading (m ×m) submatrix of
V̂ , which we denote V̂ (r).

Note that we can compute V̂ (r) using block matrix inver-
sion:

V̂ (r) = (Ĉ +Q(r) − 1

q∗
Q∗Q∗>)−1 = (Ĉ + Q̂)−1 . (19)

Our result follows from the constraints (Ĉ + Q̂) � 0 and
|Ĉ + Q| > 0, with the additional observation that the do-
main of (16) in α̂ is a convex set.

Having established convexity, we now use Equation 17 to
compute an update rule for α̂ that minimizes the resulting
weighted KL divergence. Solving (17) for zero, we have

[Im0m]V̂ (Γα− [Im0m]>α̂) = 0m ⇒
V̂ (Γα− [Im0m]>α̂) = [0>m u]> ⇒

Γα− [Im0m]>α̂ = (Ĉ +Q)[0>m u]> = u[Q∗>q∗]> ,
(20)

where in the last step we recall that the last column of Ĉ is
zero. We let Γ(r) denote the first m rows of Γ and Γ∗ the
last row of Γ; observe then that

Γ∗α = uq∗ ⇒ u =
Γ∗α

q∗
, (21)

which leads us to the following solution.
Proposition 4. The update rule for α̂ which minimizes
Df∗

KL(GP‖ĜP ) is given by

α̂ = Γ(r)α− Γ∗α

q∗
Q∗ . (22)

Fixing α̂ to be optimal in the above sense, we would then
like to solve the optimization problem (16) with respect to
Ĉ. Unfortunately, this problem is not easily solved for local
minima. Differentiating Equation 14 with respect to Ĉ, we
have

∂d∗(α̂, Ĉ)

∂Ĉ
=
∂w

∂Ĉ
+

− [Im0m]V̂ (2Γα− (α+ α̂))(α− α̂)>V̂ [Im0m]> .
(23)

Evaluating the derivative of w in the same way, we arrive
at

∂w

∂Ĉ
= [Im0m]V̂ [Im0m]>

− [Im0m]V̂ (C +Q)V̂ [Im0m]> (24)



However, we are not aware of a way to solve Equation 23 to
minimize Df∗

KL(GP‖ĜP ) analytically with respect to Ĉ.

Furthermore, we find that the objective d∗(α̂, Ĉ) is not
convex with respect to Ĉ: since log |X| is known to be
concave, the second term of w

− log |(C +Q)V̂ | = log |Ĉ +Q| − log |C +Q| (25)

is concave. This prevents us from using convex optimiza-
tion to solve for Ĉ. However, we have the following:

Proposition 5. For fixed α̂, the objective d∗(α̂, Ĉ) can
be written as d∗(α̂, Ĉ) = g1(Ĉ) − g2(Ĉ), where g1,
g2 are real-valued convex functions on the intersection of
R(m+1)×(m+1) with the constraints on Ĉ in (16).

Proof. Due to Theorem 1 of Yuille & Rangarajan (2003),
we can show this by demonstrating that the Hessian of
d∗(α̂, Ĉ) for fixed α̂ is bounded. Since Tr[X−1] is convex,
we already have the desired result for w and will therefore
compute only the Hessian of

d∗0(Ĉ) ≡ (2Γα− (α+ α̂))>V̂ (α− α̂) . (26)

To do this, we first compute

∂d∗0

∂Ĉ
= −[Im0m]V̂ (2Γα−(α+α̂))(α−α̂)>V̂ [Im0m]> ,

(27)
where we use the matrices [Im0m] to confine the expres-
sion to the (m×m) derivative with respect to the nonzero
entries of Ĉ. Let u1 = 2Γα− (α+ α̂) and u2 = (α− α̂)
for notational convenience. Confining this expression to a
particular entry, we arrive at

∂d∗0

∂Ĉi,j

= −v>i u1u
>
2 vj , (28)

letting vi denote the ith column of V̂ (and recalling that V̂
is symmetric).

LetHi,j
k,l represent an entry of the Hessian matrix of d∗0, and

compute

Hi,j
k,l =

∂2d∗0

∂Ĉi,j∂Ĉk,l

= − ∂

∂Ĉk,l

v>i u1u
>
2 vj

= u>1 (V̂i,kvlv
>
j + V̂j,kviv

>
l )u2 . (29)

EvidentlyHi,j
k,l is bounded for all i, j, k, l, and thus we have

the desired result.

The above result allows us to employ methods of concave-
convex minimization, e.g. the CCCP procedure of Yuille &
Rangarajan (2003). Specifically, to minimize g1 − g2 we
employ an iterative method of updating Ĉ according to the
rule

∂g1

∂Ĉ
(xt+1) =

∂g2

∂Ĉ
(xt) . (30)

It is not straightforward to explicitly decompose d∗ into
convex terms g1 and g2 due to the difficulty of solving
Equation 23, so we instead use the iterative method for op-
timization given in Yuille & Rangarajan (2003) for such
cases, which finds xt+1 in each step by minimizing a func-
tion of xt+1 and xt.

In Section 4, we demonstrate that CCCP optimization of Ĉ
can significantly reduce the weighted KL divergence of the
online GP update. Since we are minimizing with respect
to the matrix Ĉ, the size of the CCCP optimization prob-
lem isO(m2). For larger sparse models, this approach may
therefore not be feasible if computation time is a primary
concern. As runtime is extremely costly for our applica-
tion, we also propose as a heuristic the update rule for Ĉ of
Csató (2002), given in Equation 6, which minimizes the
unweighted divergence between the distributions as well
as the w-term of the weighted divergence. The analytic
form for this update can provide a significant speedup over
CCCP if m is large; we justify this heuristic by comparing
with CCCP updating for Ĉ in Section 4.

4 Experiments

We perform two types of experiments to demonstrate the
efficacy of WOGPs in Bayesian optimization. First, we
provide easily visualized examples of the comparative per-
formance of WOGPs and standard online sparse GPs on
synthetic optimization problems. Second, we use data from
the LCLS free-electron laser to test the optimization algo-
rithms in a real-world setting with noisy observations.

4.1 Example Problem

First, we consider the simple problem of optimizing over
a function given by y = 20 + x − (x − 1)2(x + 1)2,
shown in Figure 1a, which achieves a maximum slightly
greater than 21 at x ≈ 1.1 and has a local maximum at
x ≈ −.84. Each type of model is allowed at most five
inducing variables. In each trial, we choose five training
points in [−3, 3] uniformly at random and train each model
on them. The Bayesian optimization procedure described
in Section 2.3 is then performed for 80 iterations. Figure
1b shows the results of this experiment averaged across
80 trials. On average, both models tend to quickly find a
value near the global optimum; however, while the WOGP
tends to converge near this optimum, the unweighted model
does not. Instead, when the unweighted model explores
other areas, it essentially loses focus on the optimal area
by devoting some of its limited resources to modeling the
new, lower-scoring region. This can be seen in the decline
on average of the unweighted model’s score to roughly
y = 19, in which it converges within the near-plateau be-
tween x = −1 and x = 0.

In the bottom of Figure 1, examples are shown of the con-
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Figure 1: Simple 1-D optimization problem. (a) The ob-
jective function. (b) Average y-value explored in each it-
eration, for unweighted (blue) and weighted (red) models.
Standard deviations are shown as error bars. (c,d) Sample
unweighted and weighted (respectively) final GP models.
The objective is shown in black, GP mean function with
uncertainty in blue, and inducing points as red dots.

verged online GP models in this problem. In (1c), the
unweighted model is plotted in blue with its predictive
variance, while the underlying function f(x) is plotted in
black. The red dots underneath show the locations of the in-
ducing variables for each model. The models were trained
on the same points, and both initially explore in the re-
gion around x = −1. However, the unweighted model
allocates one of its inducing variables to x ≈ −2 in or-
der to capture the curvature of f(x) in the negative direc-
tion. The weighted model instead stabilizes its inducing
variables around x = −1 and x = 0 during its exploration
in x < 0 and then begins to explore in x > 0. This right-
ward exploration quickly converges around x = 1.

4.2 FEL Performance Optimization

Free-electron lasers operate by accelerating electrons to
nearly the speed of light, and then passing this electron
beam through a series of magnetic dipoles to separate
the electrons into coherent microbunches (Huang & Kim
(2007)). Through this coherence, an FEL can generate
x-ray pulses 10 billion fold brighter than any other x-ray
source. Here, we focus on the tuning of quadrupole mag-
nets, which are placed upstream of the FEL to manipulate
the shape of the electron beam.

Currently at LCLS, quadrupole magnets are tuned by hand
to optimize the beam pulse energy. The existing tuning pro-
cedure is repeated frequently due to machine configuration
changes and drift over time. This extensive tuning time is
problematic due to the operational cost of the beam and the

(a) (b)

Figure 2: Results demonstrating the effectiveness of CCCP
for optimization over Ĉ, shown for a particular event. Each
pixel shows the median value over 20 trials at the given
configuration. (a) The weighted KL divergence d∗ obtained
using the heuristic (6) update rule for Ĉ. (b) The propor-
tional reduction in d∗ from CCCP optimization over Ĉ.

heavy over-subscription of LCLS users; the FEL is used
by scientists in a variety of disciplines for field-leading re-
search, and the demand for machine time outstrips its avail-
ability by a factor of 5. Reducing the time spent tuning the
machine would directly increase its availability for scien-
tific use.

Our experiments on the FEL data thus far have used iso-
lated optimization ‘events’: we define such an event as a
consecutive period of time using a fixed accelerator con-
figuration, such that the measured x-ray pulse energy is a
function only of the controlled variables, i.e. quadrupole
magnet settings. Under this assumption, we then train two
online GP models with the same number of inducing vari-
ables, one using a WOGP, and one using a standard on-
line sparse GP, on a noisy subset of the event data. A
much larger sparse GP (with e.g. 500 inducing variables)
is trained on the event data without noise. This large ‘truth’
model is then used in the Bayesian optimization procedure,
with its predictions used as feedback for the online GP op-
timizers. We introduce noise for the online GP models and
not the truth model to simulate the use case of online tun-
ing, which must be done each time the beam is used due to
the tendency of the machine settings to drift over time.

We first use this data to test the WOGP update rules for
Ĉ. Using CCCP to minimize Df∗

KL(GP‖ĜP ) with respect
to Ĉ can be used to minimize the weighted KL divergence
of the approximating GP. Alternatively, we propose as a
heuristic the update given by Csató (2002), shown in (6),
which is optimal for the KL divergence (5) between ĜP
and GP , and optimal for the w term of Df∗

KL(GP‖ĜP ).

Figure 2 shows results of a comparison between these up-
date rules for Ĉ. For this testing, a single representative
event was chosen, and 20 optimization trials were run for a
short time with various levels of training noise and numbers
of inducing variables. For each trial, the value of Df∗

KL is
then computed for an additional size reduction step for both
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Figure 3: Results of optimization on FEL data, with events at different beam configurations and electron energies of 11.45,
13.2, and 14.5 GeV respectively. The plots show the average x-ray pulse energy in mJ of the region explored in each
iteration by the weighted (red) and unweighted (blue) sparse optimizers, as well as by a full GP, shown in green. Error bars
indicate the normalized standard deviation of the values in each iteration.

the heuristic and CCCP-computed values of Ĉ. In Figure
2a, the median value of Df∗

KL obtained using the heuristic
update for Ĉ across these trials is shown for each configu-
ration. Note that as the modeling problem becomes more
challenging (as noise increases and the number of induc-
ing variables decrease), the typical divergence of the up-
date increases. We do not show a similar plot for the CCCP
updating because it is visually very similar.

In Figure 2b, the percentage decrease in Df∗

KL achieved by
using CCCP updating is shown. We see that using CCCP
to optimize the value of Ĉ typically leads to a 5-15% de-
crease in the weighted KL divergence of the update. This
demonstrates that the heuristic update for Ĉ is justified in
cases where the runtime of CCCP is prohibitive. These re-
sults also indicate that the CCCP updating scheme detailed
here can provide nontrivial improvements to Df∗

KL over the
heuristic update. Over the course of optimization the accu-
mulated benefit from the CCCP updating may lead to sub-
stantial improvements in performance.

Next, we compare the performance of WOGPs and stan-
dard online sparse GPs in optimization over the FEL data
events described above. Results from three such events,
averaged over 200 trials (with different, randomly sampled
initial training data), are shown in Figure 3. The results
of optimization are compared in terms of final y-value and
regret (which is an additive constant away from the nega-
tive sum of observations), which accounts for speed of im-
provement as well. We can see that in general WOGPs tend
to yield better performance than the unweighted sparse GP:
in the first two events (3a) and (3b), the difference in final
y-values is statistically significant (p < .001, p < .002
respectively in the two-sided t-test), as is the difference in
regret (p < .05, p < .005). In the final event (3c), we
can see that the WOGP performs similarly to the full GP,
though its improvement over the unweighted sparse GP is
not statistically significant for this event.

5 Conclusions

Bayesian optimization is known to be effective for opti-
mization in settings where the objective function is expen-
sive to evaluate. A complex parameter space and noisy ob-
servations can slow the convergence of Bayesian optimiza-
tion, however, and using a full Gaussian process model
leads to poor scaling in these cases. In this paper, we in-
troduce sparse online GPs for Bayesian optimization.

Our main contribution is a novel weighted updating scheme
for sparse online GPs, which enables a trade-off during
optimization between overall predictive accuracy and a
specific focus on better-performing regions of parameter
space. This addresses the core problem with using sparse
GPs in Bayesian optimization: the limited size of the GP
representation, which prevents the information from new
data from being fully incorporated into the model. As a re-
sult, traditional sparse GPs perform poorly since the sparse
set selection does not necessarily attempt to preserve reso-
lution in promising areas of parameter space and may even
‘blur’ local optima to preserve accuracy elsewhere.

Our new weighted-update online GP, WOGP, outperforms
the standard online sparse GP in optimization by preferen-
tially updating the model to incorporate information that is
more valuable to the optimization procedure. We are able
to analytically evaluate the weighted KL divergence be-
tween Gaussian processes for a simple weighting function,
and we demonstrate empirically that updating the sparse
GP to minimize this weighted divergence significantly im-
proves performance during Bayesian optimization. Live
tests of this approach are currently underway at LCLS
(McIntire et al. (2016a)).
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